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Materials

Tetrahydrofuran (THF, 99+%, stabilized with BHT), molecular sieves (3Å, 4-8 mesh), 1-

propanol (99+%, extra pure), L-alanine (99%), and 2-methyl-1-propanol (isobutanol, ACS reagent,

spectro grade, 99+%) were purchased from Acros Organics. Lithium tetrafluoroborate (LiBF4,

98%), tert-butyl alcohol (99%), 2-butanol (>99%), 2-ethyl-1-butanol (98%), 1-pentanol (ACS

reagent, ≥99%), 1-hexanol (reagent grade, 98%), 1-heptanol (98%), 1-nonanol (98%), benzyl al-

cohol (99.8%, anhydrous), phenol (unstabilized, ≥99%), 1-phenylethanol (98%), 2-phenylethanol

(99%), 2-chloroethanol (99%), 2,2,2-trifluoroethanol (ReagentPlus, ≥99%), hexafluoro 2-propanol

(≥99%), ethylene glycol (anhydrous, 99.8%), 1,3-butanediol (±, 99%, anhydrous), glycerol (Reagent-
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Plus, ≥99%), triethyleneglycol (ReagentPlus, 99%), 1,5-pentanediol (≥97%), acetic acid (Reagent-

Plus, ≥99%), hexanoic acid (≥99%), allyl alcohol (99%), 2-methoxyethanol (99.8%, anhydrous),

1-propanethiol (99%), hydrochloric acid (HCl, ACS Reagent, 37%), sodium salicylate (Reagent-

Plus, ≥99.5%), and sodium hypochlorite (NaOCl, 10-15%) were purchased from Sigma-Aldrich.

Methanol (anhydrous, 99.9%), cyclohexanol (99%), 3-butene-1-ol (98+%), sodium nitroprusside

(99-102%), and ammonium chloride (NH4Cl, anhydrous, 99.99%) were purchased from Alfa Ae-

sar. Ethanol (Koptec, anhydrous, 200 proof), 2-propanol (Semi grade, BDH), sodium hydroxide

(NaOH, Macron Fine Chemicals, pellet form), and acetone (ACS, BDH Chemical) were purchased

from VWR International. 1-butanol (Certified ACS), 3-methyl-1-butanol (isoamyl alcohol, for

molecular biology), dichloromethane (DCM, 99.5%), and hexanes (C6H14) were purchased from

Fisher Scientific. Formic acid (ACS Reagent, 98-100%) and ethanolamine were purchased from

EMD Millipore. Milli-Q water was obtained by filtering deionized (DI) water through a Milli-Q

purification system (Merck, Millipore Corporation). Platinum foil (Pt, 0.025 mm thick, 99.99%,

trace metals basis) and 1-octanol (99%) were purchased from Beantown Chemical. Argon gas

(UHP, 5.0 grade) was purchased from Airgas. Nitrogen gas was available in-house; it is gener-

ated by boil-off of liquid nitrogen from Airgas. Steel foil (cold-worked 304 stainless steel, 0.002"

thick) was purchased from McMaster-Carr. Polyporous Daramic 175 separators were received as

a sample from Daramic (Charlotte, NC).

Electrolyte preparation

Dry molecular sieves were prepared by washing as-purchased or previously used molecular

sieves with acetone and drying in a muffle furnace at 300 ◦C for 5 hours. The sieves were added

as 20% by volume to as-purchased THF in a round-bottom flask. The flask was sealed from the

atmosphere with a rubber septum are dried for at least 96 hours before use.

As purchased LiBF4 was dissolved in dry THF to obtain a 1 M LiBF4 in THF electrolyte so-

lution. The LiBF4 must be sufficiently pure for successful ammonia production; we found that
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salt purchased from Sigma-Aldrich is sufficiently pure for these experiments, while other vendors’

may require additional purification; one potential purification procedure is given in prior work.1

The solution was centrifuged at 6000 rpm (4430 rcf) to remove insoluble precipitates. The clear

solution was transferred to oven-dried vials, stored in a desiccator, and used within 12 hours of

preparation. The solution transfer operations can be performed in the ambient atmosphere; the

solutions should not be stored open to the atmosphere, however, as the electrolyte solution can

absorb a significant amount of water from ambient air.

The proton donor was added to the electrolyte immediately prior to experiments. The total

volume of proton donor-containing electrolyte solution prepared for each experiment is 4 mL. If

the volume of proton donor that needs to be added to obtain the desired concentration is <100 µL,

then the proton donor was added to 4 mL of electrolyte directly. If the volume required is >100

µL, then the proton donor added to a smaller volume of electrolyte that was rounded to the nearest

0.1 mL, so that the final volume of the proton donor in electrolyte solution would equal 4 mL. For

example, to prepare 0.2 M ethanol, 47 µL of ethanol were added to 4 mL of electrolyte solution,

while to prepare 0.6 M 1-butanol, 220 µL of 1-butanol were added to 3.8 mL of electrolyte solution.

Nitrogen reduction experiments

Polished stainless steel electrodes were used as the cathode stainless steel shims were cut into

2x2 cm pieces, wet with DI water, and polished with 400 grit followed by 1500 grit sandpaper

thoroughly. The polished foils were rinsed thoroughly with DI water and dried in air at 80 ◦C.

Stainless steel cathodes were used in a single experiment before discarding.

Parallel plate cells described in prior work were used to perform nitrogen reduction experi-

ments.1 Briefly, a polished steel foil was used as the cathode, a platinum foil was used as the

anode, a piece of Daramic was used as a separator, and machined polyether ether ketone (PEEK)

cell parts were used for the cell body (Fig. S1). All cell parts were dried in air at 80◦C for at least
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20 minutes prior to use.

Nitrogen (or argon, in control experiments) gas was flowed at 10 standard cubic centimeters

per minute (sccm) through a vial containing THF and molecular sieves to saturate the feed gas

with THF. The THF-saturated feed gas was then flowed to an assembled 2-compartment cell. The

proton-donor electrolyte was added first to the anode compartment, then to the cathode compart-

ment. 1.75 mL of electrolyte was added to each compartment; note that this is the volume added

to each compartment, and may not be the final volume in each compartment at the conclusion of

the experiment due to solvent evaporation. The feed gas was flowed through the electrolyte for 10

minutes at open circuit to saturate the electrolyte with gas and to strip oxygen from the solution.

After saturating the solution with the feed gas, a constant current of 20 mA was applied for 6

minutes using a Tekpower 5003 DC power source, for a total of 7.2 coulombs of charge passed. In

some experiments (see Supporting Information Table 2), the potential required to applied 20 mA

exceeded 50 V. In experiments where an excess of 50 V was required to apply 20 mA, a constant

potential of 50 V was applied across the cell for 6 minutes, and the total charge passed was quan-

tified by measuring the potential drop across a resistor in series with the cell (Fig. S6). As the

electrolyte resistance does not significantly change with concentration of most proton donors, the

higher voltage required is likely due to changes in SEIs at the cathode or anode in these experi-

ments.

Following application of current, the catholyte was immediately removed from the cell and

diluted in water. In most experiments, the electrolyte was used directly to prepare samples for

ammonia quantification. In these cases, the samples were made as follows: one by adding 200

µL of catholyte to 1800 µL of Milli-Q water (10-fold dilution), and another by adding 100 µL of

catholyte to 1900 µL of water (20-fold dilution), to be able to accurately quantify ammonia at both

lower and higher Faradaic efficiencies. In some cases, the proton donor can affect the colorimetric
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assay negatively by either phase separating with water (e.g. octanol), leading to higher spurious

absorbances, or chemically (e.g. ethyl acetate, thiols), leading to lower or shifted absorbances

(Fig. S3). In these cases, the proton donor was extracted from the ammonia-containing samples.

To extract the proton donor, 500 µL of electrolyte were added to 4.5 mL of 0.05 M H2SO4 in

water. The proton donor in resulting acidified solution was extracted with 3 mL of either DCM or

hexanes three times. Milli-Q water was then added to the aqueous phase to a final volume of 5 mL

if the volume decreased, which may occur if the THF was extracted into the organic phase. The

aqueous phase was centrifuged at 6000 rpm (4430 rcf) for 10 minutes to promote complete phase

separation. The aqueous phase was then quenched with base by adding 1500 µL of the acidified

solution to 500 µL of 0.4 M NaOH, or by adding 750 µL of the acidified solution to 250 µL of 0.4

M NaOH and 1000 µL of Milli-Q water.

After experiments, Daramic separator pieces were rinsed with acetone and soaked in DI water

for at least 10 minutes to remove traces of solvent and ammonia. Cell parts and platinum anodes

were rinsed with acetone and washed thoroughly with DI water. All cell parts, electrodes, and

separators were dried at 80 ◦C in air prior to use in further experiments.

Choosing proton carrier concentrations

In order to determine whether a proton donor can be used to produce ammonia using the

lithium-mediated approach, a range of proton concentrations had to be efficiently screened for ac-

tivity. From prior work,1 it is known that ammonia yields depend on the concentration of ethanol,

the proton donor. At low concentrations, no ammonia is formed and a large amount of lithium re-

mains on the cathode, while at high concentrations, no ammonia is formed due to competition from

the hydrogen evolution reaction. We posited that this behavior is not unique to ethanol and can be

observed for various proton donors. From this hypothesis, we developed a heuristic to rapidly

screen the concentration range. Initially, electrolyte containing 0.2 M of the proton donor was
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used to test for ammonia production. If a significant amount of lithium metal was found to remain

on the cathode or in solution, the concentration of the proton donor was increased for the next run.

Typically, the concentration was increased 2- or 3-fold, depending on the extent of lithium cover-

age on the surface. If the surface is clean and the steel cathode is visible, the concentration of the

proton donor was decreased by a similar amount. Every proton donor was tested at three concen-

trations, with a maximum concentration tested of 1 M. The 1 M cutoff is arbitrary, and was chosen

as it is a concentration that results in fairly large volume fractions of proton donor in electrolyte for

most proton donors. Using this heuristic, we typically obtained runs with a high lithium coverage

after the experiment, a low lithium coverage, and an intermediate coverage, except for cases where

1 M of proton donor did not decrease lithium coverage; in these cases, all experiments had a large

lithium coverage. We believe that approach allowed us to probe a large compound-concentration

phase space efficiently to determine which compounds are capable of promoting lithium-mediated

nitrogen reduction.

Ammonia quantification

The amount of ammonia in samples produced in nitrogen reduction experiments was quanti-

fied by using the salicylate assay according to a procedure described in earlier work.1 Briefly, 280

µL of 1% NaOCl in 0.4 M NaOH solution was added to 2 mL of ammonia sample solution, fol-

lowed by 280 µL of 2.5 M sodium salicylate, 3.5 mM sodium nitroprusside solution. The resulting

solution was mixed vigorously and left to evolve color in the dark for at least 2 hours. The ab-

sorbance spectrum of the resulting solution was measured using an Ocean Optics Flame-S UV-Vis

spectrophotometer. The relevant signal for ammonia quantification was taken to be the difference

in absorbance values at 650 nm and 475 nm to avoid overestimating the amount of ammonia pro-

duced.1

A fresh ammonia calibration curve was made for each quantification batch. Calibration curves

were made by adding 100 µL of electrolyte to solutions of known ammonium sulfate concentra-
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tions, ranging from 0 to 80 µM. A typical calibration curve and absorbance spectra can be seen in

Fig S9. Addition of most proton donors to the electrolyte used do not change the calibration curve

significantly; proton donors which may affect the quantification (such as thiols or long chain alco-

hols) were typically removed by extraction prior to quantification (Supporting Information Table

2). The lowest accurately quantifiable concentration of ammonia in the solutions was typically 2

µM, computed from the error in the intercept of the calibration curve. Assuming a ten-fold dilution

of the electrolyte solution to make a sample, the minimum quantifiable ammonia FE from a typical

experiment is 0.1%.

Analysis of water content

A possible explanation for the differences in activity between various compound could the

difference in water content between various proton donors. However, even the most water-rich

proton donor tested, triethylene glycol, contained only 2600 parts per million (ppm) water, which

corresponds to a water concentration of 130 mM in the pure proton donor. Considering that the

maximum concentration of proton donor used was 1 M (Supporting Information Table 2), the

amount of water added by the proton donor is at most 17 mM. While this is a non-negligible

amount, it is similar to the amount of water present in the electrolyte initially, as measured by Karl

Fischer titration. In addition, an increase in the water content by 17 mM is predicted to decrease the

ammonia yields of an active proton donor, such as ethanol, by 20-30%,1 not eliminate it entirely.

As mentioned in the main text, there is not a strong correlation between the water content of the

pure proton donor and its activity toward LM-NRR (Fig. S8). All this supports the notion that the

differences in activity observed between proton donors are not simply due to a difference in water

content, but are instead related to the chemical structure and properties of the proton donors.
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Modeling approach

The following figure shows the computational modeling workflow. The three parts (in the order

of construction): initial exploration, classification model construction and the deep learning model

building are discussed in detail below.

Initial exploration: This is the phase of data generation for the discovery of descriptors for ac-

tivity towards ammonia production. Data emerged from experimental testing of candidates within

the families of largely alcohols, thiols and carboxylic acids based on chemical intuition and promis-

ing classes discussed in the literature.

The Classification model details and the Deep Learning Model details are listed below in sepa-

rate sections. Please refer to the methods section of the main manuscript in conjunction with these

details.

Classification Model

Several models including linear and non-linear supervised learning models, regression models

and decision tree were constructed. For results pertaining to decision tree, support vector ma-
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chine (Gaussian and polynomial kernels), diagonal quadratic model, linear and quadratic kernels,

please see Fig. S10 and S11. We find that the classification tree is high performing while being

highly interpretable based on mechanistic insights. Hence, in the following section focus on the

classification tree model.

Classification trees: This class of machine-learning methods are typically for constructing

models to partition data into different classes. Classification models are constructed by recursively

partitioning the data space and fitting a simple prediction model within each partition. The parti-

tioning can be represented graphically as a decision tree as shown in the main manuscript (Fig. 3).

The prediction error of classification trees is typically measured in terms of misclassification cost.

Classification trees are designed for dependent variables that take a finite number of unordered

values. A key advantage of the tree structure is its applicability to any number of variables. In

this work, we employ a binary classification tree for experimental activity classification since it is

particularly well suited for this application.

Training data: In the activity classification problem at hand, we have a training sample of many

observations on a class variable Y (for activity towards ammonia production) that takes values 0 or

1 (inactive or active respectively), and p predictor variables, X1,..., Xp. Our goal is to find a model

for predicting the values of Y from new X values. In theory, the solution is simply a partition of the

X space into disjoint sets, A1, A2,..., Ak, such that the predicted value of Y is j if X belongs to Aj,

for j = 0, 1. In our case, p = 8 with candidate descriptors of activity towards ammonia production

being acid dissociation constant (pKa), donor number (DN), Dielectric Constant (ϵr), Kamlet-

Taft parameters (α, β, π), highest occupied molecular orbital level (HOMO), lowest unoccupied

molecular orbital level (LUMO), band gap (BG), Bader volume (BV).

Learning algorithm: The classification tree learning algorithm is carried out within MATLAB

(R2017a). The Classfication tree methods yield rectangular sets Aj of the predictor variable by

recursively partitioning the data set one X variable at a time. Several classification tree algo-

rithms, abbreviated as C4.5,2 CART,3 CHAID,4 CRUISE,5,6 GUIDE7 and QUEST8 have been

proposed since the first published classification tree algorithm, THAID.9,10 The typical algorithm

S9



(pseudocode) for the construction of classification trees is:11

1. Start at the root node

2. For each ordered variable X, convert it to an unordered variable X′ by grouping its values in

the node into a small number of intervals. If X is unordered, set X′ = X.

3. Perform a chi-squared test of independence of each X′ variable versus Y (activity classifica-

tion, in this case) on the data in the node and compute its significance probability.

4. Choose the variable X* associated with the X′ that has the smallest significance probability.

5. Find the split set {X* ∈ S*} that minimizes the sum of Gini indexes and use it to split

the node into two child nodes. The Gini index is a generalization of the binomial variance,

which is used as an impurity index. Other algorithm use entropy as the impurity index.

6. If a stopping criterion is reached, exit. Otherwise, apply steps 2–5 to each child node.

7. Prune the tree with the CART method.3

Tree architecture optimization: Decision trees have to be optimized before being used for

classification of new data because the highest accuracy model could be highly complex and consist

of hundreds of levels. Therefore, tree optimization implies choosing the right size of tree, which

involves cutting off insignificant nodes and even subtrees. Cross-validation is a typical pruning

algorithm used in practice.12

Cross validation: The process of cross-validation is based on optimal proportion to strike the

general trade-off between tree complexity and misclassification error. With an increase in size of

the tree, misclassification error typically decreases and in the case of maximum tree size, misclas-

sification error equals 0. On the other hand, complex decision trees poorly perform on generaliz-

ability towards independent data, which is termed true predictive power of the tree. Therefore, the

primary task is to find the optimal proportion between the tree complexity and misclassification
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error, which is achieved through a cost-complexity function:

Rα(T) = Rα(T) + α(T̃) −→ min
T

where R(T) is the misclassification error of the tree T, α(T̃) is complexity measure which

depends on T̃, the total sum of terminal nodes in the tree. The α parameter is found through the

sequence of in-sample testing when a part of learning sample is used to build the tree, the other

part of the data is taken as a testing sample.

The process repeated several times for randomly selected learning and testing samples. Al-

though cross-validation does not require adjustment of any parameters, this process is time con-

suming since the sequence of trees is constructed. Because the testing and learning sample are

chosen randomly, the final tree may differ from time to time. The classification tree (model) re-

ported in this work is well-converged and validated through several runs with different starting

points.

Physical reasoning of the decision tree model: The LR decision tree, shown in Figure 4a of

the main manuscript, identifies a rationalizable criterion for above-threshold activity towards elec-

trochemical ammonia production, which can be written down as α > αt = 0.795 and β > βt =

0.635. We rationalize the optimal classification tree based on the fact that promising proton carriers

should exhibit both high acidity (α > αt) and high basicity (β > βt). This is in accordance with

the fact that the key displacement reaction for ammonia production, Li3N+3HA→ NH3 +3LiA,

not only involves the release of a proton by the hydrogen carrier but also requires abstraction by

the carrier of a Li+, the closest chemical analogue to a proton.

Deep Learning Model

Refer to the methods section of the main manuscript in conjunction with the details here.

Model input: The deep learning model’s input is the molecular features of candidates obtained
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from the simplified molecular-input line-entry system (SMILES).

Featurization: Out of several molecular featurization approaches on SMILES representations,

we find that the Weave featurization coupled with a Weave model (deep neural network)13 yielded

the most accurate (RMSE of ≈0.016 for both α and β) and generalizable predictions with low

cross-validation error). The Weave featurization14 method encodes both local chemical environ-

ment and connectivity of atoms in a molecule. The Weave featurization is similar to graph con-

volution in the atomic feature vectors, whereas in terms of encoding the connectivity it uses more

detailed pair-wise features instead of just neighbor listing by means of "weaving" atom and pair

features (Fig. 4). The Weave featurization computes a feature vector for each pair of atoms in the

molecule, including bond properties, graph distance and ring information, giving rise to a feature

matrix. This approach supports graph-based models that make use of properties of both atoms and

bonds.

Weave model details: The molecular features from the weave featurization method were input

into a neural network with a converged architecture, which was found to consist of two weave

layers and a fully connected layer in regression mode to predict α and β. For the training process,

the learning rate was selected to be 0.001, batch size was set to 50 and number of epochs were 100

for the 222 data points available of experimentally obtained α and β values. Version and model

specifications are provided in the following table:
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DeepChem version ’2.3.0’

Tensorflow version ’1.14.0’

Python version Python 3.7.7

Featurizer WeaveFeaturizer, DeepChem RDKit

Dataset Split details frac_train=0.8, frac_valid=0.1, frac_test=0.1, with random seed

Weave Model Details (several default) n_tasks (number of tasks): 2, mode=’regression’

n_atom_feat (number of atom features) 75

n_pair_feat (number of pair features) 14

n_hidden 5

n_graph_feat 128

n_weave int = 2

fully_connected_layer_sizes [2000, 100]

weight_init_stddevs [0.01, 0.04]

bias_init_consts [0.5, 3.0]

weight_decay_penalty 0.0

weight_decay_penalty_type "l2"

dropouts 0.25

activation_fns Tensorflow relu

batch_normalize bool = True

batch_normalize_kwargs Dict = "renorm": True,"fused": False

gaussian_expand True

compress_post_gaussian_expansion False

Sources of Uncertainty

The differences between experimentally measured and predicted proton donor activity could

arise from a few potential sources. One source could be changes in the proton donors’ struc-

tures under the very reductive conditions of the experiment (in the presence of lithium metal).
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For instance, halogenated compounds could easily decompose to form lithium halide salts on the

electrode, preventing further electrochemical reactions, as well as changing the structure of the

proton donor significantly. Analyzing the effect of these decomposition pathways is outside the

scope of the current work and will be analyzed in a subsequent study. Another source of deviation

between predictions and experiment could be the fact that the inputs to the classification model are

bulk KT parameters, while the effective KT parameters for the electrolyte composition close to the

electrode may have some deviation from the bulk value. The agreement between model predic-

tions and experimental activity could be enhanced through a more expressive descriptor-to-activity

mapping with additional descriptors for specific material classes of interest (Fig. 3). However, it

is worth highlighting that such approaches that maximize predictability over subsets of materials

are expected to have modest generalizability. Therefore, we anticipate the current approach cou-

pled with additional experimental testing data to be an effective direction towards other promising

proton donors for electrochemical ammonia production.

While most of the experimental and modeling studies in this work are focused on the cathode

reaction of nitrogen reduction to ammonia, it is important to briefly discuss possible anode reac-

tions to understand the overall reaction in the system. In the current setup with a flooded platinum

anode, likely anode reactions include solvent (THF) and proton donor oxidation. Both of these re-

actions are undesired in a practical system, but are acceptable in the present study as the anode and

cathode compartments are separated by a polyporous separator, which prevents products of oxida-

tion at the anode from affecting the cathode reaction. A more practical anode reaction is hydrogen

oxidation to protons, which has been demonstrated in nonaqueous systems.15 In systems where

hydrogen oxidation is the anode reaction, THF oxidation can be avoided. However, proton donor

oxidation may still occur if the proton donor is sufficiently electron-rich and its structure allows for

oxidation reactions. For example, 2-propanol could be oxidized to acetone under mild conditions,

while tert-butanol would be significantly more stable to oxidation. The oxidative stability of proton

donors is a direction of future work.

While the approach identified descriptors based on strong correlations with desired outputs,
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sufficiently strong correlations help build hypotheses for mechanistic understanding of complex

chemical processes. By using a limited set of experimental data, we are able to determine experi-

mental parameters than can predict and affect future experiments (Fig. 3). An automated method

for predicting the values of relevant parameters allows for rapid identification of potential leads.

By testing novel leads, the model and understanding of the process can be significantly improved

when compared to a conventional, intuition-driven experimental approach.

A deep learning based model (material-descriptor mapping) was developed based on molecular

features to predict α and β values for any given compound, and was used in conjunction with the

classification model (descriptor-activity mapping) to perform a vast search for promising candi-

dates from about 1M compounds. Through a closed-loop approach, candidates were proposed for

experimental testing with the primary goal of stress-testing the model and learning the delineating

surface (in α − β space) between active and inactive candidates. The loop between computation

and experiments was closed by data augmentation after every batch of experimental testing. After

the initial experimentation phase four loops were carried out (Fig. 5) with batches of experiments

performed each time towards learning the material-activity relationship. The closed-loop approach

between experiments and theory has enabled an increase in the fraction of tested active candidates

from 30% during the initial exploration to 65% during the combined effort. In the process, several

novel active proton donors were discovered, demonstrating the robustness and power of the cou-

pled experimental-data driven approach to studying complex systems.
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Supporting Information Figures

Fig. S1. A depiction of the 2-compartment cell used in electrochemical experiments. The cell body
is made of polyether ether ketone (PEEK) polymer. Platinum and polished stainless steel foils were used
as the anode and cathode, respectively. The anode and cathode compartments were separated by a piece of
polyporous Daramic 175 separator. IDEX fittings were used to feed gases and plug unused holes.
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Fig. S2. Nitrogen reduction experiments run with nitrogen-containing proton donors. (a) Raw ab-
sorbance signal data for runs using 0.2 M ethanolamine or saturated alanine as a proton donor in LM-NRR.
Note that alanine is not readily soluble in the electrolyte, so a saturated solution with a concentration <0.1
M was used. In these experiments, significant absorbance signals were detected in the ethanolamine argon
blank solutions and alanine-containing solutions. (b) NH3 FE values computed from the absorbance signals
in (a). Note that a non-zero FE is computed even in the ethanolamine argon blank. The FE value computed
for the alanine experiment has significant uncertainty.
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Fig. S3. Various effects of proton donors on the salicylate quantification assay. (a) Effect of addition of
0.5 M of 1,2-propanediol and 1,3-propanediol to the electrolyte used to make a 10 v/v% electrolyte in water
solution containing a known concentration of ammonium. Note that the addition of the proton donors does
not significantly alter the peak shape or signal magnitude. (b) Effect of addition of 0.2 M of ethyl acetate
(EA) to the electrolyte used to make a 10 v/v% electrolyte in water solution containing 80 µM ammonium.
Note that the shape of the peak changes significantly, rendering it useless for quantification of ammonia in the
solution. Samples containing protons sources such as these were typically extracted with dichloromethane
or hexanes prior to quantification.
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Fig. S4. Simple refuted hypotheses for explaining experimentally proton donor activity trends. (a) The
binary activity of the proton donor plotted against the proton donor’s pKa in DMSO. Note that while there
is no direct correlation between the proton donor pKa and activity. (b) The binary activity of the hydrogen
source plotted against the proton donor’s donor number.
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Fig. S5. Predicted average Kamlet-Taft parameters for a subset of proton donors. Proton donors with
Pubchem IDs below 10,000 and with above-threshold (standard deviation ≤ 0.2) agreement between models
in the ensemble are plotted; candidates with higher standard deviations are considered to have uncertain
predictions. The inherent trade-off emerges in the α − β space as shown whereby achieving high α and β is
challenging, which can rationalized based on the trade-off between proton donating and accepting tendencies
of molecules represented by the K-T parameters.
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Fig. S6. A diagram of the wiring scheme used to measure charge passed in experiments. As the DC
power source cannot independently quantify charge, the current passed through the circuit was measured
with an accurate VMP3 potentiostat.
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Fig. S7. Details of the activity classification model based on decision trees. (a) Identified classification
model with αt and βt equal to 0.815 and 0.59 respectively. (b) Predictor importance estimates by summing
up changes in the risk due to splits on every predictor and dividing the sum by the number of branch node. (c)
Minimum of the objective function, normalized misclassification rate, as a function of functional evaluations.
(d) Evolution of the estimated objective function value with the associated minimum leaf size (classification
model complexity).
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Fig. S8. Effect of water in the proton donor on nitrogen reduction activity (a, b) Dependence of the
maximum ammonia FE obtained with a single proton donor on water content (a) parts per million (ppm)
and (b) millimolar units. Note the maximum FE correlates poorly with water concentration (p≈0.12 for
a non-zero slope), suggesting that the water content of the proton donor is a poor predictor of nitrogen
reduction activity. (c) The water content in parts per thousand (ppt) of various proton donors before drying
with molecular sieves and after. (d) The NH3 FE for several proton donors before and after drying the proton
donors with molecular sieves. Note that the FE does not change in a predictable manner after drying with
sieves.
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Fig. S9. Typical ammonia quantification calibration curves. (a) Absorbance spectra obtained from
solutions containing known concentrations of ammonium ions in 10 v/v% 1 M LiBF4 in THF electrolyte in
water. (b) A typical calibration curve made from the spectra in (a). Note that the absorbance signal is taken
to be the difference between the absorbance at 650 and 475 nm.1
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Fig. S10. Classification models trained on the initial set of data (post initial experimental testing) to delineate
active candidates from inactive candidates.
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Fig. S11. Classification models trained on the final set of data (after all experimental testing) to delineate
active candidates from inactive candidates.
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Fig. S12. A deep learning model to predict Kamlet-Taft parameters. (a) Steps involved in the approach to
predicting α and β (KT) parameters. (b) The weave featurization technique and deep learning framework
involving an ensemble of models for robust predictions.14 Parity plots for (c) α and (d) β values obtained
from the developed deep-learning model. Note that the predictions on test set after cross-validation have
comparable performance to that on the training set indicating generalizability of the model.
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Supporting Information Tables

Table S1. Measured water content of pure proton donors.

Proton donor Water content (ppm) Water concentration (mM)
1,2-propanediol 2430 ± 30 140 ± 1
1,3-butanediol 78 ± 9 4.4 ± 0.5

1,3-propanediol 166 ± 2 9.7 ± 0.1
1-butanol 470 ± 10 21.3 ± 0.6
1-heptanol 123.6 ± 0.9 5.62 ± 0.04
1-hexanol 383 ± 5 17.5 ± 0.2
1-octanol 239 ± 1 11.04 ± 0.05
1-pentanol 346 ± 8 15.7 ± 0.4
1-propanol 310 ± 10 13.7 ± 0.6
2-propanol 860 ± 5 37.6 ± 0.2

Benzyl alcohol 820 ± 10 47.1 ± 0.6
Cyclohexanol 455 ± 8 24.3 ± 0.4

Ethanol 668 ± 6 29.3 ± 0.3
Ethylene glycol 39 ± 1 2.42 ± 0.07

Glycerol 390 ± 10 27.4 ± 0.8
Isoamyl alcohol 1177 ± 1 52.97 ± 0.06

Isobutanol 2420 ± 20 108 ± 1
Methanol 128 ± 2 5.64 ± 0.09

Triethylene glycol 2680 ± 70 164 ± 4

Table S2. Experimentally tested proton donors and details of experimental results. Proton donors
were tested at several concentrations (see Supporting Information methods); the concentration at which the
highest FE was obtained is reported along with the FE. At the concentration that led to the highest FE, three
repeat experiments were conducted and the resulting standard deviation is listed below as the Max FE error.
If ammonia quantification solutions required extraction (see Supporting Information methods), it is reported
below. The binary activity classification is also given.

Compound Name Max FE

(%)

Max FE

error

(%)

Conc.

at max

FE (M)

Charge

(C)

Solvent

used for

extrac-

tion

Experimental

activity clas-

sification

1,2-propanediol 0.04 0.02 0.2 7.2 None FALSE

1,3-butanediol 1.65 0.17 0.2 7.2 None TRUE
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Compound Name Max FE

(%)

Max FE

error

(%)

Conc.

at max

FE (M)

Charge

(C)

Extraction

solvent

Experimental

activity clas-

sification

1,3-propanediol 8.38 1.51 0.1 7.2 None TRUE

1,4-cyclohexane

dimethanol

0.02 0.05 0.2 7.2 None FALSE

1,5-pentanediol 4.43 1.39 0.2 1.5 None TRUE

1-butanol 15.58 5.29 0.1 7.2 None TRUE

1-decanol 0.09 0.05 1 7.2 Hexane FALSE

1-heptanol 2.19 0.08 1 7.2 Hexane TRUE

1-hexanol 7.79 0.55 0.6 7.2 Hexane TRUE

1-nonanol 0.18 0.08 0.6 7.2 Hexane FALSE

1-octanol 0.08 0.05 0.2 7.2 Hexane FALSE

1-pentanol 10.42 3.06 0.2 7.2 None TRUE

1-phenylethanol 1.02 0.20 0.8 7.2 None TRUE

1-propanol 9.93 1.20 0.1 7.2 None TRUE

2,2,2-

trifluoroethanol

0.02 0.06 0.4 7.2 None FALSE

2,2-difluoroethanol 0.02 0.00 0.5 7.2 None FALSE

2,2-dimethyl-1,3-

propanediol

0.84 0.17 0.4 7.2 None TRUE

2-butanol 1.36 0.06 1 7.2 None TRUE

2-chloroethanol 0.06 0.02 0.2 7.2 None FALSE

2-ethyl-1-butanol 3.62 0.59 0.2 7.2 None TRUE

2-phenylethanol 1.64 0.26 0.9 7.2 None TRUE

3-butene-1-ol 1.94 0.08 0.6 7.2 None TRUE
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Compound Name Max FE

(%)

Max FE

error

(%)

Conc.

at max

FE (M)

Charge

(C)

Extraction

solvent

Experimental

activity clas-

sification

4-methoxybutan-1-

ol

0.34 0.02 0.4 7.2 None FALSE

Acetic acid 0.19 0.07 0.07 7.2 None FALSE

Allyl alcohol 0.69 0.14 0.6 7.2 None TRUE

Benzyl alcohol 0.34 0.21 0.8 7.2 None FALSE

Cyclohexanol 0.00 0.04 0.6 7.2 None FALSE

Ethanol 13.16 1.27 0.1 7.2 None TRUE

Ethyl acetate 0.15 0.06 0.2 7.2 DCM FALSE

Ethylene glycol 0.44 0.03 0.4 4.1 None FALSE

Formic acid 0.00 0.07 0.2 7.2 None FALSE

Glycerol 4.20 0.45 0.2 4.6 None TRUE

Hexafluoro iso-

propyl alcohol

0.03 0.09 0.4 7.2 None FALSE

Hexanoic acid 0.00 0.07 0.2 7.2 None FALSE

Isoamyl alcohol 6.74 2.24 0.6 7.2 None TRUE

Isobutanol 3.09 0.43 0.4 7.2 None TRUE

Isopropyl alcohol 3.12 0.61 0.2 7.2 None TRUE

Lactic acid -0.03 0.22 0.1 7.2 None FALSE

Methanol 6.55 1.41 0.2 7.2 None TRUE

Phenol -0.05 0.06 0.2 7.2 None FALSE

Propanethiol 0.03 0.03 0.1 7.2 DCM FALSE

t-butyl alcohol 0.57 0.08 0.6 7.2 None FALSE

Triethylene glycol -0.15 0.03 0.2 7.2 None FALSE
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Compound Name Max FE

(%)

Max FE

error

(%)

Conc.

at max

FE (M)

Charge

(C)

Extraction

solvent

Experimental

activity clas-

sification

Water -0.06 0.02 0.2 7.2 None FALSE

Table S3. Experimentally measured initial and final cell voltages for selected proton donors. While
recording voltage-time curves was infeasbile due to setup limitations (see Fig. S6), the initial and final cell
voltages could be recorded and used for qualitatively analyzing experimental results. In general, the cell
voltage stays constant or increases with time. The increase in cell voltage is larger at higher concentrations
for certain proton donors. For certain proton donors, particularly diols, the cell voltage necessary to apply
a constant 20 mA current exceeded 50 V, which is the largest voltage that the power source could apply. In
these cases, the current flowing through the cell was lower. No direct correlation between cell voltages and
ammonia FEs were observed, though in experiments where ammonia was produced, a moderate increase in
potential was observed.

Compound Name Exp. Conc.

(M)

Init. voltage

(V)

Final Voltage

(V)

FE (%)

Diols and polyols

1,2-propanediol 0.2 23.8 24 0.04

1,2-propanediol 0.4 22.2 22.6 0.04

1,2-propanediol 0.6 21.1 21.3 -0.03

1,3-butanediol 0.1 24.6 25 1.35

1,3-butanediol 0.2 24.5 26.1 1.65

1,3-butanediol 0.4 22.4 >50 0.25

1,3-propanediol 0.1 25.3 26.2 8.38

1,3-propanediol 0.2 23.4 30 1.42

1,3-propanediol 0.3 25 >50 0.40

1,4-cyclohexanedimethanol 0.2 26.8 27.9 0.07

1,4-cyclohexanedimethanol 0.4 29.3 >50 0.84

1,4-cyclohexanedimethanol 0.6 30 >50 0.72
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Compound Name Exp. Conc.

(M)

Init. voltage

(V)

Final Voltage

(V)

FE (%)

1,5-pentanediol 0.05 27.3 27.3 0.21

1,5-pentanediol 0.1 27.5 28.5 1.66

1,5-pentanediol 0.2 27 >50 4.43

Ethylene glycol 0.1 24.5 24.8 -0.05

Ethylene glycol 0.2 24.6 24.2 0.00

Ethylene glycol 0.4 20 >50 0.44

2,2-dimethyl-1,3-propanediol 0.2 25.3 25.5 0.02

2,2-dimethyl-1,3-propanediol 0.4 23.5 25.6 -0.07

2,2-dimethyl-1,3-propanediol 0.6 23.1 23.1 -0.03

Glycerol 0.07 27.9 28.3 0.04

Glycerol 0.1 26.6 28.1 0.39

Glycerol 0.2 42 >50 4.20

Linear aliphatic alcohols

1-butanol 0.05 25 25.1 0.08

1-butanol 0.1 25.3 26 15.58

1-butanol 0.2 26.2 27.23 7.82

1-decanol 0.2 28.1 28.2 0.13

1-decanol 0.6 31.5 31.8 0.11

1-decanol 1 39.6 40 0.08

1-heptanol 0.2 27.2 27.3 0.06

1-heptanol 0.6 29.2 29.8 0.23

1-heptanol 1 30.5 31.4 2.19

1-hexanol 0.2 26.85 27 0.77

1-hexanol 0.6 27.2 28.45 7.79

1-hexanol 1 29.9 31.2 5.82

S32



Compound Name Exp. Conc.

(M)

Init. voltage

(V)

Final Voltage

(V)

FE (%)

1-octanol 0.2 27.6 27.8 0.08

1-octanol 0.6 33.6 31.5 0.05

1-octanol 1 32.8 33.8 0.01

Ethanol 0.1 24.5 25.2 13.16

Ethanol 0.2 25.5 26.8 6.59

Ethanol 0.4 23.7 25.4 2.64

Methanol 0.1 25.7 25.8 1.55

Methanol 0.2 24 25 6.55

Methanol 0.4 23 27.1 2.28

Other alcohols

1-phenylethanol 0.2 28 27.8 0.09

1-phenylethanol 0.6 30.2 30.8 0.07

1-phenylethanol 1 32.8 48 1.02

2-ethyl-1-butanol 0.2 27.7 28.2 3.62

2-ethyl-1-butanol 0.4 29.4 29.8 1.21

2-ethyl-1-butanol 0.8 31.3 32.4 1.05

2-phenylethanol 0.2 27.3 27.4 0.10

2-phenylethanol 0.5 28.1 30 0.47

2-phenylethanol 0.9 28.9 38.7 1.64

4-methoxybutan-1-ol 0.1 24.8 24.9 -0.01

4-methoxybutan-1-ol 0.2 24.2 24.6 0.34

4-methoxybutan-1-ol 0.4 22.8 23.5 0.05

Allyl alcohol 0.2 28.6 28.6 0.02

Allyl alcohol 0.4 26.3 27.3 -0.03

Allyl alcohol 0.6 26.7 32 0.69
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Compound Name Exp. Conc.

(M)

Init. voltage

(V)

Final Voltage

(V)

FE (%)

Benzyl alcohol 0.2 26.4 27.3 0.20

Benzyl alcohol 0.5 27 31.3 0.29

Benzyl alcohol 0.8 27.9 40 0.34

Cyclohexanol 0.2 24.8 24.65 0.00

Cyclohexanol 0.6 27.3 27.5 0.00

Cyclohexanol 1 28.9 28.8 -0.14

Isobutanol 0.2 26.4 26.7 1.24

Isobutanol 0.4 26 28.4 3.09

Isobutanol 0.6 26.1 33 1.64

Isopropyl alcohol 0.2 25.7 26.2 3.12

Isopropyl alcohol 0.4 26.2 26.9 1.47

Isopropyl alcohol 0.6 26.2 27.3 1.34

t-butyl alcohol 0.2 26.4 26.4 0.40

t-butyl alcohol 0.6 28.2 27.6 0.57

Triethylene glycol 0.2 22 22.3 -0.15

Triethylene glycol 0.5 18.1 21.3 -0.16

Triethylene glycol 0.8 17.5 19.2 -0.17

Halogenated alcohols

2,2,2-trifluoroethanol 0.1 24.9 26.4 -0.01

2,2,2-trifluoroethanol 0.4 24.2 24.6 0.02

2-chloroethanol 0.2 23.9 24 0.06

2-chloroethanol 0.6 23.6 23.7 -0.02

2-chloroethanol 1 21.6 22 0.01

Carboxylic acids

Acetic acid 0.07 26.2 26.8 0.19
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Compound Name Exp. Conc.

(M)

Init. voltage

(V)

Final Voltage

(V)

FE (%)

Acetic acid 0.12 24.7 26.7 -0.07

Formic acid 0.1 25 25.6 0.00

Formic acid 0.2 24.9 25.6 0.00

Formic acid 0.3 23 23.9 -0.05

Hexanoic acid 0.2 27.8 28.8 0.00

Hexanoic acid 0.4 30.7 34.9 -0.08

Hexanoic acid 0.6 31.8 36.6 -0.16

Acetic acid 0.2 24.8 26.5 0.04

Other

Ethyl acetate 0.2 27 27 0.15

Ethyl acetate 0.6 27.9 27.8 0.13

Ethyl acetate 1 29.2 29.5 0.12

Phenol 0.6 26.5 27.1 -0.13

Phenol 1 27.3 28 -0.17

Propanethiol 0.1 26 26.5 0.03

Propanethiol 0.2 26.5 26.7 -0.03

Propanethiol 0.4 27 27.3 -0.04

Water 0.2 22 22 -0.06

Water 0.4 20.5 20.7 -0.07

Water 0.6 20.2 20.3 -0.09
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Table S4. A subset of the initial input data for the activity classification model. Here, Kamlet-Taft (α,
β, π∗) parameters obtained from experimental reports in the literature16–18 are given and the corresponding
experimental activity classification obtained in the current work. Additional parameters were also fed to the
initial classification model to determine their important (Fig. S1, Supporting Information methods).

Compound Name PubChem CID α β π∗ Experimental

Activity

Classification

1,3-butanediol 7966 0.66 0.84 0.45 0

1,5-pentanediol 244 0.6 0.52 0.98 0

1-butanol 263 0.84 0.84 0.47 1

1-heptanol 8129 0.33 0.45 0.4 0

1-hexanol 8103 0.8 0.84 0.4 1

1-octanol 957 0.77 0.81 0.4 0

1-pentanol 6276 0.84 0.86 0.4 1

1-phenylethanol 8892 1.22 0.45 0.52 0

1-propanol 1031 0.84 0.9 0.52 1

2-phenylethanol 11005 0.55 0.45 0.36 0

2,2,2-trifluoroethanol 6409 1.51 0 0.73 0

Acetic acid 176 1.12 0.45 0.64 0

Allyl alcohol 7858 0.84 0.9 0.52 0

Benzyl alcohol 996 1.65 0.3 0.72 0

Benzyl alcohol 244 0.6 0.52 0.98 0

Cyclohexanol 342 1.13 0.34 0.68 0

Ethanol 702 0.86 0.75 0.54 1

Ethylene glycol 174 0.9 0.52 0.92 0

Ethylene glycol 174 0.9 0.52 0.92 0

Hexafluoro isopropyl alcohol 13529 1.96 0 0.65 0
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Compound Name PubChem CID α β π∗ Experimental

Activity

Classification

Hexanoic acid 8892 1.22 0.45 0.52 0

Isoamyl alcohol 31260 0.84 0.86 0.4 1

Isobutanol 6560 0.79 0.84 0.4 0

Isopropyl alcohol 3776 0.76 0.84 0.48 0

Lactic acid 612 - - - 0

Methanol 887 0.98 0.66 0.6 1

Phenol 6054 0.64 0.61 0.88 0

Propanethiol 7848 - - - 0

t-butyl alcohol 6386 0.42 0.93 0.41 0

Water 962 1.17 0.47 1.09 0

Table S5. The final input data for the activity classification model. Here, Kamlet-Taft (α, β) parameters
obtained from experimental reports in the literature16–18 are given for a larger set of compounds and the
corresponding experimental activity classification obtained in the current work. For compounds for which
experimentally measured KT parameters are not known, the values predicted from the deep-learning. The set
of compounds here include compounds that were initially tested and compounds which were suggested by
the data-driven approach for testing. Note that experimental values for KT parameters for some compounds
were not known, so predicted values from the deep learning model were given in italics for these compounds.

Compound Name PubChem CID α β Experimental Activity Classification

1,2-propanediol 1030 - - 0

1,3-butanediol 7966 0.66 0.84 0

1,3-butanediol 7896 - - 1

1,3-propanediol 10442 - - 1

1,5-pentanediol 244 0.6 0.52 0

1-butanol 263 0.84 0.84 1

1-decanol 8174 0.7 0.82 0
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Compound Name PubChem CID α β Experimental Activity Classification

1-heptanol 8129 0.33 0.45 0

1-hexanol 8103 0.8 0.84 1

1-nonanol 8914 - - 0

1-octanol 957 0.77 0.81 0

1-pentanol 6276 0.84 0.86 1

1-phenylethanol 8892 1.22 0.45 0

1-propanol 1031 0.84 0.9 1

2-butanol 6568 0.69 0.8 1

2-chloroethanol 34 1.28 0.53 0

2-methoxyethanol 8019 - - 0

2-phenylethanol 11005 0.55 0.45 0

2,2,2-trifluoroethanol 6409 1.51 0 0

3-butene-1-ol 69389 - - 1

Acetic acid 176 1.12 0.45 0

Allyl alcohol 7858 0.84 0.9 0

Benzyl alcohol 996 1.65 0.3 0

Benzyl alcohol 244 0.6 0.52 0

Cyclohexanol 342 1.13 0.34 0

Ethanol 702 0.86 0.75 1

Ethylene glycol 174 0.9 0.52 0

Ethylene glycol 174 0.9 0.52 0

Glycerol 753 1.21 0.51 1

Hexafluoro isopropyl alcohol 13529 1.96 0 0

Hexanoic acid 8892 1.22 0.45 0

Isoamyl alcohol 31260 0.84 0.86 1

Isobutanol 6560 0.79 0.84 0
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Compound Name PubChem CID α β Experimental Activity Classification

Isopropyl alcohol 3776 0.76 0.84 0

Lactic acid 612 - - 0

Methanol 887 0.98 0.66 1

Phenol 6054 0.64 0.61 0

Propanethiol 7848 - - 0

t-butyl alcohol 6386 0.42 0.93 0

Water 962 1.17 0.47 0

Table S6. Input Data for the Deep Learning Prediction Model Kamlet-Taft (α and β) parameters obtained
from experimental reports in the literature.16–18

Compound Name PubChem CID α β

1,1,1,3,3,3-hexafluoro-2-propanol 13529 1.96 0

1,1,1-trichloroethane 6278 0 0

1,1,2,2-tetrachloroethane 6591 0 0

1,1,3,3-tetramethylguanidine 66460 0 0.86

1,1-dichloroethane 6365 0.1 0.1

1,2,3-propanetriol 753 1.21 0.51

1,2-diaminoethane 3301 0.13 1.43

1,2-dibromoethane 7839 0 0

1,2-dichlorobenzene 7239 0 0.03

1,2-dichloroethane 11 0 0.1

1,2-dimethoxyethane 8071 0 0.41

1,3,5-trimethylbenzene 7947 0 0.13

1,3-dichlorobenzene 10943 0 0.03

1,3-dimethylbenzene 7929 0 0.11

1,3-dioxolane 12586 0 0.45
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Compound Name PubChem CID α β

1,4-difluorobenzene 10892 0 0.03

1,4-dimethylbenzene 7809 0 0.12

1-bromobutane 8002 0 0.13

1-chlorobutane 8005 0 0

1-iodobutane 10962 0 0.23

2,2,2-trifluoroethanol 6409 1.51 0

2,3,4-trifluoronitrobenzene 69871 0 0.24

2,3-difluoronitrobenzene 81335 0 0.26

2,6-dimethylpyridine 7937 0 0.76

2-bromoacetophenone 6259 0 0.45

2-bromopyridine 7973 0 0.53

2-butanol 6568 0.69 0.8

2-butanone 6569 0.06 0.48

2-chloroacetophenone 10757 0 0.45

2-chloroaniline 7240 0.25 0.4

2-chlorobenzaldehyde 6996 0 0.4

2-chloroethanol 34 1.28 0.53

2-cyanopyridine 7522 0 0.29

2-decanone 12741 0 0.48

2-fluoroacetophenone 96744 0 0.47

2-fluoronitrobenzene 73895 0 0.28

2-fluoropyridine 9746 0 0.51

2-heptanone 8051 0.05 0.48

2-methyl-1-propanol 6560 0.79 0.84

2-methyl-2-butanol 6405 0.28 0.93

2-methyl-2-propanol 6386 0.42 0.93
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Compound Name PubChem CID α β

2-methylnitrobenzene 6944 0 0.3

2-nonanone 13187 0 0.48

2-octanone 8093 0 0.48

2-pentanone 7895 0 0.52

2-phenylacetonitrile 8794 0 0.41

2-phenylethanol 6054 0.64 0.61

2-propanol 3776 0.76 0.84

2-propanone 180 0.08 0.43

2-propen-1-ol 7858 0.84 0.9

2-pyrrolidone 12025 0.36 0.77

3,4,5-trifluoronitrobenzene 2782793 0 0.24

3,4-difluoronitrobenzene 123053 0 0.26

3,4-dimethylpyridine 11417 0 0.78

3-bromoacetophenone 16502 0 0.45

3-bromopyridine 12286 0 0.6

3-chlorobenzaldehyde 11477 0 0.4

3-chlorophenol 7933 1.57 0.23

3-fluoroacetophenone 9967 0 0.47

3-fluoronitrobenzene 9823 0 0.28

3-methyl-1-butanol 31260 0.84 0.86

3-methylphenol 342 1.13 0.34

3-pentanone 7288 0 0.45

3-phenylpropanol 31234 0.53 0.55

3-trifluoromethylnitrobenzene 7386 0 0.25

4-chlorobenzaldehyde 7726 0 0.4

4-fluoronitrobenzene 9590 0 0.28
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Compound Name PubChem CID α β

4-methyl-2-oxo-1,3-dioxolane 7924 0 0.4

4-methyl-2-pentanone 7909 0.02 0.48

4-methylphenol 2879 1.64 0.34

4-methylpyridine 7963 0 0.67

acetic acid 176 1.12 0.45

acetic anhydride 7918 0 0.29

acetonitrile 6342 0.19 0.4

acetophenone 7410 0.04 0.49

aniline 6115 0.26 0.5

benzene 241 0 0.1

benzonitrile 7505 0 0.37

benzyl alcohol 244 0.6 0.52

bis(2-chloroethyl) ether 8115 0 0.4

bis(2-methoxyethyl) ether 8150 0 0.4

bromobenzene 7961 0 0.06

butane 7843 0 0

butanenitrile 8008 0 0.4

butanoic acid 264 1.1 0.45

butanol 263 0.84 0.84

butyl acetate 31272 0 0.45

butylamine 8007 0 0.72

carbon disulfide 6348 0 0.07

chloroacetonitrile 7856 0 0.34

chlorobenzene 7964 0 0.07

cis-decalin 7044 0 0.08

cyclohexane 8078 0 0
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Compound Name PubChem CID α β

cyclohexanol 7966 0.66 0.84

cyclohexanone 7967 0 0.53

cyclopentanone 8452 0 0.52

decane 15600 0 0

decanol 8174 0.7 0.82

diaminoethane 3301 0.13 1.43

dibenzyl ether 7657 0 0.41

dibromomethane 3024 0 0

dibutyl ether 8909 0 0.46

dichloromethane 6344 0.13 0.1

diethyl carbonate 7766 0 0.4

diethyl ether 3283 0 0.47

diethyl sulfide 9609 0 0.37

diethylamine 8021 0.3 0.7

diethylformamide 12051 0 0.79

diiodomethane 6346 0 0

diisopropyl ether 7914 0 0.49

diisopropyl sulfide 12264 0 0.38

dimethyl carbonate 12021 0 0.43

dimethyl phthalate 8554 0 0.78

dimethyl sulfate 6497 0 0.36

dimethyl sulfide 1068 0 0.34

dimethyl sulfoxide 679 0 0.76

dimethylamine 674 0 0.7

dimethylcyanamide 15112 0 0.64

di-n-butyl sulfide 11002 0 0.38
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Compound Name PubChem CID α β

dioxane 31275 0 0.37

dipentylamine 16316 0 0.7

dipentylether 12743 0 0.47

diphenyl ether 7583 0 0.13

dipropyl ether 8114 0 0.46

dodecane 8182 0 0

ethane 6324 0 0

ethanediol 174 0.9 0.52

ethanol 702 0.86 0.75

ethoxybenzene 7674 0 0.3

ethyl acetate 8857 0 0.45

ethyl benzoate 7165 0 0.41

ethyl chloroacetate 7751 0 0.35

ethyl formate 8025 0 0.36

ethyl trichloroacetate 10588 0 0.25

ethylene carbonate 7303 0 0.41

fluorobenzene 10008 0 0.07

formamide 713 0.71 0.48

formic acid 284 1.23 0.38

furan 8029 0 0.14

heptane 8900 0 0

heptanoic acid 8094 1.2 0.45

hexachlorobiphenyl 91635 0 0.03

hexadecane 11006 0 0

hexafluorobenzene 9805 0 0.02

hexamethylphosphoramide 12679 0 1.05
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Compound Name PubChem CID α β

hexane 8058 0 0

hexanoic acid 8892 1.22 0.45

hexanol 8103 0.8 0.84

iodobenzene 11575 0 0.06

methane 297 0 0

methanol 887 0.98 0.66

methoxybenzene 7519 0 0.32

methyl acetate 6584 0 0.42

methyl benzoate 7150 0 0.38

methyl formate 7865 0 0.37

methyl propanoate 11124 0 0.27

methylamine 6329 0 0.7

morpholine 8083 0.29 0.7

N,N,N’,N’-tetramethylurea 12437 0 0.8

N,N-diethylacetamide 12703 0 0.78

N,N-dimethylacetamide 31374 0 0.76

N,N-dimethylaniline 949 0 0.43

N,N-dimethylbenzylamine 7681 0 0.64

N,N-dimethylcyclohexylamine 7415 0 0.84

N,N-dimethylformamide 6228 0 0.69

n-decylamine 8916 0 0.68

n-heptylamine 8127 0 0.69

nitrobenzene 7416 0 0.3

nitromethane 6375 0.22 0.06

N-methylacetamide 6582 0.47 0.8

N-methylaniline 7515 0.17 0.47
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Compound Name PubChem CID α β

N-methylformamide 31254 0.62 0.8

N-methylpyrrolidon 13387 0 0.77

n-nonylamine 16215 0 0.69

n-octylamine 8143 0 0.69

nonane 8141 0 0

octadecafluoronaphthalene 9386 0 -0.05

octane 356 0 0

octanol 957 0.77 0.81

oxane 8894 0 0.54

oxolan-2-one 7302 0 0.49

pentachlorobiphenyl 17348 0 0.06

pentadecane 12391 0 0

pentafluoropyridine 69690 0 0.16

pentane 8003 0 0

pentanoic acid 7991 1.19 0.45

pentanol 6276 0.84 0.86

perfluoro(methylcyclohexane) 9637 0 -0.06

phenol 996 1.65 0.3

piperidine 8082 0 1.04

propane 6334 0 0

propanenitrile 7854 0 0.39

propanoic acid 1032 1.12 0.45

propanol 1031 0.84 0.9

propyl acetate 7997 0 0.4

pyridine 1049 0 0.64

pyrrolidine 31268 0.16 0.7
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Compound Name PubChem CID α β

quinoline 7047 0 0.64

styrene 7501 0 0.12

sulfolane 31347 0 0.39

tetrachloroethene 31373 0 0.05

tetrachloromethane 5943 0 0.1

tetradecafluorohexane 9639 0 -0.08

tetradecane 12389 0 0

tetrahydrofuran 8028 0 0.55

tetramethylsilane 6396 0 0.02

thiane 15367 0 0.36

thiolane 1127 0 0.44

thiolane-1-oxide 1128 0 0.81

toluene 1140 0 0.11

trans-1,2-dichloroethene 638186 0 0

tribromomethane 5558 0.05 0.05

tributyl phosphate 31357 0 0.8

tributylamine 7622 0 0.62

trichloroethene 6575 0 0.05

trichloromethane 6212 0.2 0.1

tridecane 12388 0 0

triethyl phosphate 6535 0 0.77

triethylamine 8471 0 0.71

trimethyl phosphate 10541 0 0.77

undecane 14257 0 0

water 962 1.17 0.47
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