Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 2012 | Published
Book Section - Chapter Open

Detonation and transition to detonation in partially water-filled pipes


Detonations and deflagration-to-detonation transition (DDT) are experimentally studied in horizontal pipes which are partially filled with water. The gas layer above the water is stoichiometric hydrogen-oxygen at 1 bar. For detonation cases, ignition and transition occur outside of the water-filled section. For DDT cases, ignition and transition occur over the surface of the water. Pressure and hoop strain are measured incrementally along the pipe, with pressure transducers located both above and below the water. The detonation wave produces an oblique shock train in the water, and the curvature of the pipe is seen to focus the shocks at the bottom, resulting in peak pressures that are 4–6 times higher than the peak detonation pressure. Such pressure amplification is observed for water depths of 0.25, 0.5, 0.75, 0.87, and 0.92 pipe diameters. For a water depth of 0.5 diameters, pressure is also recorded at several circumferential locations in order to measure the shock focusing phenomenon. Peak hoop strains are found to decrease with increasing water depth, and transition to detonation is seen to occur for water depths as high as 0.92 pipe diameters.

Additional Information

© 2012 ASME.

Attached Files

Published - Bitter_2012p183.pdf


Files (985.6 kB)
Name Size Download all
985.6 kB Preview Download

Additional details

August 19, 2023
October 25, 2023