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Supporting Information Text11

Subhead. This document includes proofs of claims in the main text.12

I. Meet Semi-lattice and Join Semi-lattice Properties and Posets in Examples 1-913

The Boolean poset (Example 1), partition poset (Examples 2-3), integer poset (Example 5), permutation poset (Example 7), and14

subspace poset (Example 8) are all known in the literature to be lattices (and consequently meet-semi and join semi-lattices);15

see (1).16

We next show that for Examples 6 and 9 associated with partial ranking and blind-source separation, the corresponding17

posets are also meet semi-lattices. Consider the partial ranking setting in Example 6. Let R1 and R2 be two relations that are18

irreflexive, asymmetric, and transitive. Recalling that the partial ordering is based on inclusion, it is clear that the relations19

R = {(a, b) : (a, b) ∈ R1, (a, b) ∈ R2} is the unique largest rank element in the partial ranking poset such that R � R1 and20

R � R2. Furthermore, for any R̃ with R̃ � R1 and R̃ � R2, we clearly have that R̃ � R. Consider the blind-source separation21

setting in Example 9. Let x1 and x2 be two sets of linearly independent subsets of unit norm vectors. Recalling that the partial22

ordering in the associated poset is based on inclusion, it is clear that the set y = x1 ∩ x2 is the unique largest rank element in23

the partial ranking poset such that y � x1 and y � x2. Furthermore, for every z with z � x1 and z � x2, we have that z � y.24

We show that the poset corresponding to causal structure learning setting (Example 4) is not meet semi-lattice or join25

semi-lattice. As a counterexample, consider the CPDAGs Ci for i = 1, 2, 3, 4 shown in Figure S1. Notice that C3 � C1, C3 � C2,26

C4 � C1, and C4 � C2. Notice also that C3 and C4 are both CPDAGs with the largest rank that are smaller (in a partial order27

sense) than C1 and C2. We thus can conclude that the poset is not meet semi-lattice. Similarly, C1 and C2 are both CPDAGs28

with the smallest rank that are larger (in a partial order sense) than C3 and C4. We thus can conclude that the poset is not29

join semi-lattice.30

We next show that the poset for Example 6 is not join semi-lattice with a simple counterexample. Consider as an example31

elements x1 = {(1, 2)} and x2 = {(2, 1)}. Note that there does not exist an element z such that x1 � z and x2 � z. Thus, the32

poset is not join semi-lattice.33

Finally, we show that the poset corresponding to blind-source separation (Example 9) is not join semi-lattice. Consider a34

collection of p + 1 rank-1 elements in this poset, each element consisting of a single p dimensional vector. Then, evidently,35

there cannot exist an element z consisting of a set of vectors that contains all of the vectors in the rank-1 elements, while36

satisfying the linear independence condition.37

II. Proof that Eq. (1) is a Similarity Valuation Function38

Recall that39

ρmeet(x, y) = max
z�x,z�y

rank(z). [14]40

By definition, ρmeet(·, ·) is a symmetric function. We will now show that it satisfies the three properties in Definition 1 for any41

pair of elements x, y ∈ L. For the first property, we can conclude ρmeet(x, y) ≥ 0 since by definition, the rank function returns42

a non-negative integer for all the elements in the poset. Again, because of the property of the rank function in a graded poset,43

a feasible z (satisfying the constraints z � x, z � y) will necessarily have rank(z) ≤ min{rank(x), rank(y)}. For the second44

property, consider any w ∈ L with x � w. Note that:45

ρmeet(w, y) = max
z�w,z�y

rank(z). [15]46

Then, any feasible z in Eq. (14) is also feasible in Eq. (15) by the transitive property of posets. Therefore, ρmeet(x, y) ≤ ρmeet(w, y).47

For the third property, first note that if x � y, then z = x is feasible in Eq. (14) and thus ρmeet(x, y) ≥ rank(x). Since also48

ρmeet(x, y) ≤ rank(x) by the second property of similarity valuations, we have that ρmeet(x, y) = rank(x). Now suppose that49

ρmeet(x, y) = rank(x). By Eq. (14), we conclude that there exists a feasible z (z � x, z � y) such that rank(z) = rank(x). By50

the property of the rank function, we have that if rank(z) = rank(x) and z � x, then z = x. Since we have additionally that51

z � y, we conclude that x � y.52

III. Proof of Lemmas 8-953

Proof of Lemma 8. Recall the telescoping sum decomposition Eq. (5) that FD(xk, x�) =
∑k

i=1 1−[f(xi−1, xi; x�)]. From the first54

property of similarity valuation that it yields non-negative values, second property of similarity valuation that ρ(x, y) ≤ ρ(z, y)55

for x � z, and that the ρ is an integer-valued similarity valuation, we have that FD(x, x�) ≤
∑k

i=1 I[(xi−1, xi) ∈ Tnull].56

Proof of Lemma 9. For any covering pairs (x, y) and (u, v) with v � x, we cannot have that f(x, y; z) = f(u, v; z) for all z ∈ L.57

Suppose as a point of contradiction that for every z ∈ L, f(x, y; z) = f(u, v; z). Let z = v. Then, by the third property of58

a similarity valuation (see Definition 1), ρ(u, z) = rank(u) and ρ(v, z) = rank(v); thus, for this choice of z, f(u, v; z) = 1.59

On the other hand, again by the third property of a similarity valuation and for the choice of z = v, since u � v � x � y,60

ρ(x, z) = ρ(y, z) = rank(v) and thus f(x, y; z) = 0.61
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Fig. S1. Four CPDAGs. Here, CPDAGs C3 and C4 are both largest complexity models that are smaller (in partial order sense) than C1 and C2. Similarly, CPDAGs C1 and C2
are the smallest complexity models that are larger (in a partial order sense) than C3 and C4.
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IV. Analysis in the Continuous Examples 8 and 962

For notational ease, we let x̂
(�)
base = x̂base(D(�)). Notice that for any l = 1, 2, . . . , B:

FD(x̂stable, x�) = rank(x̂stable) − ρ(x̂stable, x�)

=
[
rank(x̂stable) − ρ(x̂stable, x̂

(�)
base)

]
+

[
rank(x̂(�)

base) − ρ(x̂(�)
base, x�)

]
+ κ(x̂stable, x�, x̂

(�)
base),

where
κ(x̂stable, x�, x̂

(�)
base) := ρ(x̂(�)

base, x�) − rank(x̂(�)
base) + ρ(x̂stable, x̂

(�)
base) − ρ(x̂stable, x�).

Since the choice of l was arbitrary, we note that:

FD(x̂stable, x�) = 2
B

B/2∑
�=1

min
t∈{0,1}

{ [
rank(x̂stable) − ρ(x̂stable, x̂

(2�−t)
base )

]
+

[
rank(x̂(2�−t)

base ) − ρ(x̂(2�−t)
base , x�)

]
+ κ(x̂stable, x�, x̂

(2�−t)
base )

}

≤ 2
B

B/2∑
�=1

min
t∈{0,1}

{ [
rank(x̂(2�−t)

base ) − ρ(x̂(2�−t)
base , x�)

] }
+ 2

B

B∑
�=1

[
rank(x̂stable) − ρ(x̂stable, x̂

(�)
base)

]

+ 2
B

B∑
�=1

κ(x̂stable, x�, x̂
(�)
base)

≤ 2
B

B/2∑
�=1

∏
t∈{0,1}

√
rank(x̂(2�−t)

base ) − ρ(x̂(2�−t)
base , x�) + 2αrank(x̂stable) + 2

B

B∑
�=1

κ(x̂stable, x�, x̂
(�)
base).

Here, the second inequality follows from min{a + b, c + d} ≤ min{a, c} + b + d for a, b, c, d ≥ 0. The third inequality follows63

from min{a, b} ≤
√

ab for a, b ≥ 0 and64

1
B

B∑
�=1

rank(x̂stable) − ρ(x̂stable, x̂
(�)
base) =

rank(x̂stable)∑
k=1

1
B

B∑
�=1

1 − [ρ(xk, x̂
(�)
base) − ρ(xk−1, x̂

(�)
base)] ≤ αrank(x̂stable), [16]65

where (x0, x1, . . . , xk̂) is a sequence specifying a path from the least element x0 to xk̂ = x̂stable with rank(x̂stable) = k̂. Thus,
1
B

∑B

�=1 ρ(x̂stable, x̂
(�)
base) ≥ (1 − α)rank(x̂stable). As ρ(x̂stable, x̂

(�)
base) ≤ rank(x̂(�)

base), we can then conclude that E[rank(x̂stable)] ≤
E[rank(x̂sub)]

1−α
. Taking expectations and using the fact that the data across complementary bags is IID, we obtain:

FD(x̂stable, x�) ≤ E[
√

FD(x̂sub, x�)]2 + 2α

1 − α
E[rank(x̂sub)] + 2

B

B∑
�=1

E[κ(x̂stable, x�, x̂
(�)
base)].

It remains to bound 2
B

∑B

�=1 E[κ(x̂stable, x�, x̂
(�)
base)] for subspace selection and blind-source separation.66

67

Subspace-selection: We will use the similarity valuation ρ := ρsubspace in Eq. (3). Note that:68

rank(x) − ρ(x, y) = trace
(
PxPy⊥

)
= trace

(
PxPzPy⊥ Pz

)
+ trace

(
PxPz⊥ Py⊥ Pz⊥

)
+ trace

(
PxPz⊥ Py⊥ Pz

)
+ trace

(
PxPzPy⊥ Pz⊥

)
≤ trace

(
Py⊥ Pz

)
+ trace (PxPz⊥ ) + trace

(
[Px, Pz⊥ ]

[
Pz, Py⊥

])
= rank(z) − ρ(y, z) + rank(x) − ρ(x, z) + trace

(
[Px, Pz⊥ ]

[
Pz, Py⊥

])
.

[17]69

Here, for matrices A, B ∈ R
p×p, [A, B] = AB − BA represents the commutator. Furthermore, note that:70

trace
(
[Px, Pz⊥ ]

[
Pz, Py⊥

])
≤ ‖ [Px, Pz⊥ ] ‖�‖

[
Pz, Py⊥

]
‖2

≤ 2
√

rank(x)
√

rank(x) − ρ(x, z)‖ [Pz, Py] ‖2.
[18]71

Combining the bounds Eq. (17) and Eq. (18), we find that:

rank(x) − ρ(x, y) ≤ rank(z) − ρ(y, z) + rank(x) − ρ(x, z) + 2
√

rank(x)
√

rank(x) − ρ(x, z)‖ [Pz, Py] ‖2

≤ rank(z) − ρ(y, z) + rank(x) − ρ(x, z) +
√

rank(x)
√

rank(x) − ρ(x, z).
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Here, the second inequality follows from the fact that for projection matrices A and B, ‖[A, B]‖2 ≤ 1/2. From this inequality,
we conclude that in the subspace selection setting,

1
B

B∑
�=1

κ(x̂stable, x�, x̂
(�)
base) ≤

√
rank(x̂stable) 1

B

B∑
l=1

√
rank(x̂stable) − ρ(x̂stable, x̂

(�)
base)

≤
√

rank(x̂stable)

√√√√ 1
B

B∑
l=1

rank(x̂stable) − ρ(x̂stable, x̂
(�)
base)

≤
√

αrank(x̂stable).

Here, the second equality follows from Cauchy-Schwartz and the last inequality follows from the bound Eq. (16). Recalling
that E[rank(x̂stable)] ≤ E[rank(x̂sub)]

1−α
, we obtain the final bound:

FD(x̂stable, x�) ≤ E[
√

FD(x̂sub, x�)]2 + 2α +
√

α

1 − α
E[rank(x̂sub)].

Blind-source separation We will use the similarity valuation ρ := ρsource-separation in Eq. (4). For simplicity of notation, associ-72

ated with any element z ∈ L, we consider a block-diagonal p2 ×p2 projection matrix where each p×p block is a projection matrix73

of the subspace spanned by a vector in z. We denote this projection matrix Pz. Then, ρ(x, y) = max
Π∈S

p2
block

trace
(
PxΠPyΠT

)
74

where S
p2

block is the space of p2 × p2 permutation matrices that are block-diagonal where each block is of size p × p.75

76

Note that:

rank(x) − ρ(x, y) = min
Π∈S

p2
block

trace
(
PxΠPy⊥ ΠT

)
≤ min

Π̃∈S
p2
block

min
Π∈S

p2
block

trace
(
ΠPy⊥ ΠT Π̃PzΠ̃T

)
+ trace

(
PxΠ̃Pz⊥ Π̃T

)

+ 2
√

rank(x)
√

trace
(
PxΠ̃Pz⊥ Π̃T

)
‖[Π̃PzΠ̃T , ΠPyΠT ]‖2

≤ min
Π̃∈S

p2
block

trace
(
PxΠ̃Pz⊥ Π̃T

)
+ 2

√
rank(x)

√
trace

(
PxΠ̃Pz⊥ Π̃T

)
max

Π̄, ¯̃Π∈S
p2
block

‖[ ¯̃ΠPz
¯̃ΠT , Π̄PyΠ̄T ]‖2

+ max
Π̃∈S

p
block

min
Π∈S

p
block

trace
(
Π(Id − Py)ΠT Π̃PzΠ̃T

)

= [rank(x) − ρ(x, z] + [rank(z) − ρ(z, y)]

+ 2
√

rank(x)
√

rank(x) − ρ(x, z) max
Π̄, ¯̃Π∈S

p2
block

‖[ ¯̃ΠPz
¯̃ΠT , Π̄PyΠ̄T ]‖2.

Here, the first inequality follows from a similar analysis as arriving to Eq. (17) in subspace selection. The second inequality follows77

from the fact that mina,b f(a) + g(b) ≤ mina f(a) + maxb f(b). Note that projection matrices A, B, [A, B] ≤ 1
2 . Then, following78

the same exact reasoning as the subspace case, we have that in the blind-source separation setting 1
B

∑B

�=1 κ(x̂stable, x�, x̂
(�)
base) ≤79 √

αrank(x̂sub). The result follows subsequently.80

V. Specializing Bound Eq. (8) for Different Problem Settings81

V.I. Partial Ranking. Let S = {a1, a2, . . . , ap} be the set of p elements. We use the similarity valuation ρ := ρmeet in Eq. (1) of82

the main paper.83

V.I.1. Characterizing S for Partial Ranking. We construct a set S satisfying the properties in Definition 3 of the main paper.
Specifically, we let:

S = {(ai, aj) : i 	= j},

with |S1| = p(p − 1) and Sk = ∅ for every k ≥ 2.84

We will show that set S as constructed above satisfies Definition 3. First, consider any covering pair (u′, v′) /∈ S. Here, u′

and v′ are relations and v′ = u′ ∪ (ai, aj) for some i 	= j. Then, for any z ∈ L, it is easy to see that

ρ(v′, z) − ρ(u′, z) = I[(ai, aj) ∈ z] = ρ(v, z) − ρ(u, z),

where v = {(ai, aj)} and u = ∅. Clearly, rank(v) ≤ rank(v′).85

To show the second property, consider covering pairs ({(ai, aj)}, ∅) ∈ S and ({(ak, al)}, ∅) ∈ S. By construction of86

the set S, (ai, aj) 	= (ak, al). Let z = {(ai, aj)}. Then, it is straightforward to see that ρ({(ai, aj)}, z) − ρ(∅, z) = 1 but87

ρ({(ak, al)}, z) − ρ(∅, z) = 0.88
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V.I.2. Characterizing cL(x, y) for Covering Pair (x, y). Since for any z, ρ(y, z) − ρ(x, z) = I((ai, aj) ∈ z) for some (ai, aj). Thus,89

cL(x, y) = 1.90

V.I.3. Refined False Discovery Bound for Partial Ranking. Let x̂stable be output of Algorithm 1 with Ψ = Ψstable. Then:

E[FD(x̂stable, x�)] ≤ q2
1

(1 − 2α)p(p − 1)
,

where
q1 =

∑
i�=j

I[(ai, aj) ∈ x̂sub].

Here, x̂sub is the estimated partial ranking from supplying n/2 samples to the base estimator. We can use the following91

data-driven approximation for q1:q1 ≈ 1
B

∑B

�=1
∑

i�=j
I[(ai, aj) ∈ x̂base(D(�))] with x̂base(D(�)), l = 1, 2, . . . , B representing the92

estimates from subsampling.93

V.II. Total Ranking. Let S = {a1, a2, . . . , ap} be the set of p elements. Let πnull(ai) = i for every i = 1, 2, . . . , p. We use the94

similarity valuation ρ := ρtotal-ranking in Eq. (2) of the main paper. As each element in the poset corresponds to a function95

π : S → S, we will use this functional notation throughout.96

V.II.1. Characterizing S for Total Ranking. We construct a set S satisfying the properties in Definition 3 of the main paper. Initialize
S = ∅. Then, for every relation (ai, aj) with i < j, we augment S as follows:

S = S ∪ (π1, π2),

where π1, π2 are covering pairs. Here, π2 is any rank j − i element in the poset with the relation (ai, aj) in its corresponding
inversion set. Furthermore, we let π1 be a rank j − i − 1 element that is covered by π2 and does not contain (ai, aj) in its
inversion set. Recalling that Sk = {(π1, π2) ∈ S, rank(π2) = k}, we have that for every k = 1, 2, . . . , p − 1

|Sk| = p − k.

We will show that set S as constructed above satisfies Definition 3. First, consider any covering pair (π̃1, π̃2) /∈ S. Then
by definition, the corresponding inversion sets are nested, i.e. inv(π̃2; πnull) ⊇ inv(π̃1; πnull) with the difference being a single
relation. We will denote this relation by (ai, aj) with j > i. Consider the covering pair (π1, π2) ∈ S where (ai, aj) is in the
inversion set of π2 but not in the inversion set of π1. Then, for any π, we have that

ρ(π2, π) − ρ(π1, π) = I((ai, aj) ∈ inv(π; πnull)) = ρ(π̃2, π) − ρ(π̃1, π).

Furthermore, it is straightforward to check that rank(π̃2) ≥ j − i = rank(π2). We have thus shown that S satisfies the first97

property in Definition 3.98

To show the second property, consider covering pairs (π1, π2) ∈ S where the difference between the two inversion sets is the
relation (ai, aj). Let (π3, π4) ∈ S where the difference between the two inversion sets is the relation (ak, al). By construction of
the set S, (ai, aj) 	= (ak, al). Let π be a permutation with (ai, aj) in its inversion set. Then, as desired,

ρ(π2, π) − ρ(π1, π) = I((ai, aj) ∈ inv(π; πnull)) 	= ρ(π4, π) − ρ(π3, π).

V.II.2. Characterizing cL(π1, π2) for Covering Pair (π1, π2). Since for any π, ρ(π2, π) − ρ(π1, π) = I((ai, aj) ∈ inv(π; πnull)) for some99

pair of elements (ai, aj), then cL(π1, π2) = 1.100

V.II.3. Refined False Discovery Bound for Total Ranking. Let π̂stable be output of Algorithm 1 with Ψ = Ψstable. Then:

E[FD(π̂stable, π�)] ≤
p−1∑
k=1

q2
k

(1 − 2α)(p − k)
,

where
qk =

∑
(π1,π2)∈Sk

E[ρ(π2, π̂sub) − ρ(π1, π̂sub)] =
∑

(i,j),j−i=k

[I[(ai, aj) ∈ inv(π̂sub; πnull)] .

Here, π̂sub represents ranking from supplying n/2 samples to the base estimator. We can use the following data-driven101

approximation for qk:qk ≈ 1
B

∑
(i,j),j−i=k

∑B

�=1

[
I[(ai, aj) ∈ inv(π̂base(D(�)); πnull)]

]
, where π̂base(D(�)) represents the total102

ranking obtained by supplying the base estimator on dataset D(�).103
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V.III. Clustering. We have a collection of p items {a1, a2, . . . , ap} that we wish to cluster. We let x0 = {{a1}, {a2}, . . . , {ap}} be
the least element. As described in the main paper, will use the similarity valuation ρ := ρmeet defined in Eq. (1) of the main
paper. Since the clustering poset is meet semi-lattice, ρ computes the rank of the meet of two elements; in this setting, the
meet x ∧ z of x = {G1, . . . , Gq} and z = {G̃1, . . . , G̃s} is

x ∧ z = {Gi ∩ G̃j : Gi ∩ G̃j 	= ∅}.

Subsequently, ρ(x, z) = rank(x ∧ y) is p − # groups in x ∧ z, which can be equivalently expressed as:

ρ(x, z) =
∑

i,j:|Gi∩G̃j |�=∅
|Gi ∩ G̃j | − 1.

For sets G1, G2 ⊆ {1, 2, . . . , p} with G1 ∩ G2 = ∅, we define:

RG1,G2 := {{a1}, {a2}, . . . , {ap}} \ {{ai} : ai ∈ G1 ∪ G2}.

V.III.1. Characterizing S for Clustering. We construct a set S satisfying the properties in Definition 3. Initialize S = ∅. Then, for
every k = 1, 2, . . . , p − 1 and pairs of groups of variables G1 ⊆ {a1, . . . , ap} and G2 ⊆ {a1, . . . , ap} with |G1| + |G2| = k + 1 and
G1 ∩ G2 = ∅, we generate covering pairs (x, y) with y = {G1 ∪ G2, RG1,G2 } and x = {G1, G2, RG1,G2 }, and let

S = S ∪ (x, y).

Recalling that Sk = {(x, y) ∈ S, rank(y) = k}, it is straightforward to check that for every k = 1, 2, . . . , p − 1

|Sk| =
(

p
k + 1

) k∑
�=1

(
k + 1

l

)
.

Here, the terms
(

p
k+1

)
counts the number of possible items in G1 ∪ G2 and the term

∑k+1
�=1

(
k+1

l

)
counts the number of104

possible configurations of the group G2. We will show that the constructed set S satisfies Definition 3 of the main paper. Our105

analysis is based on the following lemma.106

Lemma 10. Consider the covering pairs (x, y) with x = {G1, G2, . . . , Gq} and y = {G1 ∪ G2, G3, . . . , Gq} where Gi ⊆107

{1, 2, . . . , px} and Gi∩Gj = ∅ for every i 	= j. Let (x̃, ỹ) be covering pairs with ỹ = {G1∪G2, RG1,G2 } and x̃ = {G1, G2, RG1,G2 }.108

Then, for every z ∈ L, ρ(y, z) − ρ(x, z) = ρ(ỹ, z) − ρ(x̃, z).109

Proof of Lemma 10. Let z = {G̃1, . . . , G̃s} with G̃i ⊆ {a1, a2, . . . , ap} and G̃i ∩ G̃j = ∅ for every i 	= j. Then:

ρ(y, z) =
∑

j:(G1∪G2)∩G̃j �=∅
|(G1 ∪ G2) ∩ G̃j | − 1 +

∑
i≥3,j:Gi∩G̃j �=∅

|Gi ∩ G̃j | − 1,

and
ρ(x, z) =

∑
j:G1∩G̃j �=∅

|G1 ∩ G̃j | − 1 +
∑

j:G2∩G̃j �=∅
|G2 ∩ G̃j | − 1 +

∑
i≥3,j:Gi∩G̃j �=∅

|Gi ∩ G̃j | − 1.

Since RG1,G2 consists of groups of size one, we have that:

ρ(ỹ, z) =
∑

j:(G1∪G2)∩G̃j �=∅
|(G1 ∪ G2) ∩ G̃j | − 1,

and
ρ(x̃, z) =

∑
j:G1∩G̃j �=∅

|G1 ∩ G̃j | − 1 +
∑

j:G2∩G̃j �=∅
|G2 ∩ G̃j | − 1.

We thus can see that ρ(y, z) − ρ(x, z) = ρ(ỹ, z) − ρ(x̃, z).110

Showing S satisfies Definition 3 With Lemma 10 at hand, we show that out constructed S satisfies Definition 3 of the main111

paper. We start with the first property. Consider any (u′, v′) ⊆ L. Without loss of generality, we take v′ = {G1∪G2, G3, . . . , Gq}112

and u′ = {G1, G2, . . . , Gq}. We let v = {G1 ∪ G2, RG1,G2 } and u = {G1, G2, RG1,G2 }. Then, according to Lemma 10, we have113

that ρ(v′, z) − ρ(u′, z) = ρ(v, z) − ρ(u, z). Furthermore, since rank(x) = p − # groups in x, we have that rank(v) ≤ rank(v′).114

Thus, the first property of S is satisfied. We demonstrate the second property. Consider any (u, v) ∈ S and (u′, v′) ∈ S115

that are different. Let u = {G1, G2, RG1,G2 } and v = {G1 ∪ G2, RG1,G2 }. Additionally, let u′ = {G′
1, G′

2, RG′
1,G′

2
} and116

v′ = {G′
1 ∪ G′

2, RG′
1,G′

2
}. Since the covering pairs (u, v) and (u′, v′) are different, there must exist two items ai, aj such117

that either (ai, aj) are grouped together in v but are not together in u or (ai, aj) are grouped together in v′ but are not118

together in u′. Let z = {{ai, aj}, R{ai},{aj }}. Since ρ(v, z) − ρ(u, z) = I[(ai, aj) grouped together in v but not in u] and119

ρ(v′, z) − ρ(u′, z) = I[(ai, aj) grouped together in v′ but not in u′], we have that ρ(v, z) − ρ(u, z) 	= ρ(v′, z) − ρ(u′, z).120
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V.III.2. Characterizing cL(u, v) for Covering Pair (u, v).121

Lemma 11. Let v = {G1 ∪ G2, RG1,G2 } and u = {G1, G2, RG1,G2 } be a covering pair (u, v) ∈ S. Then, cL(u, v) =122

min{|G1|, |G2|}.123

Proof of Lemma 11. Let z = {G̃1, . . . , G̃q}. Then, from proof of Lemma 10, we have that:

ρ(v, z) − ρ(u, z) =

⎡
⎣ ∑

j:(G1∪G2)∩G̃j �=∅
|(G1 ∪ G2) ∩ G̃j | − 1

⎤
⎦ −

⎡
⎣ ∑

j:G1∩G̃j �=∅
|G1 ∩ G̃j | − 1

⎤
⎦ −

⎡
⎣ ∑

j:G2∩G̃j �=∅
|G2 ∩ G̃j | − 1

⎤
⎦ .

Let I1 := {j : G̃j ∩ G1 	= ∅} and I2 := {j : G̃j ∩ G2 	= ∅}. Then,

ρ(v, z) − ρ(u, z) =

[ ∑
j∈I1∪I2

|(G1 ∪ G2) ∩ G̃j | − 1

]
−

[∑
j∈I1

|G1 ∩ G̃j | − 1

]
−

[∑
j∈I2

|G2 ∩ G̃j | − 1

]
.

Simple manipulations yield:

ρ(v, z) − ρ(u, z) =

[ ∑
j∈I1∩I2

|(G1 ∪ G2) ∩ G̃j | − 1

]
−

[ ∑
j∈I1∩I2

|G1 ∩ G̃j | − 1

]
−

[ ∑
j∈I1∩I2

|G2 ∩ G̃j | − 1

]
.

Clearly, if I1 ∩ I2 = ∅, then ρ(v, z) − ρ(u, z) = 0. Suppose I1 ∩ I2 	= ∅. Then,

ρ(v, z) − ρ(u, z) = |I1 ∩ I2| +

[ ∑
j∈I1∩I2

|(G1 ∪ G2) ∩ G̃j | − |G1 ∩ G̃j | − |G2 ∩ G̃j |

]
= |I1 ∩ I2|.

Notice that |I1∩I2| ≤ min{|G1|, |G2|}. Then, the upper bound can be achieved by for example setting z = {N, {{a1}, {a2}, . . . , {ap}\124

N} with N = {(ai, aj) : ai ∈ G1, aj ∈ G2}.125

V.III.3. Refined False Discovery Bound for Clustering. Let x̂stable be output of Algorithm 1 with Ψ = Ψstable. Then:

E[FD(x̂stable, x�)] ≤
p−1∑
k=1

q2
k

(1 − 2α)
(

p
k + 1

) ∑k

�=1

(
k + 1

l

) ,

where,126

qk =
∑

(u,v)∈Sk

E[ρ(v, x̂sub) − ρ(u, x̂sub)]
c(u, v)

=
∑

G1⊆{a1,...,ap},G2⊆{a1,...,ap}
G1∩G2=∅;|G1|+|G2|=k+1

E[# groups Ĝj in x̂sub satisfying Ĝj ∩ G1 	= ∅ and Ĝj ∩ G2 	= ∅]
min{|G1|, |G2|} .

127

Here, x̂sub represents clustering from supplying n/2 samples to the base estimator. We will use the following data-driven
approximation to estimate qk

qk ≈ 1
B

∑
G1⊆{a1,...,ap},G2⊆{a1,...,ap}

G1∩G2=∅;|G1|+|G2|=k+1

B∑
�=1

# groups Ĝj in x̂base(D(�)) satisfying Ĝj ∩ G1 	= ∅ and Ĝj ∩ G2 	= ∅]
min{|G1|, |G2|} ,

with x̂base(D(�)) represents the partition obtained from supplying D(�) to the base estimator.128

V.IV. Causal Structure Learning. Throughout, we consider covering pairs (Cu, Cv) where each connected component in the129

skeletons of Cu, Cv have a diameter at most two. We denote this set by T . Note that for any covering pair (Cu, Cv) ∈ T , Cv is a130

polytree. Throughout, we will use the similarity valuation ρ := ρmeet. Our analysis in this section will build on the following131

result.132

Lemma 12. Let Cu and Cv be two CPDAGs that are polytrees with Cu � Cv. Then, the following statements hold:133

(a) for any pairs of nodes E, the set of DAGs that result from removing edges among pairs E in any DAG Gv form a Markov134

equivalence class.135

(b) for every DAG Gv ∈ Cv, there exists a DAG Gu ∈ Cu such that Gu is a directed subgraph of Gv.136

8 of 11 Armeen Taeb, Peter Bühlmann and Venkat Chandrasekaran



Proof of Lemma 12. We first prove part (a). By the polytree assumption, it follows that for any DAG Gv in the CPDAG Cv,137

removing the edges among pairs in E does not create any v-structures, and removes the same (potentially empty) v-structures.138

That means that the collection of DAGs obtained by taking any DAG in Cv and removing the edges between the pairs of nodes139

E will have the same skeleton and same v-structures, and are thus in the same Markov equivalence class.140

We next prove part (b). Let (i, j) be the pair of nodes that are connected in Cv but not in Cu. Recall that Cu � Cv implies141

there exists a DAG Gu ∈ Cu and a DAG Gv ∈ Cv where Gu is a subgraph of Gv, where Gu does not have the edge among pairs142

(i, j). Appealing to the result in part (a), we have that removing the edge (i, j) from any other DAG in Cv results in a DAG in143

the same equivalence class, which is Cu.144

V.IV.1. Characterizing S for Causal Structure Learning. We construct the set S as follows. Initialize S = ∅. For every reference node,
and k = 1, . . . , p − 1, let Cy be a CPDAG generated with k edges, where every edge is between the reference node and another
node; no other edges can be added without violating the condition that the largest undirected path has size less than or equal
to two. A consequence of Lemma 12 is that there are k CPDAGs Cx1 , . . . , Cxk that form a covering pair with Cy. We then let

S = S ∪ (Cxi , Cy),

for every i = 1, 2, . . . , k. Recall that Sk := {(Cx, Cy) ∈ S, rank(Cy) = k}. Then,

|Sk| = p

(
p − 1

k

) ∑
i∈{0,2...,k}

(
k
i

)
.

The result above follows from noting that for every reference node and k other nodes, there are
∑

i∈{0,2...,k}
(

k
i

)
possible145

CPDAGs that are polytrees can formed by connecting the k nodes to the reference node; the factor p
(

p−1
k

)
comes from p total146

possible reference nodes and
(

p−1
k

)
possible set of k nodes to connect to the reference node.147

148

We will show that the constructed set S satisfies Definition 3 of the main paper. Our analysis is based on the following lemma.149

Lemma 13. Let Cỹ be a CPDAG that contains m disconnected subgraphs (both directed and undirected). Let Cỹi be each
disconnected subgraph for i = 1, 2, . . . , m. Then, for any CPDAG Cz,

ρ(Cỹ, Cz) =
m∑

i=1

ρ(Cỹi , Cz).

150

Proof. We will first show that ρ(Cỹ, Cz) ≤
∑m

i=1 ρ(Cỹi , Cz). Let Cx̃ ∈ argmaxCx�Cỹ,Cx�Cz
rank(Cx). By definition, Cx � Cỹ if

there is a DAG Gx in Cx and a DAG Gỹ in Cỹ such that Gx is a subgraph of Gỹ. Since Gỹ has disconnected components, so must
Gx. We let Cx̃i be the subgraphs of Cx̃ where every subgraph Cx̃i only contains edges among nodes that are connected (to other
nodes) in the graph Cỹi . By construction, Cx̃i � Cỹi , rank(Cx̃) =

∑m

i=1 rank(Cx̃i ), and Cx̃i � Cz. Thus, rank(Cx̃i ) ≤ ρ(Cỹi , Cz).
Then, we can conclude that

m∑
i=1

ρ(Cỹi , Cz) ≥
m∑

i=1

rank(Cx̃i ) = rank(Cx̃) = ρ(Cỹ, Cz).

Now we will show that ρ(Cỹ, Cz) ≥
∑m

i=1 ρ(Cỹi , Cz). Let Cx̃i ∈ argmaxCx�Cỹi
,Cx�Cz

rank(Cx). Now form a CPDAG Cȳ by
combining all the disjoint graphs Cx̃i for every i = 1, 2, . . . , m into one graph. Since these graphs are disjoint (i.e. nodes that
are connected in each graph are distinct), we have that Cȳ � Cỹ and Cȳ � Cz and that rank(Cȳ) =

∑m

i=1 rank(Cx̃i ). So we
conclude that

ρ(Cỹ, Cz) ≥ rank(Cȳ) =
m∑

i=1

rank(Cx̃i ) =
m∑

i=1

ρ(Cỹi , Cz).

151

Showing S satisfies Definition 3 For the first property, consider covering pairs (Cu′ , Cv′ ) ∈ T . Let (i, j) be the pair of nodes
that are connected in Cv′ and are not connected in Cu′ . Since every undirected path in Cv′ has size at most 2, then Cv′ decouples
into two disconnected CPDAGs Cv and C1, where Cv only involves nodes adjacent to (i, j). Similarly, Cu′ decouples into two
disconnected CPDAGs Cu and C2, where C2 = C1 and Cu is covered by Cv. From Lemma 13, we have that for any CPDAG Cz

ρ(Cv′ , Cz) − ρ(Cu′ , Cz) = ρ(Cv, Cz) − ρ(Cu, Cz).

Notice that (Cu, Cv) ∈ S. Furthermore, since the number of edges (directed and undirected) in Cv′ is larger than Cv, we have152

that rank(Cv) ≤ rank(Cv′ ).153

We next show the second property in Definition 3. Let (Cu, Cv) ∈ S and (Cu′ , Cv′ ) ∈ S. Our objective is to show that154

ρ(Cv, Cz) − ρ(Cu, Cz) = ρ(Cv′ , Cz) − ρ(Cu′ , Cz) for all Cz ⇔ Cu = Cu′ and Cv = Cv′ . The direction ← trivially holds, and hence155

we focus on the direction →. We consider multiple scenarios; throughout the extra edge that is present in Cv and not in Cu is156

between the pair of nodes (i, j), and the extra edge that is present in Cv′ and not in Cu′ is between the pair of nodes (k, l).157
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(1) Suppose that the nodes (k, l) are not connected in Cv. Letting Cz be a CPDAG with only an edge between nodes (k, l),158

we find that ρ(Cv, Cz) − ρ(Cu, Cz) = 0 and ρ(Cv′ , Cz) − ρ(Cu′ , Cz) = 1. So this scenario cannot occur.159

(2) Suppose there is an edge between pairs (s, t) in Cu′ that is missing in Cv (and as a result in Cu). Construct CPDAG160

Cz with two edges, one between the pair (i, j) and another between the pair (s, t) with the property that Cz 	� Cv′ ;161

this construction is possible since (Cu′ , Cv′ ) ∈ S, meaning that if there is an edge between pair of nodes (i, j) in Cv′ ,162

this edge is incident to the edge between the pair of nodes (s, t). Then, it is evident that ρ(Cv, Cz) − ρ(Cu, Cz) = 1 but163

ρ(Cv′ , Cz) − ρ(Cu′ , Cz) = 0. So this scenario cannot occur.164

(3) Suppose there is an edge between pairs (s, t) in Cu′ that is missing in Cu but is not missing in Cv. Let Cz be a CPDAG165

only containing an edge between (s, t). Then it follows that ρ(Cv, Cz) − ρ(Cu, Cz) = 1 but ρ(Cv′ , Cz) − ρ(Cu′ , Cz) = 0. So166

this scenario cannot occur.167

From the impossibilities of scenarios 1-2, and noting that a similar argument can be made by swapping Cu′ with Cu, and Cv′168

with Cv, we conclude that Cv, Cv′ have edges between the same pairs of nodes. Combining this result with the impossibility of169

scenario 3, we conclude that Cu, Cu′ have edges between the same pairs of nodes. We then continue with the final scenario.170

(4) Suppose that Cv and Cv′ are not identical CPDAGs. Since both Cv and Cv′ have maximum undirected path length171

less than or equal to two, they both must have the same reference node i (where the other nodes are connected to).172

Furthermore, since Cv and Cv′ have the same skeleton and are different, they must have strictly more than one edge, and173

they must have different v-structures. As a first sub-case, suppose Cv′ have a v-structure s → i ← t that is not present in174

Cv, so that s ← i or s − i in Cv. Then, let Cz be a CPDAG containing two edges between the pairs (i, j) and (i, s) with175

Cz � Cv. By construction, ρ(Cv, Cz) − ρ(Cu, Cz) = 1 but ρ(Cv′ , Cz) − ρ(Cu′ , Cz) = 0. Swapping Cu′ with Cu, and Cv′ with176

Cv, and following similar arguments, we arrive again at a contradiction if Cv has a v-structure that is not present in Cv′ .177

From the impossibility of scenario 4, we conclude that Cv and Cv′ have the same skeleton and v-structure and consequently178

Cv = Cv′ . We thus have that Cu � Cv and Cu′ � Cv. Furthermore, since Cu′ and Cu have the same skeleton, both are missing an179

edge between pair of nodes (i, j) that is connected in Cv. Appealing to part a of Lemma 12, we conclude that Cu = Cu′ .180

V.IV.2. Characterizing cL(Cu, Cv) for Covering Pairs (Cu, Cv). We have the following lemma.181

Lemma 14. Let (Cu, Cv) be CPDAGs that are polytrees and form a covering pair. Then, cL(Cu, Cv) = 1.182

Proof. Let the pair of nodes (i, j) be connected in Cv and not connected in Cu. Consider any CPDAG Cz. Let Cỹ ∈183

argmaxCy�Cv,Cy�Cz
rank(Cy). Since the CPDAG Cv is a polytree, so is the CPDAG Cỹ. Let Gv be any DAG in Cv. Then,184

by Lemma 12, there exists DAGs G(1)
ỹ ∈ Cỹ and Gu ∈ Cu such that G(1)

ỹ and Gu are both subgraphs of Gv. Suppose we185

remove an edge that may be present between the pair of nodes (i, j) in G(1)
ỹ and denote the resulting subgraph by G(1)

x . By186

construction, G(1)
x is also a subgraph of Gu. Since Cỹ � Cz, there exists a DAG G(2)

ỹ ∈ Cỹ and a DAG Gz ∈ Cz such that G(2)
ỹ is187

a subgraph of Gz. Suppose again we remove an edge that may be present between the pair of nodes (i, j) in G(2)
ỹ and denote188

the resulting subgraph by G(2)
x . By Lemma 12, G(2)

x and G(1)
x are in the same equivalence class, which we denote by Cx. By189

construction, Cx � z and Cx � Cu. Furthermore, rank(Cx) ≥ rank(Cỹ) − 1. Thus, we have shown that for any arbitrary Cz:190

ρ(Cv, Cz) − ρ(Cu, Cz) ≤ 1.191

V.IV.3. Refined False Discovery Bound for Causal Structure Learning. Let Ĉstable be output of Algorithm 1 with Ψ = Ψstable. Let C� be
the population CPDAG. Then:

E[FD(Ĉstable, C�)] ≤
p−1∑
k=1

q2
k

(1 − 2α)p
(

p − 1
k

) ∑
i∈{0,2...,k}

(
k
i

) ,

where,
qk =

∑
(Cu,Cv)∈Sk

E[ρ(Cv, Ĉsub) − ρ(Cu, Ĉsub)].

Here, Ĉsub represents the CPDAG from supplying n/2 samples to the base estimator. We will use the following data-driven
approximation to estimate qk

qk ≈ 1
B

B∑
�=1

∑
(Cu,Cv)∈Sk

E[ρ(Cv, Ĉbase(D(�)) − ρ(Cu, Ĉbase(D(�)))],

with Ĉbase(D(�)) represents the CPDAGs obtained from supplying dataset D(�) to base estimator Ĉbase.192
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VI. Assumptions 1 and 2 of the Main Paper for the Total Ranking Problem in Example 7193

Let S = {a1, a2, . . . , ap} be the set of p elements. Let πnull(ai) = i for every i = 1, 2, . . . , p. We use the similarity valuation
ρ := ρtotal-ranking in Eq. (2) of the main paper. As each element in the poset corresponds to a function π : S → S, we
will use this functional notation throughout. For a covering pair (π1, π2), there exists a single pair of elements (ai, aj) ∈
inv(π2; πnull) \ inv(π1; πnull) with j > i. Then, from the definition of ρ, for any permutation π, we have that

ρ(π2, π) − ρ(π1, π) = I[(ai, aj) ∈ inv(π; πnull)] = I[π(aj) < π(ai)].

Let π̂sub be the estimated ranking from applying a base procedure on a subsample of the data. Consider a fixed integer k194

with 1 ≤ k ≤ p − 1. Define the sets S1 and S2:195

S1 = {(ai, aj) ∈ inv(π�; πnull) : j − i = k},

S2 = {(ai, aj) 	∈ inv(π�; πnull) : j − i = k}.
196

The set S1 corresponds to non-null pairs (as described in the main paper) and the set S2 corresponds to null pairs.197

Then, appealing to the definition of S and the constant cL(·, ·) in the total ranking case (see Section V.II), Assumption 1 of198

the main paper reduces to the following inequality being satisfied199 ∑
(ai,aj )∈S1

P(π̂sub(aj) < π̂sub(ai))∑
(ai,aj )∈S2

P(π̂sub(aj) < π̂sub(ai))
≥ |S1|

|S2| . [19]200

Consider an estimator π̂sub = π̂random that randomly selects a total ranking in the space of permutations. Then, for every i201

and j, P(π̂sub(aj) < π̂sub(ai)) = 1
2 . Thus, in this case, Assumption 1 in Eq. (19) is satisfied with equality.202

It is also straightforward to check that Assumption 2 of the main paper is reduced to

P(π̂sub(aj) < π̂sub(ai)) being the same for every (aj , ai) ∈ S2.
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