

Supporting Information for

Model Selection over partially ordered sets

Armeen Taeb, Peter Bühlmann and Venkat Chandrasekaran

5 Armeen Taeb
6 E-mail:ataeb@uw.edu

This PDF file includes:
Supporting text
Fig. S1
SI References

Supporting Information Text

Subhead. This document includes proofs of claims in the main text.

I. Meet Semi-lattice and Join Semi-lattice Properties and Posets in Examples 1-9

The Boolean poset (Example 1), partition poset (Examples 2-3), integer poset (Example 5), permutation poset (Example 7), and subspace poset (Example 8) are all known in the literature to be lattices (and consequently meet-semi and join semi-lattices); see (1).

We next show that for Examples 6 and 9 associated with partial ranking and blind-source separation, the corresponding posets are also meet semi-lattices. Consider the partial ranking setting in Example 6. Let \mathcal{R}_{1} and \mathcal{R}_{2} be two relations that are irreflexive, asymmetric, and transitive. Recalling that the partial ordering is based on inclusion, it is clear that the relations $\mathcal{R}=\left\{(a, b):(a, b) \in \mathcal{R}_{1},(a, b) \in \mathcal{R}_{2}\right\}$ is the unique largest rank element in the partial ranking poset such that $\mathcal{R} \preceq \mathcal{R}_{1}$ and $\mathcal{R} \preceq \mathcal{R}_{2}$. Furthermore, for any $\tilde{\mathcal{R}}$ with $\tilde{\mathcal{R}} \preceq \mathcal{R}_{1}$ and $\tilde{\mathcal{R}} \preceq \mathcal{R}_{2}$, we clearly have that $\tilde{\mathcal{R}} \preceq \mathcal{R}$. Consider the blind-source separation setting in Example 9. Let x_{1} and x_{2} be two sets of linearly independent subsets of unit norm vectors. Recalling that the partial ordering in the associated poset is based on inclusion, it is clear that the set $y=x_{1} \cap x_{2}$ is the unique largest rank element in the partial ranking poset such that $y \preceq x_{1}$ and $y \preceq x_{2}$. Furthermore, for every z with $z \preceq x_{1}$ and $z \preceq x_{2}$, we have that $z \preceq y$.

We show that the poset corresponding to causal structure learning setting (Example 4) is not meet semi-lattice or join semi-lattice. As a counterexample, consider the CPDAGs \mathcal{C}_{i} for $i=1,2,3,4$ shown in Figure S1. Notice that $\mathcal{C}_{3} \preceq \mathcal{C}_{1}, \mathcal{C}_{3} \preceq \mathcal{C}_{2}$, $\mathcal{C}_{4} \preceq \mathcal{C}_{1}$, and $\mathcal{C}_{4} \preceq \mathcal{C}_{2}$. Notice also that \mathcal{C}_{3} and \mathcal{C}_{4} are both CPDAGs with the largest rank that are smaller (in a partial order sense) than \mathcal{C}_{1} and \mathcal{C}_{2}. We thus can conclude that the poset is not meet semi-lattice. Similarly, \mathcal{C}_{1} and \mathcal{C}_{2} are both CPDAGs with the smallest rank that are larger (in a partial order sense) than \mathcal{C}_{3} and \mathcal{C}_{4}. We thus can conclude that the poset is not join semi-lattice.

We next show that the poset for Example 6 is not join semi-lattice with a simple counterexample. Consider as an example elements $x_{1}=\{(1,2)\}$ and $x_{2}=\{(2,1)\}$. Note that there does not exist an element z such that $x_{1} \preceq z$ and $x_{2} \preceq z$. Thus, the poset is not join semi-lattice.

Finally, we show that the poset corresponding to blind-source separation (Example 9) is not join semi-lattice. Consider a collection of $p+1$ rank- 1 elements in this poset, each element consisting of a single p dimensional vector. Then, evidently, there cannot exist an element z consisting of a set of vectors that contains all of the vectors in the rank- 1 elements, while satisfying the linear independence condition.

II. Proof that Eq. (1) is a Similarity Valuation Function

Recall that

$$
\begin{equation*}
\rho_{\text {meet }}(x, y)=\max _{z \preceq x, z \preceq y} \operatorname{rank}(z) . \tag{14}
\end{equation*}
$$

By definition, $\rho_{\text {meet }}(\cdot, \cdot)$ is a symmetric function. We will now show that it satisfies the three properties in Definition 1 for any pair of elements $x, y \in \mathcal{L}$. For the first property, we can conclude $\rho_{\text {meet }}(x, y) \geq 0$ since by definition, the rank function returns a non-negative integer for all the elements in the poset. Again, because of the property of the rank function in a graded poset, a feasible z (satisfying the constraints $z \preceq x, z \preceq y$) will necessarily have $\operatorname{rank}(z) \leq \min \{\operatorname{rank}(x), \operatorname{rank}(y)\}$. For the second property, consider any $w \in \mathcal{L}$ with $x \preceq w$. Note that:

$$
\begin{equation*}
\rho_{\text {meet }}(w, y)=\max _{z \preceq w, z \preceq y} \operatorname{rank}(z) \text {. } \tag{15}
\end{equation*}
$$

Then, any feasible z in Eq. (14) is also feasible in Eq. (15) by the transitive property of posets. Therefore, $\rho_{\text {meet }}(x, y) \leq \rho_{\text {meet }}(w, y)$. For the third property, first note that if $x \preceq y$, then $z=x$ is feasible in Eq. (14) and thus $\rho_{\text {meet }}(x, y) \geq \operatorname{rank}(x)$. Since also $\rho_{\text {meet }}(x, y) \leq \operatorname{rank}(x)$ by the second property of similarity valuations, we have that $\rho_{\text {meet }}(x, y)=\operatorname{rank}(x)$. Now suppose that $\rho_{\text {meet }}(x, y)=\operatorname{rank}(x)$. By Eq. (14), we conclude that there exists a feasible $z(z \preceq x, z \preceq y)$ such that $\operatorname{rank}(z)=\operatorname{rank}(x)$. By the property of the rank function, we have that if $\operatorname{rank}(z)=\operatorname{rank}(x)$ and $z \preceq x$, then $z=x$. Since we have additionally that $z \preceq y$, we conclude that $x \preceq y$.

III. Proof of Lemmas 8-9

Proof of Lemma 8. Recall the telescoping sum decomposition Eq. (5) that $\operatorname{FD}\left(x_{k}, x^{\star}\right)=\sum_{i=1}^{k} 1-\left[f\left(x_{i-1}, x_{i} ; x^{\star}\right)\right]$. From the first property of similarity valuation that it yields non-negative values, second property of similarity valuation that $\rho(x, y) \leq \rho(z, y)$ for $x \preceq z$, and that the ρ is an integer-valued similarity valuation, we have that $\operatorname{FD}\left(x, x^{\star}\right) \leq \sum_{i=1}^{k} \mathbb{I}\left[\left(x_{i-1}, x_{i}\right) \in \mathcal{T}_{\text {null }}\right]$.

Proof of Lemma 9. For any covering pairs (x, y) and (u, v) with $v \preceq x$, we cannot have that $f(x, y ; z)=f(u, v ; z)$ for all $z \in \mathcal{L}$. Suppose as a point of contradiction that for every $z \in \mathcal{L}, f(x, y ; z)=f(u, v ; z)$. Let $z=v$. Then, by the third property of a similarity valuation (see Definition 1), $\rho(u, z)=\operatorname{rank}(u)$ and $\rho(v, z)=\operatorname{rank}(v)$; thus, for this choice of $z, f(u, v ; z)=1$. On the other hand, again by the third property of a similarity valuation and for the choice of $z=v$, since $u \preceq v \preceq x \preceq y$, $\rho(x, z)=\rho(y, z)=\operatorname{rank}(v)$ and thus $f(x, y ; z)=0$.

Fig. S1. Four CPDAGs. Here, CPDAGs \mathcal{C}_{3} and \mathcal{C}_{4} are both largest complexity models that are smaller (in partial order sense) than \mathcal{C}_{1} and \mathcal{C}_{2}. Similarly, CPDAGs \mathcal{C}_{1} and \mathcal{C}_{2} are the smallest complexity models that are larger (in a partial order sense) than \mathcal{C}_{3} and \mathcal{C}_{4}.

IV. Analysis in the Continuous Examples 8 and 9

For notational ease, we let $\hat{x}_{\text {base }}^{(\ell)}=\hat{x}_{\text {base }}\left(\mathcal{D}^{(\ell)}\right)$. Notice that for any $l=1,2, \ldots, B$:

$$
\begin{aligned}
\operatorname{FD}\left(\hat{x}_{\text {stable }}, x^{\star}\right) & =\operatorname{rank}\left(\hat{x}_{\text {stable }}\right)-\rho\left(\hat{x}_{\text {stable }}, x^{\star}\right) \\
& =\left[\operatorname{rank}\left(\hat{x}_{\text {stable }}\right)-\rho\left(\hat{x}_{\text {stable }}, \hat{x}_{\text {base }}^{(\ell)}\right)\right]+\left[\operatorname{rank}\left(\hat{x}_{\text {base }}^{(\ell)}\right)-\rho\left(\hat{x}_{\text {base }}^{(\ell)}, x^{\star}\right)\right]+\kappa\left(\hat{x}_{\text {stable }}, x^{\star}, \hat{x}_{\text {base }}^{(\ell)}\right),
\end{aligned}
$$

where

$$
\kappa\left(\hat{x}_{\text {stable }}, x^{\star}, \hat{x}_{\text {base }}^{(\ell)}\right):=\rho\left(\hat{x}_{\text {base }}^{(\ell)}, x^{\star}\right)-\operatorname{rank}\left(\hat{x}_{\text {base }}^{(\ell)}\right)+\rho\left(\hat{x}_{\text {stable }}, \hat{x}_{\text {base }}^{(\ell)}\right)-\rho\left(\hat{x}_{\text {stable }}, x^{\star}\right) .
$$

Since the choice of l was arbitrary, we note that:

$$
\begin{aligned}
\operatorname{FD}\left(\hat{x}_{\text {stable }}, x^{\star}\right) & =\frac{2}{B} \sum_{\ell=1}^{B / 2} \min _{t \in\{0,1\}}\left\{\left[\operatorname{rank}\left(\hat{x}_{\text {stable }}\right)-\rho\left(\hat{x}_{\text {stable }}, \hat{x}_{\text {base }}^{(2 \ell-t)}\right)\right]+\left[\operatorname{rank}\left(\hat{x}_{\text {base }}^{(2 \ell-t)}\right)-\rho\left(\hat{x}_{\text {base }}^{(2 \ell-t)}, x^{\star}\right)\right]+\kappa\left(\hat{x}_{\text {stable }}, x^{\star}, \hat{x}_{\text {base }}^{(2 \ell-t)}\right)\right\} \\
& \leq \frac{2}{B} \sum_{\ell=1}^{B / 2} \min _{t \in\{0,1\}}\left\{\left[\operatorname{rank}\left(\hat{x}_{\text {base }}^{(2 \ell-t)}\right)-\rho\left(\hat{x}_{\text {base }}^{(2 \ell-t)}, x^{\star}\right)\right]\right\}+\frac{2}{B} \sum_{\ell=1}^{B}\left[\operatorname{rank}\left(\hat{x}_{\text {stable }}\right)-\rho\left(\hat{x}_{\text {stable }}, \hat{x}_{\text {base }}^{(\ell)}\right)\right] \\
& +\frac{2}{B} \sum_{\ell=1}^{B} \kappa\left(\hat{x}_{\text {stable }}, x^{\star}, \hat{x}_{\text {base }}^{(\ell)}\right) \\
& \leq \frac{2}{B} \sum_{\ell=1}^{B / 2} \prod_{t \in\{0,1\}} \sqrt{\operatorname{rank}\left(\hat{x}_{\text {base }}^{(2 \ell-t)}\right)-\rho\left(\hat{x}_{\text {base }}^{(2 \ell-t)}, x^{\star}\right)}+2 \alpha \operatorname{rank}\left(\hat{x}_{\text {stable }}\right)+\frac{2}{B} \sum_{\ell=1}^{B} \kappa\left(\hat{x}_{\text {stable }}, x^{\star}, \hat{x}_{\text {base }}^{(\ell)}\right) .
\end{aligned}
$$

Here, the second inequality follows from $\min \{a+b, c+d\} \leq \min \{a, c\}+b+d$ for $a, b, c, d \geq 0$. The third inequality follows from $\min \{a, b\} \leq \sqrt{a b}$ for $a, b \geq 0$ and

$$
\begin{equation*}
\frac{1}{B} \sum_{\ell=1}^{B} \operatorname{rank}\left(\hat{x}_{\text {stable }}\right)-\rho\left(\hat{x}_{\text {stable }}, \hat{x}_{\text {base }}^{(\ell)}\right)=\sum_{k=1}^{\operatorname{rank}\left(\hat{x}_{\text {stable }}\right)} \frac{1}{B} \sum_{\ell=1}^{B} 1-\left[\rho\left(x_{k}, \hat{x}_{\text {base }}^{(\ell)}\right)-\rho\left(x_{k-1}, \hat{x}_{\text {base }}^{(\ell)}\right)\right] \leq \alpha \operatorname{rank}\left(\hat{x}_{\text {stable }}\right) \tag{16}
\end{equation*}
$$

where $\left(x_{0}, x_{1}, \ldots, x_{\hat{k}}\right)$ is a sequence specifying a path from the least element x_{0} to $x_{\hat{k}}=\hat{x}_{\text {stable }}$ with rank $\left(\hat{x}_{\text {stable }}\right)=\hat{k}$. Thus, $\frac{1}{B} \sum_{\ell=1}^{B} \rho\left(\hat{x}_{\text {stable }}, \hat{x}_{\text {base }}^{(\ell)}\right) \geq(1-\alpha) \operatorname{rank}\left(\hat{x}_{\text {stable }}\right)$. As $\rho\left(\hat{x}_{\text {stable }}, \hat{x}_{\text {base }}^{(\ell)}\right) \leq \operatorname{rank}\left(\hat{x}_{\text {base }}^{(\ell)}\right)$, we can then conclude that $\mathbb{E}\left[\operatorname{rank}\left(\hat{x}_{\text {stable }}\right)\right] \leq$ $\frac{\mathbb{E}\left[\operatorname{rank}\left(\hat{x}_{\text {sub }}\right)\right]}{1-\alpha}$. Taking expectations and using the fact that the data across complementary bags is IID, we obtain:

$$
\mathrm{FD}\left(\hat{x}_{\text {stable }}, x^{\star}\right) \leq \mathbb{E}\left[\sqrt{\mathrm{FD}\left(\hat{x}_{\text {sub }}, x^{\star}\right)}\right]^{2}+\frac{2 \alpha}{1-\alpha} \mathbb{E}\left[\operatorname{rank}\left(\hat{x}_{\text {sub }}\right)\right]+\frac{2}{B} \sum_{\ell=1}^{B} \mathbb{E}\left[\kappa\left(\hat{x}_{\text {stable }}, x^{\star}, \hat{x}_{\text {base }}^{(\ell)}\right)\right] .
$$

It remains to bound $\frac{2}{B} \sum_{\ell=1}^{B} \mathbb{E}\left[\kappa\left(\hat{x}_{\text {stable }}, x^{\star}, \hat{x}_{\text {base }}^{(\ell)}\right)\right]$ for subspace selection and blind-source separation.

Subspace-selection: We will use the similarity valuation $\rho:=\rho_{\text {subspace }}$ in Eq. (3). Note that:

$$
\begin{align*}
\operatorname{rank}(x)-\rho(x, y)=\operatorname{trace}\left(\mathcal{P}_{x} \mathcal{P}_{y} \perp\right) & =\operatorname{trace}\left(\mathcal{P}_{x} \mathcal{P}_{z} \mathcal{P}_{y \perp} \mathcal{P}_{z}\right)+\operatorname{trace}\left(\mathcal{P}_{x} \mathcal{P}_{z} \perp \mathcal{P}_{y} \perp \mathcal{P}_{z} \perp\right) \\
& +\operatorname{trace}\left(\mathcal{P}_{x} \mathcal{P}_{z \perp} \mathcal{P}_{y \perp} \mathcal{P}_{z}\right)+\operatorname{trace}\left(\mathcal{P}_{x} \mathcal{P}_{z} \mathcal{P}_{y} \perp \mathcal{P}_{z \perp}\right) \\
& \leq \operatorname{trace}\left(\mathcal{P}_{y \perp} \mathcal{P}_{z}\right)+\operatorname{trace}\left(\mathcal{P}_{x} \mathcal{P}_{z} \perp\right)+\operatorname{trace}\left(\left[\mathcal{P}_{x}, \mathcal{P}_{z} \perp\right]\left[\mathcal{P}_{z}, \mathcal{P}_{y \perp}\right]\right) \tag{17}\\
& =\operatorname{rank}(z)-\rho(y, z)+\operatorname{rank}(x)-\rho(x, z)+\operatorname{trace}\left(\left[\mathcal{P}_{x}, \mathcal{P}_{z} \perp\right]\left[\mathcal{P}_{z}, \mathcal{P}_{y} \perp\right]\right) .
\end{align*}
$$

Here, for matrices $A, B \in \mathbb{R}^{p \times p},[A, B]=A B-B A$ represents the commutator. Furthermore, note that:

$$
\begin{align*}
\operatorname{trace}\left(\left[\mathcal{P}_{x}, \mathcal{P}_{z \perp}\right]\left[\mathcal{P}_{z}, \mathcal{P}_{y \perp}\right]\right) & \leq\left\|\left[\mathcal{P}_{x}, \mathcal{P}_{z^{\perp}}\right]\right\|_{\star}\left\|\left[\mathcal{P}_{z}, \mathcal{P}_{y \perp}\right]\right\|_{2} \tag{18}\\
& \leq 2 \sqrt{\operatorname{rank}(x)} \sqrt{\operatorname{rank}(x)-\rho(x, z)}\left\|\left[\mathcal{P}_{z}, \mathcal{P}_{y}\right]\right\|_{2}
\end{align*}
$$

Combining the bounds Eq. (17) and Eq. (18), we find that:

$$
\begin{aligned}
\operatorname{rank}(x)-\rho(x, y) & \leq \operatorname{rank}(z)-\rho(y, z)+\operatorname{rank}(x)-\rho(x, z)+2 \sqrt{\operatorname{rank}(x)} \sqrt{\operatorname{rank}(x)-\rho(x, z)}\left\|\left[\mathcal{P}_{z}, \mathcal{P}_{y}\right]\right\|_{2} \\
& \leq \operatorname{rank}(z)-\rho(y, z)+\operatorname{rank}(x)-\rho(x, z)+\sqrt{\operatorname{rank}(x)} \sqrt{\operatorname{rank}(x)-\rho(x, z)} .
\end{aligned}
$$

Here, the second inequality follows from the fact that for projection matrices A and $B,\|[A, B]\|_{2} \leq 1 / 2$. From this inequality, we conclude that in the subspace selection setting,

$$
\begin{aligned}
\frac{1}{B} \sum_{\ell=1}^{B} \kappa\left(\hat{x}_{\text {stable }}, x^{\star}, \hat{x}_{\text {base }}^{(\ell)}\right) & \leq \sqrt{\operatorname{rank}\left(\hat{x}_{\text {stable }}\right)} \frac{1}{B} \sum_{l=1}^{B} \sqrt{\operatorname{rank}\left(\hat{x}_{\text {stable }}\right)-\rho\left(\hat{x}_{\text {stable }}, \hat{x}_{\text {base }}^{(\ell)}\right)} \\
& \leq \sqrt{\operatorname{rank}\left(\hat{x}_{\text {stable }}\right)} \sqrt{\frac{1}{B} \sum_{l=1}^{B} \operatorname{rank}\left(\hat{x}_{\text {stable }}\right)-\rho\left(\hat{x}_{\text {stable }}, \hat{x}_{\text {base }}^{(\ell)}\right)} \\
& \leq \sqrt{\alpha} \operatorname{rank}\left(\hat{x}_{\text {stable }}\right) .
\end{aligned}
$$

Here, the second equality follows from Cauchy-Schwartz and the last inequality follows from the bound Eq. (16). Recalling that $\mathbb{E}\left[\operatorname{rank}\left(\hat{x}_{\text {stable }}\right)\right] \leq \frac{\mathbb{E}\left[\operatorname{rank}\left(\hat{x}_{\text {sub }}\right)\right]}{1-\alpha}$, we obtain the final bound:

$$
\mathrm{FD}\left(\hat{x}_{\text {stable }}, x^{\star}\right) \leq \mathbb{E}\left[\sqrt{\mathrm{FD}\left(\hat{x}_{\text {sub }}, x^{\star}\right)}\right]^{2}+\frac{2 \alpha+\sqrt{\alpha}}{1-\alpha} \mathbb{E}\left[\operatorname{rank}\left(\hat{x}_{\text {sub }}\right)\right] .
$$

Blind-source separation We will use the similarity valuation $\rho:=\rho_{\text {source-separation }}$ in Eq. (4). For simplicity of notation, associated with any element $z \in \mathcal{L}$, we consider a block-diagonal $p^{2} \times p^{2}$ projection matrix where each $p \times p$ block is a projection matrix of the subspace spanned by a vector in z. We denote this projection matrix \mathcal{P}_{z}. Then, $\rho(x, y)=\max _{\Pi \in \mathbb{S}_{\text {block }}^{p^{2}}} \operatorname{trace}\left(\mathcal{P}_{x} \Pi \mathcal{P}_{y} \Pi^{T}\right)$ where $\mathbb{S}_{\text {block }}^{p^{2}}$ is the space of $p^{2} \times p^{2}$ permutation matrices that are block-diagonal where each block is of size $p \times p$.

Note that:

$$
\begin{aligned}
\operatorname{rank}(x)-\rho(x, y)= & \min _{\Pi \in \mathbb{S}_{\text {block }}^{p^{2}}} \operatorname{trace}\left(\mathcal{P}_{x} \Pi \mathcal{P}_{y} \perp \Pi^{T}\right) \\
\leq & \min _{\tilde{\Pi} \in \mathbb{S}_{\text {block }}^{p^{2}}} \min _{\Pi \in \mathbb{S}_{\text {block }}^{p^{2}}} \operatorname{trace}\left(\Pi \mathcal{P}_{y} \perp \Pi^{T} \tilde{\Pi} \mathcal{P}_{z} \tilde{\Pi}^{T}\right)+\operatorname{trace}\left(\mathcal{P}_{x} \tilde{\Pi} \mathcal{P}_{z} \perp \tilde{\Pi}^{T}\right) \\
& \quad+2 \sqrt{\operatorname{rank}(x)} \sqrt{\operatorname{trace}\left(\mathcal{P}_{x} \tilde{\Pi} \mathcal{P}_{z} \perp \tilde{\Pi}^{T}\right)}\left\|\left[\tilde{\Pi} \mathcal{P}_{z} \tilde{\Pi}^{T}, \Pi \mathcal{P}_{y} \Pi^{T}\right]\right\|_{2} \\
\leq & \min _{\tilde{\Pi} \in \mathbb{S}_{\text {block }}^{p^{2}}} \operatorname{trace}\left(\mathcal{P}_{x} \tilde{\Pi} \mathcal{P}_{z} \perp \tilde{\Pi}^{T}\right)+2 \sqrt{\operatorname{rank}(x)} \sqrt{\operatorname{trace}\left(\mathcal{P}_{x} \tilde{\Pi} \mathcal{P}_{z} \perp \tilde{\Pi}^{T}\right)} \max _{\bar{\Pi}, \tilde{\tilde{\Pi}} \in \mathbb{S}_{\text {block }}^{p^{2}}}\left\|\left[\tilde{\tilde{\Pi}} \mathcal{P}_{z} \tilde{\tilde{\Pi}}^{T}, \bar{\Pi} \mathcal{P}_{y} \bar{\Pi}^{T}\right]\right\|_{2} \\
& \quad \max _{\tilde{\Pi} \in \mathbb{S}_{\text {block }}^{p}} \min _{\Pi \in \mathbb{S}_{\text {block }}^{p}} \operatorname{trace}\left(\Pi\left(\operatorname{Id}-\mathcal{P}_{y}\right) \Pi^{T} \tilde{\Pi} \mathcal{P}_{z} \tilde{\Pi}^{T}\right) \\
= & {[\operatorname{rank}(x)-\rho(x, z]+[\operatorname{rank}(z)-\rho(z, y)]} \\
+ & 2 \sqrt{\operatorname{rank}(x)} \sqrt{\operatorname{rank}(x)-\rho(x, z)} \max _{\bar{\Pi}, \tilde{\Pi} \in \mathbb{S}_{\text {block }}^{p^{2}}}\left\|\left[\tilde{\Pi} \mathcal{P}_{z} \overline{\tilde{\Pi}}^{T}, \bar{\Pi} \mathcal{P}_{y} \bar{\Pi}^{T}\right]\right\|_{2} .
\end{aligned}
$$

Here, the first inequality follows from a similar analysis as arriving to Eq. (17) in subspace selection. The second inequality follows from the fact that $\min _{a, b} f(a)+g(b) \leq \min _{a} f(a)+\max _{b} f(b)$. Note that projection matrices $A, B,[A, B] \leq \frac{1}{2}$. Then, following the same exact reasoning as the subspace case, we have that in the blind-source separation setting $\frac{1}{B} \sum_{\ell=1}^{B} \kappa\left(\hat{x}_{\text {stable }}, x^{\star}, \hat{x}_{\text {base }}^{(\ell)}\right) \leq$ $\sqrt{\alpha} \operatorname{rank}\left(\hat{x}_{\text {sub }}\right)$. The result follows subsequently.

V. Specializing Bound Eq. (8) for Different Problem Settings

V.I. Partial Ranking. Let $S=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ be the set of p elements. We use the similarity valuation $\rho:=\rho_{\text {meet }}$ in Eq. (1) of the main paper.
V.I.1. Characterizing \mathcal{S} for Partial Ranking. We construct a set \mathcal{S} satisfying the properties in Definition 3 of the main paper. Specifically, we let:

$$
\mathcal{S}=\left\{\left(a_{i}, a_{j}\right): i \neq j\right\}
$$

with $\left|\mathcal{S}_{1}\right|=p(p-1)$ and $\mathcal{S}_{k}=\emptyset$ for every $k \geq 2$.
We will show that set \mathcal{S} as constructed above satisfies Definition 3. First, consider any covering pair $\left(u^{\prime}, v^{\prime}\right) \notin \mathcal{S}$. Here, u^{\prime} and v^{\prime} are relations and $v^{\prime}=u^{\prime} \cup\left(a_{i}, a_{j}\right)$ for some $i \neq j$. Then, for any $z \in \mathcal{L}$, it is easy to see that

$$
\rho\left(v^{\prime}, z\right)-\rho\left(u^{\prime}, z\right)=\mathbb{I}\left[\left(a_{i}, a_{j}\right) \in z\right]=\rho(v, z)-\rho(u, z),
$$

where $v=\left\{\left(a_{i}, a_{j}\right)\right\}$ and $u=\emptyset$. Clearly, $\operatorname{rank}(v) \leq \operatorname{rank}\left(v^{\prime}\right)$.
To show the second property, consider covering pairs $\left(\left\{\left(a_{i}, a_{j}\right)\right\}, \emptyset\right) \in \mathcal{S}$ and $\left(\left\{\left(a_{k}, a_{l}\right)\right\}, \emptyset\right) \in \mathcal{S}$. By construction of the set $\mathcal{S},\left(a_{i}, a_{j}\right) \neq\left(a_{k}, a_{l}\right)$. Let $z=\left\{\left(a_{i}, a_{j}\right)\right\}$. Then, it is straightforward to see that $\rho\left(\left\{\left(a_{i}, a_{j}\right)\right\}, z\right)-\rho(\emptyset, z)=1$ but $\rho\left(\left\{\left(a_{k}, a_{l}\right)\right\}, z\right)-\rho(\emptyset, z)=0$.
V.I.2. Characterizing $c_{\mathcal{L}}(x, y)$ for Covering Pair (x, y). Since for any $z, \rho(y, z)-\rho(x, z)=\mathbb{I}\left(\left(a_{i}, a_{j}\right) \in z\right)$ for some $\left(a_{i}, a_{j}\right)$. Thus, $c_{\mathcal{L}}(x, y)=1$.
V.I.3. Refined False Discovery Bound for Partial Ranking. Let $\hat{x}_{\text {stable }}$ be output of Algorithm 1 with $\Psi=\Psi_{\text {stable }}$. Then:

$$
\mathbb{E}\left[\mathrm{FD}\left(\hat{x}_{\text {stable }}, x^{\star}\right)\right] \leq \frac{q_{1}^{2}}{(1-2 \alpha) p(p-1)},
$$

where

$$
q_{1}=\sum_{i \neq j} \mathbb{I}\left[\left(a_{i}, a_{j}\right) \in \hat{x}_{\mathrm{sub}}\right] .
$$

Here, $\hat{x}_{\text {sub }}$ is the estimated partial ranking from supplying $n / 2$ samples to the base estimator. We can use the following data-driven approximation for $q_{1}: q_{1} \approx \frac{1}{B} \sum_{\ell=1}^{B} \sum_{i \neq j} \mathbb{I}\left[\left(a_{i}, a_{j}\right) \in \hat{x}_{\text {base }}\left(\mathcal{D}^{(\ell)}\right)\right]$ with $\hat{x}_{\text {base }}\left(\mathcal{D}^{(\ell)}\right), l=1,2, \ldots, B$ representing the estimates from subsampling.
V.II. Total Ranking. Let $S=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ be the set of p elements. Let $\pi_{\text {null }}\left(a_{i}\right)=i$ for every $i=1,2, \ldots, p$. We use the similarity valuation $\rho:=\rho_{\text {total-ranking }}$ in Eq. (2) of the main paper. As each element in the poset corresponds to a function $\pi: S \rightarrow S$, we will use this functional notation throughout.
V.II.1. Characterizing \mathcal{S} for Total Ranking. We construct a set \mathcal{S} satisfying the properties in Definition 3 of the main paper. Initialize $\mathcal{S}=\emptyset$. Then, for every relation $\left(a_{i}, a_{j}\right)$ with $i<j$, we augment \mathcal{S} as follows:

$$
\mathcal{S}=\mathcal{S} \cup\left(\pi_{1}, \pi_{2}\right),
$$

where π_{1}, π_{2} are covering pairs. Here, π_{2} is any rank $j-i$ element in the poset with the relation $\left(a_{i}, a_{j}\right)$ in its corresponding inversion set. Furthermore, we let π_{1} be a rank $j-i-1$ element that is covered by π_{2} and does not contain $\left(a_{i}, a_{j}\right)$ in its inversion set. Recalling that $\mathcal{S}_{k}=\left\{\left(\pi_{1}, \pi_{2}\right) \in \mathcal{S}, \operatorname{rank}\left(\pi_{2}\right)=k\right\}$, we have that for every $k=1,2, \ldots, p-1$

$$
\left|\mathcal{S}_{k}\right|=p-k
$$

We will show that set \mathcal{S} as constructed above satisfies Definition 3. First, consider any covering pair $\left(\tilde{\pi}_{1}, \tilde{\pi}_{2}\right) \notin \mathcal{S}$. Then by definition, the corresponding inversion sets are nested, i.e. $\operatorname{inv}\left(\tilde{\pi}_{2} ; \pi_{\text {null }}\right) \supseteq \operatorname{inv}\left(\tilde{\pi}_{1} ; \pi_{\text {null }}\right)$ with the difference being a single relation. We will denote this relation by $\left(a_{i}, a_{j}\right)$ with $j>i$. Consider the covering pair $\left(\pi_{1}, \pi_{2}\right) \in \mathcal{S}$ where $\left(a_{i}, a_{j}\right)$ is in the inversion set of π_{2} but not in the inversion set of π_{1}. Then, for any π, we have that

$$
\rho\left(\pi_{2}, \pi\right)-\rho\left(\pi_{1}, \pi\right)=\mathbb{I}\left(\left(a_{i}, a_{j}\right) \in \operatorname{inv}\left(\pi ; \pi_{\text {null }}\right)\right)=\rho\left(\tilde{\pi}_{2}, \pi\right)-\rho\left(\tilde{\pi}_{1}, \pi\right) .
$$

Furthermore, it is straightforward to check that $\operatorname{rank}\left(\tilde{\pi}_{2}\right) \geq j-i=\operatorname{rank}\left(\pi_{2}\right)$. We have thus shown that \mathcal{S} satisfies the first property in Definition 3.

To show the second property, consider covering pairs $\left(\pi_{1}, \pi_{2}\right) \in \mathcal{S}$ where the difference between the two inversion sets is the relation $\left(a_{i}, a_{j}\right)$. Let $\left(\pi_{3}, \pi_{4}\right) \in \mathcal{S}$ where the difference between the two inversion sets is the relation $\left(a_{k}, a_{l}\right)$. By construction of the set $\mathcal{S},\left(a_{i}, a_{j}\right) \neq\left(a_{k}, a_{l}\right)$. Let π be a permutation with $\left(a_{i}, a_{j}\right)$ in its inversion set. Then, as desired,

$$
\rho\left(\pi_{2}, \pi\right)-\rho\left(\pi_{1}, \pi\right)=\mathbb{I}\left(\left(a_{i}, a_{j}\right) \in \operatorname{inv}\left(\pi ; \pi_{\text {null }}\right)\right) \neq \rho\left(\pi_{4}, \pi\right)-\rho\left(\pi_{3}, \pi\right) .
$$

V.II.2. Characterizing $c_{\mathcal{L}}\left(\pi_{1}, \pi_{2}\right)$ for Covering Pair $\left(\pi_{1}, \pi_{2}\right)$. Since for any $\pi, \rho\left(\pi_{2}, \pi\right)-\rho\left(\pi_{1}, \pi\right)=\mathbb{I}\left(\left(a_{i}, a_{j}\right) \in \operatorname{inv}\left(\pi ; \pi_{\text {null }}\right)\right)$ for some pair of elements $\left(a_{i}, a_{j}\right)$, then $c_{\mathcal{L}}\left(\pi_{1}, \pi_{2}\right)=1$.
V.II.3. Refined False Discovery Bound for Total Ranking. Let $\hat{\pi}_{\text {stable }}$ be output of Algorithm 1 with $\Psi=\Psi_{\text {stable }}$. Then:

$$
\mathbb{E}\left[\mathrm{FD}\left(\hat{\pi}_{\text {stable }}, \pi^{\star}\right)\right] \leq \sum_{k=1}^{p-1} \frac{q_{k}^{2}}{(1-2 \alpha)(p-k)},
$$

where

$$
q_{k}=\sum_{\left(\pi_{1}, \pi_{2}\right) \in \mathcal{S}_{k}} \mathbb{E}\left[\rho\left(\pi_{2}, \hat{\pi}_{\text {sub }}\right)-\rho\left(\pi_{1}, \hat{\pi}_{\text {sub }}\right)\right]=\sum_{(i, j), j-i=k}\left[\mathbb{I}\left[\left(a_{i}, a_{j}\right) \in \operatorname{inv}\left(\hat{\pi}_{\text {sub }} ; \pi_{\text {null }}\right)\right] .\right.
$$

Here, $\hat{\pi}_{\text {sub }}$ represents ranking from supplying $n / 2$ samples to the base estimator. We can use the following data-driven approximation for $q_{k}: q_{k} \approx \frac{1}{B} \sum_{(i, j), j-i=k} \sum_{\ell=1}^{B}\left[\mathbb{I}\left[\left(a_{i}, a_{j}\right) \in \operatorname{inv}\left(\hat{\pi}_{\text {base }}\left(\mathcal{D}^{(\ell)}\right) ; \pi_{\text {null }}\right)\right]\right]$, where $\hat{\pi}_{\text {base }}\left(\mathcal{D}^{(\ell)}\right)$ represents the total ranking obtained by supplying the base estimator on dataset $\mathcal{D}^{(\ell)}$.
V.III. Clustering. We have a collection of p items $\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ that we wish to cluster. We let $x_{0}=\left\{\left\{a_{1}\right\},\left\{a_{2}\right\}, \ldots,\left\{a_{p}\right\}\right\}$ be the least element. As described in the main paper, will use the similarity valuation $\rho:=\rho_{\text {meet }}$ defined in Eq. (1) of the main paper. Since the clustering poset is meet semi-lattice, ρ computes the rank of the meet of two elements; in this setting, the meet $x \wedge z$ of $x=\left\{G_{1}, \ldots, G_{q}\right\}$ and $z=\left\{\tilde{G}_{1}, \ldots, \tilde{G}_{s}\right\}$ is

$$
x \wedge z=\left\{G_{i} \cap \tilde{G}_{j}: G_{i} \cap \tilde{G}_{j} \neq \emptyset\right\} .
$$

Subsequently, $\rho(x, z)=\operatorname{rank}(x \wedge y)$ is $p-\#$ groups in $x \wedge z$, which can be equivalently expressed as:

$$
\rho(x, z)=\sum_{i, j:\left|G_{i} \cap \tilde{G}_{j}\right| \neq \emptyset}\left|G_{i} \cap \tilde{G}_{j}\right|-1 .
$$

For sets $G_{1}, G_{2} \subseteq\{1,2, \ldots, p\}$ with $G_{1} \cap G_{2}=\emptyset$, we define:

$$
\mathcal{R}_{G_{1}, G_{2}}:=\left\{\left\{a_{1}\right\},\left\{a_{2}\right\}, \ldots,\left\{a_{p}\right\}\right\} \backslash\left\{\left\{a_{i}\right\}: a_{i} \in G_{1} \cup G_{2}\right\} .
$$

V.III.1. Characterizing \mathcal{S} for Clustering. We construct a set \mathcal{S} satisfying the properties in Definition 3. Initialize $\mathcal{S}=\emptyset$. Then, for every $k=1,2, \ldots, p-1$ and pairs of groups of variables $G_{1} \subseteq\left\{a_{1}, \ldots, a_{p}\right\}$ and $G_{2} \subseteq\left\{a_{1}, \ldots, a_{p}\right\}$ with $\left|G_{1}\right|+\left|G_{2}\right|=k+1$ and $G_{1} \cap G_{2}=\emptyset$, we generate covering pairs (x, y) with $y=\left\{G_{1} \cup G_{2}, \mathcal{R}_{G_{1}, G_{2}}\right\}$ and $x=\left\{G_{1}, G_{2}, \mathcal{R}_{G_{1}, G_{2}}\right\}$, and let

$$
S=S \cup(x, y)
$$

Recalling that $\mathcal{S}_{k}=\{(x, y) \in \mathcal{S}, \operatorname{rank}(y)=k\}$, it is straightforward to check that for every $k=1,2, \ldots, p-1$

$$
\left|\mathcal{S}_{k}\right|=\binom{p}{k+1} \sum_{\ell=1}^{k}\binom{k+1}{l}
$$

Here, the terms $\binom{p}{k+1}$ counts the number of possible items in $G_{1} \cup G_{2}$ and the term $\sum_{\ell=1}^{k+1}\binom{k+1}{l}$ counts the number of possible configurations of the group G_{2}. We will show that the constructed set \mathcal{S} satisfies Definition 3 of the main paper. Our analysis is based on the following lemma.
Lemma 10. Consider the covering pairs (x, y) with $x=\left\{G_{1}, G_{2}, \ldots, G_{q}\right\}$ and $y=\left\{G_{1} \cup G_{2}, G_{3}, \ldots, G_{q}\right\}$ where $G_{i} \subseteq$ $\{1,2, \ldots, p x\}$ and $G_{i} \cap G_{j}=\emptyset$ for every $i \neq j$. Let (\tilde{x}, \tilde{y}) be covering pairs with $\tilde{y}=\left\{G_{1} \cup G_{2}, \mathcal{R}_{G_{1}, G_{2}}\right\}$ and $\tilde{x}=\left\{G_{1}, G_{2}, \mathcal{R}_{G_{1}, G_{2}}\right\}$. Then, for every $z \in \mathcal{L}, \rho(y, z)-\rho(x, z)=\rho(\tilde{y}, z)-\rho(\tilde{x}, z)$.
Proof of Lemma 10. Let $z=\left\{\tilde{G}_{1}, \ldots, \tilde{G}_{s}\right\}$ with $\tilde{G}_{i} \subseteq\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ and $\tilde{G}_{i} \cap \tilde{G}_{j}=\emptyset$ for every $i \neq j$. Then:

$$
\rho(y, z)=\sum_{j:\left(G_{1} \cup G_{2}\right) \cap \tilde{G}_{j} \neq \emptyset}\left|\left(G_{1} \cup G_{2}\right) \cap \tilde{G}_{j}\right|-1+\sum_{i \geq 3, j: G_{i} \cap \tilde{G}_{j} \neq \emptyset}\left|G_{i} \cap \tilde{G}_{j}\right|-1,
$$

and

$$
\rho(x, z)=\sum_{j: G_{1} \cap \tilde{G}_{j} \neq \emptyset}\left|G_{1} \cap \tilde{G}_{j}\right|-1+\sum_{j: G_{2} \cap \tilde{G}_{j} \neq \emptyset}\left|G_{2} \cap \tilde{G}_{j}\right|-1+\sum_{i \geq 3, j: G_{i} \cap \tilde{G}_{j} \neq \emptyset}\left|G_{i} \cap \tilde{G}_{j}\right|-1 .
$$

Since $\mathcal{R}_{G_{1}, G_{2}}$ consists of groups of size one, we have that:

$$
\rho(\tilde{y}, z)=\sum_{j:\left(G_{1} \cup G_{2}\right) \cap \tilde{G}_{j} \neq \emptyset}\left|\left(G_{1} \cup G_{2}\right) \cap \tilde{G}_{j}\right|-1
$$

and

$$
\rho(\tilde{x}, z)=\sum_{j: G_{1} \cap \tilde{G}_{j} \neq \emptyset}\left|G_{1} \cap \tilde{G}_{j}\right|-1+\sum_{j: G_{2} \cap \tilde{G}_{j} \neq \emptyset}\left|G_{2} \cap \tilde{G}_{j}\right|-1 .
$$

We thus can see that $\rho(y, z)-\rho(x, z)=\rho(\tilde{y}, z)-\rho(\tilde{x}, z)$.
Showing \mathcal{S} satisfies Definition 3 With Lemma 10 at hand, we show that out constructed \mathcal{S} satisfies Definition 3 of the main paper. We start with the first property. Consider any $\left(u^{\prime}, v^{\prime}\right) \subseteq \mathcal{L}$. Without loss of generality, we take $v^{\prime}=\left\{G_{1} \cup G_{2}, G_{3}, \ldots, G_{q}\right\}$ and $u^{\prime}=\left\{G_{1}, G_{2}, \ldots, G_{q}\right\}$. We let $v=\left\{G_{1} \cup G_{2}, \mathcal{R}_{G_{1}, G_{2}}\right\}$ and $u=\left\{G_{1}, G_{2}, \mathcal{R}_{G_{1}, G_{2}}\right\}$. Then, according to Lemma 10, we have that $\rho\left(v^{\prime}, z\right)-\rho\left(u^{\prime}, z\right)=\rho(v, z)-\rho(u, z)$. Furthermore, since $\operatorname{rank}(x)=p-\#$ groups in x, we have that $\operatorname{rank}(v) \leq \operatorname{rank}\left(v^{\prime}\right)$. Thus, the first property of \mathcal{S} is satisfied. We demonstrate the second property. Consider any $(u, v) \in \mathcal{S}$ and $\left(u^{\prime}, v^{\prime}\right) \in \mathcal{S}$ that are different. Let $u=\left\{G_{1}, G_{2}, \mathcal{R}_{G_{1}, G_{2}}\right\}$ and $v=\left\{G_{1} \cup G_{2}, \mathcal{R}_{G_{1}, G_{2}}\right\}$. Additionally, let $u^{\prime}=\left\{G_{1}^{\prime}, G_{2}^{\prime}, \mathcal{R}_{G_{1}^{\prime}, G_{2}^{\prime}}\right\}$ and $v^{\prime}=\left\{G_{1}^{\prime} \cup G_{2}^{\prime}, \mathcal{R}_{G_{1}^{\prime}, G_{2}^{\prime}}\right\}$. Since the covering pairs (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ are different, there must exist two items a_{i}, a_{j} such that either $\left(a_{i}, a_{j}\right)$ are grouped together in v but are not together in u or (a_{i}, a_{j}) are grouped together in v^{\prime} but are not together in u^{\prime}. Let $z=\left\{\left\{a_{i}, a_{j}\right\}, \mathcal{R}_{\left\{a_{i}\right\},\left\{a_{j}\right\}}\right\}$. Since $\rho(v, z)-\rho(u, z)=\mathbb{I}\left[\left(a_{i}, a_{j}\right)\right.$ grouped together in v but not in $\left.u\right]$ and $\rho\left(v^{\prime}, z\right)-\rho\left(u^{\prime}, z\right)=\mathbb{I}\left[\left(a_{i}, a_{j}\right)\right.$ grouped together in v^{\prime} but not in $\left.u^{\prime}\right]$, we have that $\rho(v, z)-\rho(u, z) \neq \rho\left(v^{\prime}, z\right)-\rho\left(u^{\prime}, z\right)$.
V.III.2. Characterizing $c_{\mathcal{L}}(u, v)$ for Covering Pair (u, v).

Lemma 11. Let $v=\left\{G_{1} \cup G_{2}, \mathcal{R}_{G_{1}, G_{2}}\right\}$ and $u=\left\{G_{1}, G_{2}, \mathcal{R}_{G_{1}, G_{2}}\right\}$ be a covering pair $(u, v) \in \mathcal{S}$. Then, c/ $(u, v)=$ $\min \left\{\left|G_{1}\right|,\left|G_{2}\right|\right\}$.
Proof of Lemma 11. Let $z=\left\{\tilde{G}_{1}, \ldots, \tilde{G}_{q}\right\}$. Then, from proof of Lemma 10, we have that:

$$
\rho(v, z)-\rho(u, z)=\left[\sum_{j:\left(G_{1} \cup G_{2}\right) \cap \tilde{G}_{j} \neq \emptyset}\left|\left(G_{1} \cup G_{2}\right) \cap \tilde{G}_{j}\right|-1\right]-\left[\sum_{j: G_{1} \cap \tilde{G}_{j} \neq \emptyset}\left|G_{1} \cap \tilde{G}_{j}\right|-1\right]-\left[\sum_{j: G_{2} \cap \tilde{G}_{j} \neq \emptyset}\left|G_{2} \cap \tilde{G}_{j}\right|-1\right]
$$

Let $I_{1}:=\left\{j: \tilde{G}_{j} \cap G_{1} \neq \emptyset\right\}$ and $I_{2}:=\left\{j: \tilde{G}_{j} \cap G_{2} \neq \emptyset\right\}$. Then,

$$
\rho(v, z)-\rho(u, z)=\left[\sum_{j \in I_{1} \cup I_{2}}\left|\left(G_{1} \cup G_{2}\right) \cap \tilde{G}_{j}\right|-1\right]-\left[\sum_{j \in I_{1}}\left|G_{1} \cap \tilde{G}_{j}\right|-1\right]-\left[\sum_{j \in I_{2}}\left|G_{2} \cap \tilde{G}_{j}\right|-1\right]
$$

Simple manipulations yield:

$$
\rho(v, z)-\rho(u, z)=\left[\sum_{j \in I_{1} \cap I_{2}}\left|\left(G_{1} \cup G_{2}\right) \cap \tilde{G}_{j}\right|-1\right]-\left[\sum_{j \in I_{1} \cap I_{2}}\left|G_{1} \cap \tilde{G}_{j}\right|-1\right]-\left[\sum_{j \in I_{1} \cap I_{2}}\left|G_{2} \cap \tilde{G}_{j}\right|-1\right]
$$

Clearly, if $I_{1} \cap I_{2}=\emptyset$, then $\rho(v, z)-\rho(u, z)=0$. Suppose $I_{1} \cap I_{2} \neq \emptyset$. Then,

$$
\rho(v, z)-\rho(u, z)=\left|I_{1} \cap I_{2}\right|+\left[\sum_{j \in I_{1} \cap I_{2}}\left|\left(G_{1} \cup G_{2}\right) \cap \tilde{G}_{j}\right|-\left|G_{1} \cap \tilde{G}_{j}\right|-\left|G_{2} \cap \tilde{G}_{j}\right|\right]=\left|I_{1} \cap I_{2}\right|
$$

Notice that $\left|I_{1} \cap I_{2}\right| \leq \min \left\{\left|G_{1}\right|,\left|G_{2}\right|\right\}$. Then, the upper bound can be achieved by for example setting $z=\left\{N,\left\{\left\{a_{1}\right\},\left\{a_{2}\right\}, \ldots,\left\{a_{p}\right\} \backslash\right.\right.$ $N\}$ with $N=\left\{\left(a_{i}, a_{j}\right): a_{i} \in G_{1}, a_{j} \in G_{2}\right\}$.
V.III.3. Refined False Discovery Bound for Clustering. Let $\hat{x}_{\text {stable }}$ be output of Algorithm 1 with $\Psi=\Psi_{\text {stable }}$. Then:

$$
\mathbb{E}\left[\mathrm{FD}\left(\hat{x}_{\text {stable }}, x^{\star}\right)\right] \leq \sum_{k=1}^{p-1} \frac{q_{k}^{2}}{(1-2 \alpha)\binom{p}{k+1} \sum_{\ell=1}^{k}\binom{k+1}{l}}
$$

where,

$$
\begin{aligned}
q_{k} & =\sum_{\substack{(u, v) \in \mathcal{S}_{k}}} \frac{\mathbb{E}\left[\rho\left(v, \hat{x}_{\text {sub }}\right)-\rho\left(u, \hat{x}_{\text {sub }}\right)\right]}{c(u, v)} \\
& =\sum_{\substack{G_{1} \subseteq\left\{a_{1}, \ldots, a_{p}\right\}, G_{2} \subseteq\left\{a_{1}, \ldots, a_{p}\right\} \\
G_{1} \cap G_{2}=\emptyset ;\left|G_{1}\right|+\left|G_{2}\right|=k+1}} \frac{\mathbb{E}\left[\# \text { groups } \hat{G}_{j} \text { in } \hat{x}_{\text {sub }} \text { satisfying } \hat{G}_{j} \cap G_{1} \neq \emptyset \text { and } \hat{G}_{j} \cap G_{2} \neq \emptyset\right]}{\min \left\{\left|G_{1}\right|,\left|G_{2}\right|\right\}} .
\end{aligned}
$$

Here, $\hat{x}_{\text {sub }}$ represents clustering from supplying $n / 2$ samples to the base estimator. We will use the following data-driven approximation to estimate q_{k}

$$
q_{k} \approx \frac{1}{B} \sum_{\substack{G_{1} \subseteq\left\{a_{1}, \ldots, a_{p}\right\}, G_{2} \subseteq\left\{a_{1}, \ldots, a_{p}\right\} \\ G_{1} \cap G_{2}=\emptyset ;\left|G_{1}\right|+\left|G_{2}\right|=k+1}} \sum_{\ell=1}^{B} \frac{\left.\# \text { groups } \hat{G}_{j} \text { in } \hat{x}_{\text {base }}\left(\mathcal{D}^{(\ell)}\right) \text { satisfying } \hat{G}_{j} \cap G_{1} \neq \emptyset \text { and } \hat{G}_{j} \cap G_{2} \neq \emptyset\right]}{\min \left\{\left|G_{1}\right|,\left|G_{2}\right|\right\}}
$$

with $\hat{x}_{\text {base }}\left(\mathcal{D}^{(\ell)}\right)$ represents the partition obtained from supplying $\mathcal{D}^{(\ell)}$ to the base estimator.
V.IV. Causal Structure Learning. Throughout, we consider covering pairs $\left(\mathcal{C}_{u}, \mathcal{C}_{v}\right)$ where each connected component in the skeletons of $\mathcal{C}_{u}, \mathcal{C}_{v}$ have a diameter at most two. We denote this set by \mathcal{T}. Note that for any covering pair $\left(\mathcal{C}_{u}, \mathcal{C}_{v}\right) \in \mathcal{T}, \mathcal{C}_{v}$ is a polytree. Throughout, we will use the similarity valuation $\rho:=\rho_{\text {meet }}$. Our analysis in this section will build on the following result.

Lemma 12. Let \mathcal{C}_{u} and \mathcal{C}_{v} be two $C P D A G s$ that are polytrees with $\mathcal{C}_{u} \preceq \mathcal{C}_{v}$. Then, the following statements hold:
(a) for any pairs of nodes \mathcal{E}, the set of DAGs that result from removing edges among pairs \mathcal{E} in any $D A G \mathcal{G} v$ form a $M a r k o v$ equivalence class.
(b) for every $D A G \mathcal{G}_{v} \in \mathcal{C}_{v}$, there exists a $D A G \mathcal{G}_{u} \in \mathcal{C}_{u}$ such that \mathcal{G}_{u} is a directed subgraph of \mathcal{G}_{v}.

Proof of Lemma 12. We first prove part (a). By the polytree assumption, it follows that for any DAG \mathcal{G}_{v} in the CPDAG \mathcal{C}_{v}, removing the edges among pairs in \mathcal{E} does not create any v-structures, and removes the same (potentially empty) v-structures. That means that the collection of DAGs obtained by taking any DAG in \mathcal{C}_{v} and removing the edges between the pairs of nodes \mathcal{E} will have the same skeleton and same v-structures, and are thus in the same Markov equivalence class.

We next prove part (b). Let (i, j) be the pair of nodes that are connected in \mathcal{C}_{v} but not in \mathcal{C}_{u}. Recall that $\mathcal{C}_{u} \preceq \mathcal{C}_{v}$ implies there exists a DAG $\mathcal{G}_{u} \in \mathcal{C}_{u}$ and a DAG $\mathcal{G}_{v} \in \mathcal{C}_{v}$ where \mathcal{G}_{u} is a subgraph of \mathcal{G}_{v}, where \mathcal{G}_{u} does not have the edge among pairs (i, j). Appealing to the result in part (a), we have that removing the edge (i, j) from any other DAG in \mathcal{C}_{v} results in a DAG in the same equivalence class, which is \mathcal{C}_{u}.
V.IV.1. Characterizing \mathcal{S} for Causal Structure Learning. We construct the set \mathcal{S} as follows. Initialize $\mathcal{S}=\emptyset$. For every reference node, and $k=1, \ldots, p-1$, let \mathcal{C}_{y} be a CPDAG generated with k edges, where every edge is between the reference node and another node; no other edges can be added without violating the condition that the largest undirected path has size less than or equal to two. A consequence of Lemma 12 is that there are k CPDAGs $\mathcal{C}_{x_{1}}, \ldots, \mathcal{C}_{x_{k}}$ that form a covering pair with \mathcal{C}_{y}. We then let

$$
\mathcal{S}=\mathcal{S} \cup\left(\mathcal{C}_{x_{i}}, \mathcal{C}_{y}\right)
$$

for every $i=1,2, \ldots, k$. Recall that $\mathcal{S}_{k}:=\left\{\left(\mathcal{C}_{x}, \mathcal{C}_{y}\right) \in \mathcal{S}, \operatorname{rank}\left(\mathcal{C}_{y}\right)=k\right\}$. Then,

$$
\left|\mathcal{S}_{k}\right|=p\binom{p-1}{k} \sum_{i \in\{0,2 \ldots, k\}}\binom{k}{i}
$$

The result above follows from noting that for every reference node and k other nodes, there are $\sum_{i \in\{0,2 \ldots, k\}}\binom{k}{i}$ possible CPDAGs that are polytrees can formed by connecting the k nodes to the reference node; the factor $p\binom{p-1}{k}$ comes from p total possible reference nodes and $\binom{p-1}{k}$ possible set of k nodes to connect to the reference node.

We will show that the constructed set \mathcal{S} satisfies Definition 3 of the main paper. Our analysis is based on the following lemma.
Lemma 13. Let $\mathcal{C}_{\tilde{y}}$ be a CPDAG that contains m disconnected subgraphs (both directed and undirected). Let $\mathcal{C}_{\tilde{y}_{i}}$ be each disconnected subgraph for $i=1,2, \ldots, m$. Then, for any $\operatorname{CPDAG\mathcal {C}} \mathcal{C}_{z}$,

$$
\rho\left(\mathcal{C}_{\tilde{y}}, \mathcal{C}_{z}\right)=\sum_{i=1}^{m} \rho\left(\mathcal{C}_{\tilde{\mathcal{y}}_{i}}, \mathcal{C}_{z}\right) .
$$

Proof. We will first show that $\rho\left(\mathcal{C}_{\tilde{y}}, \mathcal{C}_{z}\right) \leq \sum_{i=1}^{m} \rho\left(\mathcal{C}_{\tilde{y_{i}}}, \mathcal{C}_{z}\right)$. Let $\mathcal{C}_{\tilde{x}} \in \operatorname{argmax}_{\mathcal{C}_{x} \preceq \mathcal{C}_{\tilde{y}}, \mathcal{C}_{x} \preceq \mathcal{C}_{z}} \operatorname{rank}\left(\mathcal{C}_{x}\right)$. By definition, $\mathcal{C}_{x} \preceq \mathcal{C}_{\tilde{y}}$ if there is a DAG \mathcal{G}_{x} in \mathcal{C}_{x} and a DAG $\mathcal{G}_{\tilde{y}}$ in $\mathcal{C}_{\tilde{y}}$ such that \mathcal{G}_{x} is a subgraph of $\mathcal{G}_{\tilde{y}}$. Since $\mathcal{G}_{\tilde{y}}$ has disconnected components, so must \mathcal{G}_{x}. We let $\mathcal{C}_{\tilde{x}_{i}}$ be the subgraphs of $\mathcal{C}_{\tilde{x}}$ where every subgraph $\mathcal{C}_{\tilde{x}_{i}}$ only contains edges among nodes that are connected (to other nodes) in the graph $\mathcal{C}_{\tilde{y}_{i}}$. By construction, $\mathcal{C}_{\tilde{x}_{i}} \preceq \mathcal{C}_{\tilde{y}_{i}}, \operatorname{rank}\left(\mathcal{C}_{\tilde{x}}\right)=\sum_{i=1}^{m} \operatorname{rank}\left(\mathcal{C}_{\tilde{x}_{i}}\right)$, and $\mathcal{C}_{\tilde{x}_{i}} \preceq \mathcal{C}_{z}$. Thus, $\operatorname{rank}\left(\mathcal{C}_{\tilde{x}_{i}}\right) \leq \rho\left(\mathcal{C}_{\tilde{y}_{i}}, \mathcal{C}_{z}\right)$. Then, we can conclude that

$$
\sum_{i=1}^{m} \rho\left(\mathcal{C}_{\tilde{y}_{i}}, \mathcal{C}_{z}\right) \geq \sum_{i=1}^{m} \operatorname{rank}\left(\mathcal{C}_{\tilde{x}_{i}}\right)=\operatorname{rank}\left(\mathcal{C}_{\tilde{x}}\right)=\rho\left(\mathcal{C}_{\tilde{y}}, \mathcal{C}_{z}\right)
$$

Now we will show that $\rho\left(\mathcal{C}_{\tilde{y}}, \mathcal{C}_{z}\right) \geq \sum_{i=1}^{m} \rho\left(\mathcal{C}_{\tilde{y}_{i}}, \mathcal{C}_{z}\right)$. Let $\mathcal{C}_{\tilde{x}_{i}} \in \operatorname{argmax}_{\mathcal{C}_{x} \preceq \mathcal{C}_{\tilde{y}_{i}}, \mathcal{C}_{x} \preceq \mathcal{C}_{z}} \operatorname{rank}\left(\mathcal{C}_{x}\right)$. Now form a CPDAG $\mathcal{C}_{\bar{y}}$ by combining all the disjoint graphs $\mathcal{C}_{\tilde{x}_{i}}$ for every $i=1,2, \ldots, m$ into one graph. Since these graphs are disjoint (i.e. nodes that are connected in each graph are distinct), we have that $\mathcal{C}_{\bar{y}} \preceq \mathcal{C}_{\tilde{y}}$ and $\mathcal{C}_{\bar{y}} \preceq \mathcal{C}_{z}$ and that $\operatorname{rank}\left(\mathcal{C}_{\bar{y}}\right)=\sum_{i=1}^{m} \operatorname{rank}\left(\mathcal{C}_{\tilde{x}_{i}}\right)$. So we conclude that

$$
\rho\left(\mathcal{C}_{\tilde{y}}, \mathcal{C}_{z}\right) \geq \operatorname{rank}\left(\mathcal{C}_{\bar{y}}\right)=\sum_{i=1}^{m} \operatorname{rank}\left(\mathcal{C}_{\tilde{x}_{i}}\right)=\sum_{i=1}^{m} \rho\left(\mathcal{C}_{\tilde{y}_{i}}, \mathcal{C}_{z}\right) .
$$

Showing \mathcal{S} satisfies Definition 3 For the first property, consider covering pairs $\left(\mathcal{C}_{u^{\prime}}, \mathcal{C}_{v^{\prime}}\right) \in T$. Let (i, j) be the pair of nodes that are connected in $\mathcal{C}_{v^{\prime}}$ and are not connected in $\mathcal{C}_{u^{\prime}}$. Since every undirected path in $\mathcal{C}_{v^{\prime}}$ has size at most 2 , then $\mathcal{C}_{v^{\prime}}$ decouples into two disconnected CPDAGs \mathcal{C}_{v} and \mathcal{C}_{1}, where \mathcal{C}_{v} only involves nodes adjacent to (i, j). Similarly, $\mathcal{C}_{u^{\prime}}$ decouples into two disconnected CPDAGs \mathcal{C}_{u} and \mathcal{C}_{2}, where $\mathcal{C}_{2}=\mathcal{C}_{1}$ and \mathcal{C}_{u} is covered by \mathcal{C}_{v}. From Lemma 13, we have that for any CPDAG \mathcal{C}_{z}

$$
\rho\left(\mathcal{C}_{v^{\prime}}, \mathcal{C}_{z}\right)-\rho\left(\mathcal{C}_{u^{\prime}}, \mathcal{C}_{z}\right)=\rho\left(\mathcal{C}_{v}, \mathcal{C}_{z}\right)-\rho\left(\mathcal{C}_{u}, \mathcal{C}_{z}\right) .
$$

Notice that $\left(\mathcal{C}_{u}, \mathcal{C}_{v}\right) \in \mathcal{S}$. Furthermore, since the number of edges (directed and undirected) in $\mathcal{C}_{v^{\prime}}$ is larger than \mathcal{C}_{v}, we have that $\operatorname{rank}\left(\mathcal{C}_{v}\right) \leq \operatorname{rank}\left(\mathcal{C}_{v^{\prime}}\right)$.

We next show the second property in Definition 3. Let $\left(\mathcal{C}_{u}, \mathcal{C}_{v}\right) \in \mathcal{S}$ and $\left(\mathcal{C}_{u^{\prime}}, \mathcal{C}_{v^{\prime}}\right) \in \mathcal{S}$. Our objective is to show that $\rho\left(\mathcal{C}_{v}, \mathcal{C}_{z}\right)-\rho\left(\mathcal{C}_{u}, \mathcal{C}_{z}\right)=\rho\left(\mathcal{C}_{v^{\prime}}, \mathcal{C}_{z}\right)-\rho\left(\mathcal{C}_{u^{\prime}}, \mathcal{C}_{z}\right)$ for all $\mathcal{C}_{z} \Leftrightarrow \mathcal{C}_{u}=\mathcal{C}_{u^{\prime}}$ and $\mathcal{C}_{v}=\mathcal{C}_{v^{\prime}}$. The direction \leftarrow trivially holds, and hence we focus on the direction \rightarrow. We consider multiple scenarios; throughout the extra edge that is present in \mathcal{C}_{v} and not in \mathcal{C}_{u} is between the pair of nodes (i, j), and the extra edge that is present in $\mathcal{C}_{v^{\prime}}$ and not in $\mathcal{C}_{u^{\prime}}$ is between the pair of nodes (k, l).
(1) Suppose that the nodes (k, l) are not connected in \mathcal{C}_{v}. Letting \mathcal{C}_{z} be a CPDAG with only an edge between nodes (k, l), we find that $\rho\left(\mathcal{C}_{v}, \mathcal{C}_{z}\right)-\rho\left(\mathcal{C}_{u}, \mathcal{C}_{z}\right)=0$ and $\rho\left(\mathcal{C}_{v^{\prime}}, \mathcal{C}_{z}\right)-\rho\left(\mathcal{C}_{u^{\prime}}, \mathcal{C}_{z}\right)=1$. So this scenario cannot occur.
(2) Suppose there is an edge between pairs (s, t) in $\mathcal{C}_{u^{\prime}}$ that is missing in \mathcal{C}_{v} (and as a result in \mathcal{C}_{u}). Construct CPDAG \mathcal{C}_{z} with two edges, one between the pair (i, j) and another between the pair (s, t) with the property that $\mathcal{C}_{z} \npreceq \mathcal{C}_{v^{\prime}}$; this construction is possible since $\left(\mathcal{C}_{u^{\prime}}, \mathcal{C}_{v^{\prime}}\right) \in \mathcal{S}$, meaning that if there is an edge between pair of nodes (i, j) in $\mathcal{C}_{v^{\prime}}$, this edge is incident to the edge between the pair of nodes (s, t). Then, it is evident that $\rho\left(\mathcal{C}_{v}, \mathcal{C}_{z}\right)-\rho\left(\mathcal{C}_{u}, \mathcal{C}_{z}\right)=1$ but $\rho\left(\mathcal{C}_{v^{\prime}}, \mathcal{C}_{z}\right)-\rho\left(\mathcal{C}_{u^{\prime}}, \mathcal{C}_{z}\right)=0$. So this scenario cannot occur.
(3) Suppose there is an edge between pairs (s, t) in $\mathcal{C}_{u^{\prime}}$ that is missing in \mathcal{C}_{u} but is not missing in \mathcal{C}_{v}. Let \mathcal{C}_{z} be a CPDAG only containing an edge between (s, t). Then it follows that $\rho\left(\mathcal{C}_{v}, \mathcal{C}_{z}\right)-\rho\left(\mathcal{C}_{u}, \mathcal{C}_{z}\right)=1$ but $\rho\left(\mathcal{C}_{v^{\prime}}, \mathcal{C}_{z}\right)-\rho\left(\mathcal{C}_{u^{\prime}}, \mathcal{C}_{z}\right)=0$. So this scenario cannot occur.

From the impossibilities of scenarios 1-2, and noting that a similar argument can be made by swapping $\mathcal{C}_{u^{\prime}}$ with \mathcal{C}_{u}, and $\mathcal{C}_{v^{\prime}}$ with \mathcal{C}_{v}, we conclude that $\mathcal{C}_{v}, \mathcal{C}_{v^{\prime}}$ have edges between the same pairs of nodes. Combining this result with the impossibility of scenario 3 , we conclude that $\mathcal{C}_{u}, \mathcal{C}_{u^{\prime}}$ have edges between the same pairs of nodes. We then continue with the final scenario.
(4) Suppose that \mathcal{C}_{v} and $\mathcal{C}_{v^{\prime}}$ are not identical CPDAGs. Since both \mathcal{C}_{v} and $\mathcal{C}_{v^{\prime}}$ have maximum undirected path length less than or equal to two, they both must have the same reference node i (where the other nodes are connected to). Furthermore, since \mathcal{C}_{v} and $\mathcal{C}_{v^{\prime}}$ have the same skeleton and are different, they must have strictly more than one edge, and they must have different v-structures. As a first sub-case, suppose $\mathcal{C}_{v^{\prime}}$ have a v-structure $s \rightarrow i \leftarrow t$ that is not present in \mathcal{C}_{v}, so that $s \leftarrow i$ or $s-i$ in \mathcal{C}_{v}. Then, let \mathcal{C}_{z} be a CPDAG containing two edges between the pairs (i, j) and ($\left.i, s\right)$ with $\mathcal{C}_{z} \preceq \mathcal{C}_{v}$. By construction, $\rho\left(\mathcal{C}_{v}, \mathcal{C}_{z}\right)-\rho\left(\mathcal{C}_{u}, \mathcal{C}_{z}\right)=1$ but $\rho\left(\mathcal{C}_{v^{\prime}}, \mathcal{C}_{z}\right)-\rho\left(\mathcal{C}_{u^{\prime}}, \mathcal{C}_{z}\right)=0$. Swapping $\mathcal{C}_{u^{\prime}}$ with \mathcal{C}_{u}, and $\mathcal{C}_{v^{\prime}}$ with \mathcal{C}_{v}, and following similar arguments, we arrive again at a contradiction if \mathcal{C}_{v} has a v-structure that is not present in $\mathcal{C}_{v^{\prime}}$.

From the impossibility of scenario 4 , we conclude that \mathcal{C}_{v} and $\mathcal{C}_{v^{\prime}}$ have the same skeleton and v-structure and consequently $\mathcal{C}_{v}=\mathcal{C}_{v^{\prime}}$. We thus have that $\mathcal{C}_{u} \preceq \mathcal{C}_{v}$ and $\mathcal{C}_{u^{\prime}} \preceq \mathcal{C}_{v}$. Furthermore, since $\mathcal{C}_{u^{\prime}}$ and \mathcal{C}_{u} have the same skeleton, both are missing an edge between pair of nodes (i, j) that is connected in \mathcal{C}_{v}. Appealing to part a of Lemma 12 , we conclude that $\mathcal{C}_{u}=\mathcal{C}_{u^{\prime}}$.
V.IV.2. Characterizing $c_{\mathcal{L}}\left(\mathcal{C}_{u}, \mathcal{C}_{v}\right)$ for Covering Pairs $\left(\mathcal{C}_{u}, \mathcal{C}_{v}\right)$. We have the following lemma.

Lemma 14. Let $\left(\mathcal{C}_{u}, \mathcal{C}_{v}\right)$ be CPDAGs that are polytrees and form a covering pair. Then, $c_{\mathcal{L}}\left(\mathcal{C}_{u}, \mathcal{C}_{v}\right)=1$.
Proof. Let the pair of nodes (i, j) be connected in \mathcal{C}_{v} and not connected in \mathcal{C}_{u}. Consider any CPDAG \mathcal{C}_{z}. Let $\mathcal{C}_{\tilde{y}} \in$ $\operatorname{argmax}_{\mathcal{C}_{y} \preceq \mathcal{C}_{v}, \mathcal{C}_{y} \preceq \mathcal{C}_{z}} \operatorname{rank}\left(\mathcal{C}_{y}\right)$. Since the CPDAG \mathcal{C}_{v} is a polytree, so is the CPDAG $\mathcal{C}_{\tilde{y}}$. Let \mathcal{G}_{v} be any DAG in \mathcal{C}_{v}. Then, by Lemma 12, there exists DAGs $\mathcal{G}_{\tilde{y}}^{(1)} \in \mathcal{C}_{\tilde{y}}$ and $\mathcal{G}_{u} \in \mathcal{C}_{u}$ such that $\mathcal{G}_{\tilde{y}}^{(1)}$ and \mathcal{G}_{u} are both subgraphs of \mathcal{G}_{v}. Suppose we remove an edge that may be present between the pair of nodes (i, j) in $\mathcal{G}_{\tilde{y}}^{(1)}$ and denote the resulting subgraph by $\mathcal{G}_{x}^{(1)}$. By construction, $\mathcal{G}_{x}^{(1)}$ is also a subgraph of \mathcal{G}_{u}. Since $\mathcal{C}_{\tilde{y}} \preceq \mathcal{C}_{z}$, there exists a DAG $\mathcal{G}_{\tilde{y}}^{(2)} \in \mathcal{C}_{\tilde{y}}$ and a DAG $\mathcal{G}_{z} \in \mathcal{C}_{z}$ such that $\mathcal{G}_{\tilde{y}}^{(2)}$ is a subgraph of \mathcal{G}_{z}. Suppose again we remove an edge that may be present between the pair of nodes (i, j) in $\mathcal{G}_{\tilde{y}}^{(2)}$ and denote the resulting subgraph by $\mathcal{G}_{x}^{(2)}$. By Lemma $12, \mathcal{G}_{x}^{(2)}$ and $\mathcal{G}_{x}^{(1)}$ are in the same equivalence class, which we denote by \mathcal{C}_{x}. By construction, $\mathcal{C}_{x} \preceq z$ and $\mathcal{C}_{x} \preceq \mathcal{C}_{u}$. Furthermore, $\operatorname{rank}\left(\mathcal{C}_{x}\right) \geq \operatorname{rank}\left(\mathcal{C}_{\tilde{y}}\right)-1$. Thus, we have shown that for any arbitrary \mathcal{C}_{z} : $\rho\left(\mathcal{C}_{v}, \mathcal{C}_{z}\right)-\rho\left(\mathcal{C}_{u}, \mathcal{C}_{z}\right) \leq 1$.
V.IV.3. Refined False Discovery Bound for Causal Structure Learning. Let $\hat{\mathcal{C}}_{\text {stable }}$ be output of Algorithm 1 with $\Psi=\Psi_{\text {stable }}$. Let \mathcal{C}^{\star} be the population CPDAG. Then:

$$
\mathbb{E}\left[\mathrm{FD}\left(\hat{\mathcal{C}}_{\text {stable }}, \mathcal{C}^{\star}\right)\right] \leq \sum_{k=1}^{p-1} \frac{q_{k}^{2}}{(1-2 \alpha) p\binom{p-1}{k} \sum_{i \in\{0,2 \ldots, k\}}\binom{k}{i}}
$$

where,

$$
q_{k}=\sum_{\left(\mathcal{C}_{u}, \mathcal{C}_{v}\right) \in \mathcal{S}_{k}} \mathbb{E}\left[\rho\left(\mathcal{C}_{v}, \hat{\mathcal{C}}_{\text {sub }}\right)-\rho\left(\mathcal{C}_{u}, \hat{\mathcal{C}}_{\text {sub }}\right)\right] .
$$

Here, $\hat{\mathcal{C}}_{\text {sub }}$ represents the CPDAG from supplying $n / 2$ samples to the base estimator. We will use the following data-driven approximation to estimate q_{k}

$$
q_{k} \approx \frac{1}{B} \sum_{\ell=1}^{B} \sum_{\left(\mathcal{C}_{u}, \mathcal{C}_{v}\right) \in \mathcal{S}_{k}} \mathbb{E}\left[\rho\left(\mathcal{C}_{v}, \hat{\mathcal{C}}_{\text {base }}\left(\mathcal{D}^{(\ell)}\right)-\rho\left(\mathcal{C}_{u}, \hat{\mathcal{C}}_{\text {base }}\left(\mathcal{D}^{(\ell)}\right)\right)\right]\right.
$$

192 with $\hat{\mathcal{C}}_{\text {base }}\left(\mathcal{D}^{(\ell)}\right)$ represents the CPDAGs obtained from supplying dataset $\mathcal{D}^{(\ell)}$ to base estimator $\hat{\mathcal{C}}_{\text {base }}$.

VI. Assumptions 1 and 2 of the Main Paper for the Total Ranking Problem in Example 7

Let $S=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ be the set of p elements. Let $\pi_{\text {null }}\left(a_{i}\right)=i$ for every $i=1,2, \ldots, p$. We use the similarity valuation $\rho:=\rho_{\text {total-ranking }}$ in Eq. (2) of the main paper. As each element in the poset corresponds to a function $\pi: S \rightarrow S$, we will use this functional notation throughout. For a covering pair $\left(\pi_{1}, \pi_{2}\right)$, there exists a single pair of elements $\left(a_{i}, a_{j}\right) \in$ $\operatorname{inv}\left(\pi_{2} ; \pi_{\text {null }}\right) \backslash \operatorname{inv}\left(\pi_{1} ; \pi_{\text {null }}\right)$ with $j>i$. Then, from the definition of ρ, for any permutation π, we have that

$$
\rho\left(\pi_{2}, \pi\right)-\rho\left(\pi_{1}, \pi\right)=\mathbb{I}\left[\left(a_{i}, a_{j}\right) \in \operatorname{inv}\left(\pi ; \pi_{\text {null }}\right)\right]=\mathbb{I}\left[\pi\left(a_{j}\right)<\pi\left(a_{i}\right)\right] .
$$

Let $\hat{\pi}_{\text {sub }}$ be the estimated ranking from applying a base procedure on a subsample of the data. Consider a fixed integer k with $1 \leq k \leq p-1$. Define the sets S_{1} and S_{2} :

$$
\begin{aligned}
& S_{1}=\left\{\left(a_{i}, a_{j}\right) \in \operatorname{inv}\left(\pi^{\star} ; \pi_{\text {null }}\right): j-i=k\right\}, \\
& S_{2}=\left\{\left(a_{i}, a_{j}\right) \notin \operatorname{inv}\left(\pi^{\star} ; \pi_{\text {null }}\right): j-i=k\right\} .
\end{aligned}
$$

The set S_{1} corresponds to non-null pairs (as described in the main paper) and the set S_{2} corresponds to null pairs.
Then, appealing to the definition of \mathcal{S} and the constant $c_{\mathcal{L}}(\cdot, \cdot)$ in the total ranking case (see Section V.II), Assumption 1 of the main paper reduces to the following inequality being satisfied

$$
\begin{equation*}
\frac{\sum_{\left(a_{i}, a_{j}\right) \in S_{1}} \mathbb{P}\left(\hat{\pi}_{\text {sub }}\left(a_{j}\right)<\hat{\pi}_{\text {sub }}\left(a_{i}\right)\right)}{\sum_{\left(a_{i}, a_{j}\right) \in S_{2}} \mathbb{P}\left(\hat{\pi}_{\text {sub }}\left(a_{j}\right)<\hat{\pi}_{\text {sub }}\left(a_{i}\right)\right)} \geq \frac{\left|S_{1}\right|}{\left|S_{2}\right|} \tag{19}
\end{equation*}
$$

Consider an estimator $\hat{\pi}_{\text {sub }}=\hat{\pi}_{\text {random }}$ that randomly selects a total ranking in the space of permutations. Then, for every i and $j, \mathbb{P}\left(\hat{\pi}_{\text {sub }}\left(a_{j}\right)<\hat{\pi}_{\text {sub }}\left(a_{i}\right)\right)=\frac{1}{2}$. Thus, in this case, Assumption 1 in Eq. (19) is satisfied with equality.

It is also straightforward to check that Assumption 2 of the main paper is reduced to

$$
\mathbb{P}\left(\hat{\pi}_{\text {sub }}\left(a_{j}\right)<\hat{\pi}_{\text {sub }}\left(a_{i}\right)\right) \text { being the same for every }\left(a_{j}, a_{i}\right) \in S_{2} .
$$

References

1. RP Stanley, Enumerative Combinatorics, Cambridge Studies in Advanced Mathematics. (Cambridge University Press) Vol. 1, 2nd edition, (2011).
