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Supporting Information Text

Subhead. This document includes proofs of claims in the main text.

I. Meet Semi-lattice and Join Semi-lattice Properties and Posets in Examples 1-9

The Boolean poset (Example 1), partition poset (Examples 2-3), integer poset (Example 5), permutation poset (Example 7), and
subspace poset (Example 8) are all known in the literature to be lattices (and consequently meet-semi and join semi-lattices);
see (1).

We next show that for Examples 6 and 9 associated with partial ranking and blind-source separation, the corresponding
posets are also meet semi-lattices. Consider the partial ranking setting in Example 6. Let R1 and Rz be two relations that are
irreﬂexive, asymmetric, and transitive. Recalling that the partial ordering is based on inclusion, it is clear that the relations

= {(a,d) : (a,b) € Ri,(a,b) € Ra2} is the unique largest rank element in the partial ranking poset such that R < R1 and
R < Ry. Furthermore, for any R with R < R1 and R < Ra, we clearly have that R < R. Consider the blind-source separation
setting in Example 9. Let z; and x2 be two sets of linearly independent subsets of unit norm vectors. Recalling that the partial
ordering in the associated poset is based on inclusion, it is clear that the set y = z1 N x2 is the unique largest rank element in
the partial ranking poset such that y < 1 and y < x2. Furthermore, for every z with z < ;1 and z < x2, we have that z < y.

We show that the poset corresponding to causal structure learning setting (Example 4) is not meet semi-lattice or join
semi-lattice. As a counterexample, consider the CPDAGs C; for i = 1,2, 3,4 shown in Figure S1. Notice that Cs < C1, C3 <X Ca,
Cs = C1, and C4 < C2. Notice also that C3 and C4 are both CPDAGs with the largest rank that are smaller (in a partial order
sense) than C; and C2. We thus can conclude that the poset is not meet semi-lattice. Similarly, C; and C2 are both CPDAGs
with the smallest rank that are larger (in a partial order sense) than C3 and C4. We thus can conclude that the poset is not
join semi-lattice.

We next show that the poset for Example 6 is not join semi-lattice with a simple counterexample. Consider as an example
elements z1 = {(1,2)} and z2 = {(2,1)}. Note that there does not exist an element z such that 1 < z and x2 < z. Thus, the
poset is not join semi-lattice.

Finally, we show that the poset corresponding to blind-source separation (Example 9) is not join semi-lattice. Consider a
collection of p + 1 rank-1 elements in this poset, each element consisting of a single p dimensional vector. Then, evidently,
there cannot exist an element z consisting of a set of vectors that contains all of the vectors in the rank-1 elements, while
satisfying the linear independence condition.

Il. Proof that Eq. (1) is a Similarity Valuation Function

Recall that

Pmeet(T,y) = max rank(z). [14]

z=3z,2=y

By definition, pmeet (-, -) is a symmetric function. We will now show that it satisfies the three properties in Definition 1 for any
pair of elements x,y € L. For the first property, we can conclude pmeet(x,y) > 0 since by definition, the rank function returns
a non-negative integer for all the elements in the poset. Again, because of the property of the rank function in a graded poset,
a feasible z (satisfying the constraints z < z, z < y) will necessarily have rank(z) < min{rank(z),rank(y)}. For the second
property, consider any w € £ with < w. Note that:

Pmeet(W,y) = max rank(z). [15]
z2=2w,z=xy

Then, any feasible z in Eq. (14) is also feasible in Eq. (15) by the transitive property of posets. Therefore, pmeet (%, y) < Pmeet (W, Y).
For the third property, first note that if z < y, then z = z is feasible in Eq. (14) and thus pmeet(z,y) > rank(z). Since also
Pmeet (2, y) < rank(z) by the second property of similarity valuations, we have that pmeet(z,y) = rank(z). Now suppose that
Pmeet (T, y) = rank(z). By Eq. (14), we conclude that there exists a feasible z (z < z, z < y) such that rank(z) = rank(z). By
the property of the rank function, we have that if rank(z) = rank(z) and z < z, then z = z. Since we have additionally that
z <Xy, we conclude that =z < y.

Ill. Proof of Lemmas 8-9

Proof of Lemma 8. Recall the telescoping sum decomposition Eq. (5) that FD(z, z*) = Zle 1=[f(xi—1,z;;2™)]. From the first
property of similarity valuation that it yields non-negative values, second property of similarity Valuation that p(z,y) < p(z,y)

for © < z, and that the p is an integer-valued similarity valuation, we have that FD(x,z*) < Zl 1 [(xi—1, i) € Taunl. O

Proof of Lemma 9. For any covering pairs (z,y) and (u,v) with v < z, we cannot have that f(z,y;z) = f(u,v;z) for all z € L.
Suppose as a point of contradiction that for every z € L, f(z,y;2) = f(u,v;2). Let z = v. Then, by the third property of
a similarity valuation (see Definition 1), p(u, z) = rank(u) and p(v, z) = rank(v); thus, for this choice of z, f(u,v;z) = 1.
On the other hand, again by the third property of a similarity valuation and for the choice of z = v, since u < v <z <y,
p(x, z) = p(y, z) = rank(v) and thus f(z,y;z) = 0. O

2 of 11 Armeen Taeb, Peter Bithimann and Venkat Chandrasekaran
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(@) Cy (b) C2 (€)Cs (d) Ca

Fig. S1. Four CPDAGs. Here, CPDAGs C3 and C4 are both largest complexity models that are smaller (in partial order sense) than C; and Cs. Similarly, CPDAGs C; and Cs
are the smallest complexity models that are larger (in a partial order sense) than C3 and Cy4.
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IV. Analysis in the Continuous Examples 8 and 9

For notational ease, we let a“cfi)se = Thase (D“)). Notice that for any [ = 1,2,..., B:

FD(f:stabley x*) = rank(fstable) - p(fstable, IE*)

= [rank(i.stable) - p(j'stabley i"é?se)} + [rank(ié?se) - p(:%](;fz)sev l'*):| + Ii(xsmbl‘h 1’. xi)la)se)

where
K (Zstable, 5, 200 ) 1= p(#_ 2*) — rank(2L) ) + p(Estabie, 2..) — p(Estabe, ).

Since the choice of | was arbitrary, we note that:

B/2
A * 2 . N N _
FD(Zstable, ™) = B terr{l(l)nl} { [rank(xstablc) - p(xstablmx](jfse t))} + [rank(avbase ) — p(:rl(iiet), )} + K(Zstable, T, xézfse t))}
=1 ’
5 B/2 ) &
. (20—1) L (20—t) . . A (0)
S E - terr{lé%} { [rank(xbase ) p(xbase 7(1}*)] } + E [_Zl |:ra.nk(xstab16) - p(xstable7 xbase)i|

B
P
+§Z (-’Esmbleax 361()2356)
=1
2 A2 2
)3 {HM rank({1.) = B0 )+ Roranae) + 5 D (i 52),
=1 te{0,1 =1

Here, the second inequality follows from min{a + b, ¢ + d} < min{a,c} + b+ d for a,b,c¢,d > 0. The third inequality follows
from min{a, b} < vab for a,b > 0 and

B 1"ank(istable) B
¢ (¢ .
B Z rank(Zstable) — P(Estable, Tis,) = Z Z [p(k, Bpone) — Pl@k—1,850,)] < arank(Esapie),  [16]
=1 k=1 =1
where (zo,1,...,};) is a sequence specifying a path from the least element g to z; = Zstable With rank(Zstable) = k. Thus,

% Zle 2(Zstable, i{fgse) > (1 — a)rank(Zstable). As p(Estable, i‘&)se) < rank(:cg;)se) we can then conclude that E[rank(Zsable)] <

m‘?‘fﬁs“b)]. Taking expectations and using the fact that the data across complementary bags is IID, we obtain:

B
. 2
FD(xstablm < ]E \/ FD xsub, ] + E[rank xs‘lb E Z xStablc’ z” 'xI(one)]

It remains to bound 2 Zle E[k(Zstable, ™ Ibase)] for subspace selection and blind-source separation.

Subspace-selection: We will use the similarity valuation p := psubspace in Eq. (3). Note that:

rank(z) — p(z,y) = trace (PxPyL) = trace (PxPzPyL 732) + trace (PxPZL P, PZL)
+ trace (PoP, 1P, . P-) + trace (PaP.Py. P, )

[17]
< trace (Pyj_ 732) + trace (P, P,1) + trace ([Pz, P.1] [Pz, PyLD
= rank(z) — p(y, z) + rank(z) — p(z, z) + trace ([P,;,Pzi} [Pz,PyL}) .
Here, for matrices A, B € RP*?, [A, B] = AB — BA represents the commutator. Furthermore, note that:
trace ([Pz,PZJ_} [Pz,PyLD <[ [Pz, P ] ||+l [Pz,P J_] [I2 18]

< 2\/rank \/rank p(x, 2)|| [Pz, Pyl ||2-

Combining the bounds Eq. (17) and Eq. (18), we find that:

rank(z) — p(z,y) < rank(z) — p(y, 2) + rank(x) — p(z, 2) + 2\/rank \/rank oz, 2) || [P=, Pyl |2
<rank(z) — p(y, z) + rank(z) — p(x, z) + \/rank \/rank ,2).
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Here, the second inequality follows from the fact that for projection matrices A and B, ||[A, B]||2 < 1/2. From this inequality,
we conclude that in the subspace selection setting,

S A N . N
ﬁ(mstablm z* xl()Qse) < rank(ajstable) E Z \/rank(xstable) - p(xstable, xl(gse)

(=1 —1

B
(£)
< y/rank(Zstable) g rank(Zsable) — p(Zstables Lpoee)

S \/ara'nk(istable ) .

Here, the second equality follows from Cauchy-Schwartz and the last inequality follows from the bound Eq. (16). Recalling
that E[rank(Zstable)] < ]E[mnlkf(is‘“’)], we obtain the final bound:

D(Zstable, ) < E[\/FD(Zsub, x*)]2 + WE[rank(i’sub)}.

Blind-source separation We will use the similarity valuation p := psource-separation il Eq. (4). For simplicity of notation, associ-
ated with any element z € £, we consider a block-diagonal p? x p? projection matrix where each p x p block is a projection matrix

of the subspace spanned by a vector in z. We denote this projection matrix P,. Then, p(x,y) = max, .2 trace (PZHPyHT>
block

B

o

@ =

2
where S?,_ . is the space of p> x p® permutation matrices that are block-diagonal where each block is of size p x p.

Note that:
rank(z) — p(z,y) = min  trace (73'3;1_[73' L II )
Hesblock
< min min trace (HPyL HTI:[PZI:[T) + trace (ngf[PZJ_ I:IT)
AES o, T

+ 2+ /rank(z) \/trace (PP, 1) |[TIP.1T7, 1P, 117 ]2

< min trace (Pzﬁpzj_ fIT) + 24/rank(z) \/trace ("PZI:I"PZJ_ I:IT) max ||[12[7321§IT, P, 11" |2

I -
HESblock B Hesblock
TAp T
+ max min trace (H(Id — Py)II" TIP.11 )
HeSbloCk Hesblock

= [rank(z) — p(z, 2] + [rank(z) — p(z,9)]
+2y/rank(z)\/rank(z) — p(z,2) max [P, TP, 072,

I1,TIeS

block

Here, the first inequality follows from a similar analysis as arriving to Eq. (17) in subspace selection. The second inequality follows
from the fact that mina s f(a) 4+ g(b) < ming f(a) +max, f(b). Note that projection matrices A, B, [A, B] < 1. Then, following

the same exact reasoning as the subspace case, we have that in the blind-source separation setting % Zle (:Estamc, z* xéd)se) <
Varank(Zsub). The result follows subsequently.

V. Specializing Bound Eq. (8) for Different Problem Settings

V.I. Partial Ranking. Let S = {a1,a2,...,a,} be the set of p elements. We use the similarity valuation p := pmeet in Eq. (1) of
the main paper.
V.1.1. Characterizing S for Partial Ranking. We construct a set S satisfying the properties in Definition 3 of the main paper.

Specifically, we let:
S ={(ai,a;) : 1 # j},

with |S1] = p(p — 1) and Sy = 0 for every k > 2.
We will show that set S as constructed above satisfies Definition 3. First, consider any covering pair (u’,v") ¢ S. Here, u’
and v are relations and v' = w’ U (a;,a;) for some i # j. Then, for any z € L, it is easy to see that

p(v',2) = p(u', 2) =1[(as, a5) € 2] = p(v, 2) — p(u, 2),

where v = {(ai,a;)} and u = (. Clearly, rank(v) < rank(v’).

To show the second property, consider covering pairs ({(ai,a;)},0) € S and ({(ar,a:)},0) € S. By construction of
the set S, (as,a;) # (ar,a;). Let z = {(a;,a;)}. Then, it is straightforward to see that p({(a:,a;)},2) — p(d,2) = 1 but
p({(ax, @)}, 2) — p(0,2) = 0.

Armeen Taeb, Peter Bithimann and Venkat Chandrasekaran 5of 11



89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

V.L.2. Characterizing c.(z,y) for Covering Pair (z,y). Since for any z, p(y, z) — p(z,2z) = I((ai,a;) € z) for some (a;,a;). Thus,
ce(z,y) = 1.

V.1.3. Refined False Discovery Bound for Partial Ranking. Let Zstable be output of Algorithm 1 with ¥ = Wapie. Then:

2

A * q1
E[FD(#stable, 7)] < s,
[FD(Estan x)]_(l—Qa)p(p—l)

where
a1 =) _Il(ai,a5) € Zoun]
i#]
Here, Zsub is the estimated partial ranking from supplying n/2 samples to the base estimator. We can use the following
data-driven approximation for ¢1:q1 ~ & Ele Ei# I[(ai, a;) € Zvase(D)] with Zpase(DP), 1 =1,2,..., B representing the
estimates from subsampling.
V.. Total Ranking. Let S = {a1,az2,...,a,} be the set of p elements. Let muun(a;) =i for every i = 1,2,...,p. We use the

similarity valuation p := ptotal-ranking i Eq. (2) of the main paper. As each element in the poset corresponds to a function
m:S — S, we will use this functional notation throughout.

V.II.1. Characterizing S for Total Ranking. We construct a set S satisfying the properties in Definition 3 of the main paper. Initialize
S = (. Then, for every relation (a;,a;) with ¢ < j, we augment S as follows:

S:SU(’JTl,ﬂ'Q),

where 71, w2 are covering pairs. Here, 2 is any rank j — i element in the poset with the relation (a;, a;) in its corresponding
inversion set. Furthermore, we let 71 be a rank j — ¢ — 1 element that is covered by w2 and does not contain (a;,a;) in its
inversion set. Recalling that Sk = {(71,72) € S,rank(m2) = k}, we have that for every k =1,2,...,p—1

ISkl =p — k.

We will show that set S as constructed above satisfies Definition 3. First, consider any covering pair (71, 72) ¢ S. Then
by definition, the corresponding inversion sets are nested, i.e. inv(#2; maun) 2 inv(71; i) with the difference being a single
relation. We will denote this relation by (a;,a;) with j > i. Consider the covering pair (71, m2) € S where (a;,a;) is in the
inversion set of w2 but not in the inversion set of 1. Then, for any 7, we have that

p(m2,m) — p(m1, m) = 1((ai, a;) € inv(m; mun)) = p(7t2, m) — p(71, 7).

Furthermore, it is straightforward to check that rank(72) > j — ¢ = rank(m2). We have thus shown that S satisfies the first
property in Definition 3.

To show the second property, consider covering pairs (71, 72) € S where the difference between the two inversion sets is the
relation (a;, a;). Let (w3, m4) € S where the difference between the two inversion sets is the relation (ay,a;). By construction of
the set S, (ai,a;) # (ak,a;). Let m be a permutation with (a;,a;) in its inversion set. Then, as desired,

p(mz,m) = p(mr, ) = I((ai, a;) € inv(m; aun)) # p(ma, w) — p(ms, 7).

V.II.2. Characterizing c (1, 2) for Covering Pair (71, 73). Since for any 7, p(m2, ) — p(m1, ) = I((ai, a;) € inv(m; T )) for some
pair of elements (a;,a;), then cg(m,m2) = 1.

V.II.3. Refined False Discovery Bound for Total Ranking. Let #stable be output of Algorithm 1 with W = Wgapie. Then:

p—1 2
A * K
E[FD(#tapte, 7)) < Y
24 (T=2a)(p— k)

where

=Y Elp(m, i) —plm,fan)] = Y [l(ai,a;) € V(i Toun)]

(1,m2) €S (4,9),d—i=k

Here, sup represents ranking from supplying n/2 samples to the base estimator. We can use the following data-driven
approximation for qriqrx ~ & E(ij) ik Zle [H[(ai,a‘j) € inv(frbase(D“));nllull)]}, where #pase (DY) represents the total

ranking obtained by supplying the base estimator on dataset DO,

6 of 11 Armeen Taeb, Peter Bithimann and Venkat Chandrasekaran
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V.. Clustering. We have a collection of p items {a1,az,...,ap} that we wish to cluster. We let zo = {{a1}, {az2},...,{ap}} be
the least element. As described in the main paper, will use the similarity valuation p := pmeet defined in Eq. (1) of the main
paper. Since the clustering poset is meet semi-lattice, p computes the rank of the meet of two elements; in this setting, the
meet z Az of x = {G1,...,Gq} and z = {G4,...,Gs} is

LE/\ZZ{Giﬂéj ZGiﬂéj 750)}
Subsequently, p(z,z) = rank(xz A y) is p — # groups in x A z, which can be equivalently expressed as:
ple,z)= Y [GinGl-1.
i,5:|GiNG |#D
For sets G1,G2 C {1,2,...,p} with G1 N G2 = 0, we define:

Rai,ae = {{a1}, {a2}, ..., {ap}} \ {{ai} : as € GL UG}

V.lll.1. Characterizing S for Clustering. We construct a set S satisfying the properties in Definition 3. Initialize S = (). Then, for
every k =1,2,...,p— 1 and pairs of groups of variables G1 C {a1,...,ap} and G2 C {a1,...,ap} with |G1|+|G2| = k+ 1 and
G1 N G2 =0, we generate covering pairs (z,y) with y = {G1 U G2, Ra,,6, } and © = {G1, G2, Ra,,6. ), and let

S=SU(z,y).

Recalling that S, = {(z,y) € S,rank(y) = k}, it is straightforward to check that for every k =1,2,...,p—1

k
_ P k+1
il = (k+1)2( ! )
=1
k+1

Here, the terms (kil) counts the number of possible items in G1 U G2 and the term 25:1 (k‘}'l) counts the number of
possible configurations of the group G2. We will show that the constructed set S satisfies Definition 3 of the main paper. Our
analysis is based on the following lemma.

Lemma 10. Consider the covering pairs (x,y) with v = {G1,G2,...,Gq} and y = {G1 U G2,Gs,...,Gq} where G; C
{1,2,...,px} and G;NG; = 0 for everyi # j. Let (Z,7) be covering pairs with § = {G1UG2, Ra, a0} and & = {G1,G2, Ra1,Go }-
Then; fO?" every z € £7 p(yvz) - p(.T,Z) = p(g7z) - p(j7z)

Proof of Lemma 10. Let z = {G1,...,Gs} with G; C {a1,az,...,a,} and G; NG, = 0 for every i # j. Then:
ply, z) = Y GuG)NG -1+ > |GinGy| -1,
§:(G1UG2)NG; #0 i>3,5:G;NG;#0

and
p(yc,z)z Z |Glﬂéj|—1+ Z |G2ﬂéj|—1+ Z |Giﬂéj|—1.

§:G1NG;#D §:G2NG;#0 i>3,5:G;NG;#D
Since Ra,,a, consists of groups of size one, we have that:

P, 2) = > (G1UG2) NGyl —1,

j:(G1UG2)f‘IC~;j7ﬁ@

and
pEz)= Y. lGinGl-1+ Y [GanGyl-1.
J:G1NG;#0 §:G2NG;#D
We thus can see that p(y, z) — p(z, z) = p(§, z) — p(Z, 2). O

Showing S satisfies Definition 3 With Lemma 10 at hand, we show that out constructed S satisfies Definition 3 of the main
paper. We start with the first property. Consider any (u’,v’) C £. Without loss of generality, we take v’ = {G1UG2, G3,...,Gq}
and v’ = {G1,Go,...,Gq}. Welet v={G1UG2,Ra,,c,} and u = {G1,G2,R¢,,c, }. Then, according to Lemma 10, we have
that p(v',2) — p(v', 2) = p(v, 2) — p(u, z). Furthermore, since rank(z) = p — # groups in x, we have that rank(v) < rank(v’).
Thus, the first property of S is satisfied. We demonstrate the second property. Consider any (u,v) € S and (u’,v') € S
that are different. Let u = {G1,G2,Ra,,¢.} and v = {G1 U G2, Ra,,¢,}- Additionally, let v’ = {G], 'Q,RG/PGé} and

v' = {G1 UG5 Rgr ). Since the covering pairs (u,v) and (u',v’) are different, there must exist two items a;, a; such

that either (a;,a;) are grouped together in v but are not together in u or (a;,a;) are grouped together in v’ but are not
together in u'. Let z = {{ai,a;}, Rya,},(a;1}- Since p(v,2) — p(u,z) = I[(ai,a;) grouped together in v but not in u] and
p(v',2) — p(u', 2) = T[(a;, a;) grouped together in v’ but not in u'], we have that p(v, z) — p(u, 2) # p(v', 2) — p(u/, 2).

Armeen Taeb, Peter Biilhimann and Venkat Chandrasekaran 7 of 11
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V.IIL.2. Characterizing c.(u,v) for Covering Pair (u,v).

Lemma 11. Let v = {G1 U G2, Ra,,¢.} and v = {G1,G2,Ra,,c,} be a covering pair (u,v) € S. Then, cc(u,v) =
min{|G1], |G|}

Proof of Lemma 11. Let z = {G1,...,G4}. Then, from proof of Lemma 10, we have that:

p(v, 2) — p(u, z) = > (G1uG)NGyl =1 = | > [GinGl=1] = | > [G2nGy|-1

J:(G1UG2)NG;#0 §:G1NG;#D J:GaNG;#0

Let [1 :={j: G;NG1 #0} and I := {j : G; N Go # 0}. Then,

-1 lGinG; -1

Je

~ D 1GanGy -1

VISEP)

jel1Ulo

mw>pma:L§juau@w@A1
Simple manipulations yield:

M%@PW&V‘[EZ (G1UG2) NGyl -1

jeI1NIz

l > leinG| -1

jeEI1NI2

l > GGl -1

JjeEI1NI2

Clearly, if Iy N I = (, then p(v, z) — p(u, z) = 0. Suppose I N Iz # (. Then,

p(v,2) = pu,2) = LN+ | Y [(G1UG) NG| -GN G| -GN Gyl

JeliNIz

= |11 ﬂIzl.

Notice that [I;NI2| < min{|G1|, |G2|}. Then, the upper bound can be achieved by for example setting z = {N, {{a1}, {az2}, ..., {ap}\
N} WithN:{(ai,aj) ta; € Gh,a; EGQ}. O

V.IIL.3. Refined False Discovery Bound for Clustering. Liet Zstable be output of Algorithm 1 with ¥ = Wyap1e. Then:

i

1
2
dr

1(1-2a) (k:f—l) 25:1 (k?_l)

E[FD (-’istable, 13*)] S

B
Il

where,

qr = Z E[p(v? :%S‘lb) 7 p(uy isub)}

c(u,v
(u,v)ESE ( )

Z E[# groups G in Zeu satisfying G; NGy # 0 and G; N Ga # 0]
min{|G1], |G2[}

Gi1C{a1,...,ap},G2C{ar,...,ap}
G1NG2=0;|G1|+|G2|=k+1

Here, Zsub represents clustering from supplying n/2 samples to the base estimator. We will use the following data-driven
approximation to estimate gy

. R R N
~ L > §° # owps G in Boase (D) satisfying G; NGy # @ and G, N Gs # 0]
W* R 5 min{|G1/, |G2|} ’
Gi1C{a1,...,ap},G2C{ay,...,ap} £=1
G1NG2=0;|G1|+|G2|=k+1

with Zhase (D([)) represents the partition obtained from supplying DY to the base estimator.

V.IV. Causal Structure Learning. Throughout, we consider covering pairs (Cy,C,) where each connected component in the
skeletons of C,,C, have a diameter at most two. We denote this set by 7. Note that for any covering pair (Cy,Cy) € T, Cy is a
polytree. Throughout, we will use the similarity valuation p := pmeet. Our analysis in this section will build on the following
result.

Lemma 12. Let C, and C, be two CPDAGSs that are polytrees with C,, < Cy,. Then, the following statements hold:

(a) for any pairs of nodes £, the set of DAGs that result from removing edges among pairs € in any DAG G, form a Markov
equivalence class.

(b) for every DAG G, € C, there exists a DAG G, € Cy such that G, is a directed subgraph of G,.
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Proof of Lemma 12. We first prove part (a). By the polytree assumption, it follows that for any DAG G, in the CPDAG C,,
removing the edges among pairs in £ does not create any v-structures, and removes the same (potentially empty) v-structures.
That means that the collection of DAGs obtained by taking any DAG in C, and removing the edges between the pairs of nodes
& will have the same skeleton and same v-structures, and are thus in the same Markov equivalence class.

We next prove part (b). Let (¢,7) be the pair of nodes that are connected in C, but not in C,. Recall that C,, < C, implies
there exists a DAG G, € C, and a DAG G, € C, where G, is a subgraph of G,, where G,, does not have the edge among pairs
(4,7). Appealing to the result in part (a), we have that removing the edge (¢, j) from any other DAG in C, results in a DAG in
the same equivalence class, which is C,. O

V.IV.1. Characterizing S for Causal Structure Learning. We construct the set S as follows. Initialize S = ). For every reference node,
and k=1,...,p—1, let C, be a CPDAG generated with k edges, where every edge is between the reference node and another
node; no other edges can be added without violating the condition that the largest undirected path has size less than or equal
to two. A consequence of Lemma 12 is that there are K CPDAGs Cz4, . ..,Cqs, that form a covering pair with C,. We then let

§=8U(Csy.C,),
for every i = 1,2,...,k. Recall that Sk := {(Cz,Cy) € S,rank(Cy) = k}. Then,

-1 k
|sk|:p(pk) 3 ()
i€{0,2...,k}

The result above follows from noting that for every reference node and k other nodes, there are Zl €{0.2...k} ( ) possible
CPDAGS that are polytrees can formed by connecting the k nodes to the reference node; the factor p(pgl) comes from p total

possible reference nodes and (pgl) possible set of k nodes to connect to the reference node.

We will show that the constructed set S satisfies Definition 3 of the main paper. Our analysis is based on the following lemma.

Lemma 13. Let Cy be a CPDAG that contains m disconnected subgraphs (both directed and undirected). Let Cy, be each
disconnected subgraph for i =1,2,...,m. Then, for any CPDAG C.,

p(Cy,Cz) Zp(cyl,c

Proof. We will first show that p(Cy,Cz) < > p(Cy,,Cz). Let Cz € argmaxe_~c. ¢ <c, rank(Cz). By definition, C. = Cy if
there is a DAG G, in C; and a DAG Gy in Cy such that G, is a subgraph of Gy. Since Gy has disconnected components, so must
Gz. We let Cs, be the subgraphs of Cz where every subgraph Cz, only contains edges among nodes that are connected (to other
nodes) in the graph Cy,. By construction, Cz, =< Cy,, rank(Cz) = > .~ rank(Cz,), and Cz, =< C.. Thus, rank(Cz,) < p(Cg,,C-).
Then, we can conclude that

i=1

Z (Cy;,Cz) Zrank ;) =rank(Cz) = p(Cy,C-).
i=1 i=1

Now we will show that p(Cy,Cz) > 37" p(Cy,,C-). Let Cs, € argmaxc, <c. c,=c, 'ank(Cz). Now form a CPDAG Cy by
combining all the disjoint graphs Cs, for every i = 1,2,...,m into one graph. Since these graphs are disjoint (i.e. nodes that
are connected in each graph are distinct), we have that Cy < Cy and Cy < C. and that rank(Cy) = >/ rank(Cz,). So we

conclude that
m

p(Cy,C.) > rank(C Z rank(C Z p(Cy;,Cz).
i=1 i=1

O

Showing S satisfies Definition 3 For the first property, consider covering pairs (C,/,C,) € T. Let (i,7) be the pair of nodes
that are connected in C,s and are not connected in C,/. Since every undirected path in C,s has size at most 2, then C,, decouples
into two disconnected CPDAGs C, and C1, where C, only involves nodes adjacent to (i, 7). Similarly, C,s decouples into two
disconnected CPDAGs C,, and Cz2, where C2 = C; and C,, is covered by C,. From Lemma 13, we have that for any CPDAG C.

p(cv’7cz) - p(Cu/,CZ) = p(CU,CZ) - p(Cu7CZ)'

Notice that (Cu,Cy) € S. Furthermore, since the number of edges (directed and undirected) in C,/ is larger than C,, we have
that rank(C,) < rank(C,/).

We next show the second property in Definition 3. Let (Cy,Cy) € S and (Cy/,C,) € S. Our objective is to show that
p(Cy,C.) — p(Cu,C.) = p(Cyr,Cz) — p(Cyr, C>) for all C, < Cy = C,v and C, = C,v. The direction < trivially holds, and hence
we focus on the direction —. We consider multiple scenarios; throughout the extra edge that is present in C, and not in C, is
between the pair of nodes (4, 7), and the extra edge that is present in C,s and not in C, is between the pair of nodes (k,1).
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(1) Suppose that the nodes (k, 1) are not connected in C,. Letting C. be a CPDAG with only an edge between nodes (k, 1),
we find that p(Cy,C.) — p(Cu,Cz) = 0 and p(C,s,C.) — p(Cys,C=) = 1. So this scenario cannot occur.

(2) Suppose there is an edge between pairs (s,t) in C,s that is missing in C, (and as a result in C,). Construct CPDAG
C. with two edges, one between the pair (7,j) and another between the pair (s,t) with the property that C. A C,;
this construction is possible since (C,/,C,/) € S, meaning that if there is an edge between pair of nodes (7,7) in C,,
this edge is incident to the edge between the pair of nodes (s,t). Then, it is evident that p(Cy,C.) — p(Cu,C:) = 1 but
p(Cyr,C2) — p(Cyr,C.) = 0. So this scenario cannot occur.

(3) Suppose there is an edge between pairs (s, ) in C,s that is missing in C, but is not missing in C,. Let C. be a CPDAG
only containing an edge between (s,t). Then it follows that p(C,,C.) — p(Cu,C.) = 1 but p(Cyr,C.) — p(Cyur,C2) = 0. So
this scenario cannot occur.

From the impossibilities of scenarios 1-2, and noting that a similar argument can be made by swapping C,; with C,, and C,/
with C,, we conclude that C,,C, have edges between the same pairs of nodes. Combining this result with the impossibility of
scenario 3, we conclude that C,,C,s have edges between the same pairs of nodes. We then continue with the final scenario.

(4) Suppose that C, and C,s are not identical CPDAGs. Since both C, and C,, have maximum undirected path length
less than or equal to two, they both must have the same reference node i (where the other nodes are connected to).
Furthermore, since C,, and C,s have the same skeleton and are different, they must have strictly more than one edge, and
they must have different v-structures. As a first sub-case, suppose C,s have a v-structure s — i <— t that is not present in
Cy, so that s <— i or s — ¢ in Cy,. Then, let C. be a CPDAG containing two edges between the pairs (7, ) and (7, s) with
C. = Cy. By construction, p(Cy,C.) — p(Cy,C.) = 1 but p(C,/,C.) — p(Cys,C.) = 0. Swapping C,/ with C,, and C, with
Cy, and following similar arguments, we arrive again at a contradiction if C, has a v-structure that is not present in C,.

From the impossibility of scenario 4, we conclude that C, and C,, have the same skeleton and v-structure and consequently
C, = C,. We thus have that C, < C, and C,s < C,. Furthermore, since C,, and C,, have the same skeleton, both are missing an
edge between pair of nodes (7, j) that is connected in C,. Appealing to part a of Lemma 12, we conclude that C,, = C,.

V.IV.2. Characterizing c(C.,,C.) for Covering Pairs (C,,,C,). We have the following lemma.

Lemma 14. Let (Cy,Cy) be CPDAGSs that are polytrees and form a covering pair. Then, cz(Cuy,Cy) = 1.

Proof. Let the pair of nodes (i,j) be connected in C, and not connected in C,. Consider any CPDAG C.. Let Cj €
argmaxe, <c, c,<c. rank(Cy). Since the CPDAG C, is a polytree, so is the CPDAG Cy. Let G, be any DAG in C,. Then,

by Lemma 12, there exists DAGs gél) € Cy and G, € C, such that gél) and G, are both subgraphs of G,. Suppose we
remove an edge that may be present between the pair of nodes (7, ) in g;” and denote the resulting subgraph by Q:(cl). By
construction, G is also a subgraph of G,,. Since Cy = C., there exists a DAG g}f) € Cy and a DAG G. € C; such that gﬁf) is
a subgraph of G.. Suppose again we remove an edge that may be present between the pair of nodes (i,7) in gff) and denote

the resulting subgraph by gf’. By Lemma 12, gf) and g}cl) are in the same equivalence class, which we denote by C,. By
construction, C; < z and C; < Cy. Furthermore, rank(C;) > rank(Cz) — 1. Thus, we have shown that for any arbitrary C.:
p(Cy,C.) — p(Cu,C.) < 1. O

V.IV.3. Refined False Discovery Bound for Causal Structure Learning. Let (fstable be output of Algorithm 1 with ¥ = WUgap1e. Let C* be
the population CPDAG. Then:

p—1 2
E[FD(CstawaC*)] < Z .

— p—1 E\’
k=1 (1 — 2a)p < k > Zie{o,z.“,k} (z)

=Y E[p(C,Con) — p(CusCou)].

(Cu,Cou)ESK

where,

Here, Coub represents the CPDAG from supplying n/2 samples to the base estimator. We will use the following data-driven
approximation to estimate gy

B
1 N .
qr ~ E Z Z E[p(cv,cbase(p(e)) - p(cu7 Cbase(D(Z)))]z

with ébase (D(z)) represents the CPDAGs obtained from supplying dataset D® to base estimator ébase.

10 of 11 Armeen Taeb, Peter Bithimann and Venkat Chandrasekaran



193

194

195

196

197

198

199

200

202

203

204

205

VI. Assumptions 1 and 2 of the Main Paper for the Total Ranking Problem in Example 7

Let S = {a1,az,...,a,} be the set of p elements. Let myui(a;) = ¢ for every i = 1,2,...,p. We use the similarity valuation
P = pProtal-ranking N Eq. (2) of the main paper. As each element in the poset corresponds to a function = : S — S, we
will use this functional notation throughout. For a covering pair (71, 72), there exists a single pair of elements (a;,a;) €
inv(7e; i) \ inv(71; Tnann) with j > 4. Then, from the definition of p, for any permutation m, we have that

p(mz, ) — p(mr,m) = I[(ai, a5) € inv(m; muun)] = L[m(az) < m(as)].

Let 7tsup be the estimated ranking from applying a base procedure on a subsample of the data. Consider a fixed integer k
with 1 < k < p — 1. Define the sets S1 and Ss:

S = {(ai,aj) € inV(ﬂ'*;TrnuH) ] = k},
So = {(ai,aj) o4 inV(Tl'*;Trnuu) tj—i= k‘}

The set S1 corresponds to non-null pairs (as described in the main paper) and the set Ss corresponds to null pairs.
Then, appealing to the definition of S and the constant ¢z (+,) in the total ranking case (see Section V.II), Assumption 1 of
the main paper reduces to the following inequality being satisfied

Z(awaj)GSl P(ﬁ-SUb(a’j) < ﬁ-sub(ai)) < @ [19]
S oy (@) < Foanlar)) = |50

Consider an estimator #sub = frandom that randomly selects a total ranking in the space of permutations. Then, for every i
and j, P(fsub(aj) < fsun(ai)) = % Thus, in this case, Assumption 1 in Eq. (19) is satisfied with equality.
It is also straightforward to check that Assumption 2 of the main paper is reduced to

P(#sub(aj) < #sub(a;)) being the same for every (aj,a;) € So.
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