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On the Behavioral Foundations of the Law of Supply and Demand: Human 

Convergence and Robot Randomness* 
 

Paul J. Brewera, Maria Huangb, Brad Nelsonc, and Charles R. Plottd 
 
 
In a seminal series of papers1, Gode and Sunder[1993,b,1996] have explored the 
relationship between limited rationality, market institutions and the general equilibration 
of markets to the competitive equilibrium.   Their fundamental discovery is that within 
the classical double auction market institution only the weakest elements of rationality 
need to be present for markets to exhibit high allocative efficiency and price 
convergence. While Gode and Sunder place more emphasis on allocative efficiency2 than 
on price convergence, the apparent price convergence increases the agreement between 
their simulation results and observed price convergence in single isolated periods of 
double auction markets with humans3. Their ‘Zero Intelligence’ [ZI] agents, are governed 
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1 Gode and Sunder[1993] introduce the ZI algorithm, with the theme of their paper being that random 
behavior subject to market and individual budget constraints can yield efficient outcomes – the only trader  
rationality that is required is the ability to abide by budget constraints.  Gode and Sunder[1993b, 1996] use 
the ZI algorithm to test various institutional rules and budget constraints within the double auction 
framework to determine which rules are most responsible for market efficiency. Gode and Sunder[1997] 
use the ZI algorithm to test the implications of non-binding price-ceilings in markets.    
2The efficiency emphasis is clear from their titles: ‘What makes markets allocationally efficient?’, 
‘Allocative efficiency. of markets with zero-intelligence traders’, ‘Lower bounds for efficiency of surplus 
extraction…’ 
3 There are some differences among authors as to the definition of convergence.  Gode and Sunder [1993; 
p.29] associate convergence with the final price in the market being closer to the predictions of initial 
supply and demand that early prices: ‘By the end of a period, the price series in budget constrained ZI 
trader markets converges to the equilibrium level almost as precisely as the price series from human trader 
markets does.’  Convergence can have a more restricted meaning when learning is possible over a series of 
repeated market periods – for example Smith[1962] discovered all the trades in a period may occur at the 
CE price given sufficient repetition of that period.  Gjerstad and Dickhaut [1998; ft. 5] use this stricter 
notion in evaluating their model: ‘We argue that prices in a stable market environment converge, if, after 
several periods, the mean deviation of all trades from equilibrium is small.’ The ZI robots can not exhibit 
this type of convergence because they do not learn from previous periods – instead repeating similar 
stochastic behavior at the start of each new period.  Other definitions of convergence, related to time series 
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by completely random choice and constrained only by a budget constraint, are 
coordinated by market forces to the competitive equilibrium.  The results are closely 
related to the results by Becker[1962] that the budget constraint alone, in the presence of 
randomly behaving agents, assures that demand curves will be downward sloping. 
 
Such results stimulate natural questions about the foundations of economics and the most 
fundamental laws of supply and demand.  Is no more intelligence necessary for the 
aggregate operation of these laws than is present in agents whose individual behavior is 
limited only by their budget constraint?  Is nothing else implied by the consistency or the 
price convergence observed in economic experiments? Is only the randomness of 
individual behavior responsible for the law of supply and demand or are deeper principles 
of behavior in operation?  The experiments reported in this paper are designed to explore 
these questions. 
 
While the questions above are motivated by the work of Gode and Sunder, they are not 
the questions that Gode and Sunder posed. Our questions are different. Gode and Sunder 
were keenly aware of the relationship between market institutions and individual 
rationality and their experiments exposed that relationship.  Within their environment 
market dynamics tend to follow a path that leads trading prices to the competitive 
equilibrium price. This particular type of dynamics was first postulated by Alfred 
Marshall and later incorporated into theories of the dynamic behavior of the double 
auction (e.g. Easley and Ledyard [1993]). This property receives even greater emphasis 
in Cason and Friedman[1993].  The sequence of trades along the Marshallian path is a 
particular pairing of traders such that the last trade is necessarily at the equilibrium. It is 
easy to see that the nature of the Marshallian dynamic, the nontatonnement Marshallian 
path, is operating the Gode and Sunder framework. Since this dynamic is operating, 
convergence to the competitive equilibrium and the predictions of the law of supply and 
demand necessarily follow. 
 
The issue of path has certainly not been lost to economic theory.  Indeed, Walras 
invented the concept of tatonnement to illustrate how convergence to equilibrium could 
occur without the intervening influences of a trading path.  The fear was that 
disequilibrium trades could change the equilibrium. Similarly, early experiments 
(Chamberlin4[1948] and Smith5[1962]) were clearly concerned about the possibility that  
trades, especially trades involving extramarginal units, could change the equilibrium by 
shifting the intersection of what they call the “moving” supply and demand. 
Chamberlin[1948] argued that one consequence of such a moving (or instantaneous) 

                                                                                                                                                                             
within and across periods have been based on the Ashenfelter-El Gamal model developed in Noussair, 
Plott, and Riezmann [1996]. 
4 Chamberlin, p.102,  suggests “Information during the market as to the equilibrium price would help 
establish a trend in that direction, but information as to actual prices may do the opposite, in so far as they 
are divergent from equilibrium and are falsely interpreted to be near it.” 
5 Smith, footnote 6, points out that ‘Whenever a buyer and seller make a contract and drop out of the 
market, the demand and supply schedules are shifted to the left in a manner depending upon the buyer’s 
and seller’s positions in the schedules.  Hence, the supply and demand functions continually alter as the 
trading process occur… This means that the intra-trading period schedules are not independent of the 
transactions taking place.’ 
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model is that predictions of price based on initial demand and supply would be 
impossible without also having knowledge of the trading path. Smith[1962], while aware 
of the moving model, discovered that initial supply and demand is sufficient to 
characterize the equilibrium market prices that eventually occur.  Because his (and later) 
experiments involve a series of market periods where the initial supply and demand 
conditions are repeated, the market can be thought of as “learning” or involving “price 
discovery” over time, with the trading path adjusting to one which is more and more 
consistent with the single price equilibrium predictions of initial supply and demand.  In 
contrast, Gode and Sunder, through numerical simulations, suggest that the predictions of 
initial supply and demand might be accurate only because of the nature of probable 
trading paths induced by random behavior within the rules of market institutions.    
 
In summary, the conjunction of Gode and Sunder together with the Ledyard and Easley 
model of the convergence path suggest that the accuracy of the demand and supply 
model, as observed first by Smith[1962], is due primarily to the tendency for the 
Marshallian path to emerge.  Clearly the Marshallian path is sufficient for convergence.  
The question posed here is whether or not it is also necessary.  The experiments reported 
in this paper explore markets in which path in the traditional sense plays no role even 
though the system is non-tatonnement, and asks if demand and supply still have 
predictive power. 
 
The approach taken here is to design an experimental environment which works against 
the Marshallian dynamics.  We will ask on the one hand if markets populated by humans 
converge to the competitive equilibrium predicted by the law of supply and demand 
within the new environment. On the other hand, we will ask if robots with limited 
intelligence will exhibit the convergence process.  The answer to the first question will be 
yes.  Humans will converge. The answer to the second question will be no. The low 
intelligence robots will not converge.  When the path for convergence identified by Gode 
and Sunder is not operative the law of supply and demand will be observed. Thus, 
humans bring some crucial feature to the convergence process that is not present in the 
Gode and Sunder ZI robots. Of course, what elements of human behavior are necessary 
for this convergence process is an open question.  
 
In posing these questions we will invent a new framework and environment for the study 
of markets.  In addition we will explore several different representations of the law of 
supply and demand in this new environment.   
 
The remainder of this paper is organized as follows.  Section 2 will introduce some 
notions of Marshallian path dynamics and its importance for price convergence in 
previous double auction experiments.  These ideas apply regardless of whether a market 
is populated by ZI robots or humans.  In section 3, we will construct an environment 
which works against the operation of the Marshallian path, if indeed a Marshallian path 
can even be defined in this environment.  In section 4, we will explore models that might 
be appropriate for the new environment. Section 5 describes the procedures used in the 
laboratory experiments and ZI simulations.  Section 6 reports the results of laboratory 



 4 

experiments involving humans and computational experiments involving the ZI robots.   
Section 7 reports conclusions.  
 
II.  MARSHALLIAN PRICE DYNAMICS 
 
The Marshallian Path 
The Marshallian path is simply a sequence of trades from left to right along the supply 
and demand curves.  For example, in Figure 1 the Marshallian path theory predicts the 
following sequence of trades: (trade 1) buyer with value 140/seller with cost 30, (trade 2) 
buyer with value 125/seller with cost 35, (trade 3) buyer with value 110/seller with cost 
40, (trade 4) buyer with value 95/seller with cost 45, (trade 5) buyer with value 80/seller 
with cost 50, (trade 6) buyer with value 65/seller with cost 55. No further trades are 
possible because the next buyer has a value [50] less than the seller’s cost [60]. Trade 
prices can vary anywhere between a buyer’s unit value and the seller’s unit cost.  Thus, 
the initial possible range of prices is quite wide [30-140], but the possible range of prices 
is forced closer to the equilibrium as trading progresses with the final trade [55-65] 
constrained to be near the competitive equilibrium [55<P<60]. 
 
In order for the Marshallian path to have empirical support it must be modified by some 
notion of randomness.  The sequence of trading is generally very noisy in comparison to 
any exact ordering of trading partners.  
 
As a practical model, aspects of the Marshallian path correspond well with stylized facts 
observed in both Sunder’s ZI simulations and in laboratory data with human traders:  (1) 
highly profitable trades tend to occur before less profitable trades [see Cason and 
Friedman ,1993, p. 277]; (2) variance in prices tends to decrease as trading progresses 
[Smith,1962]; (3) trading price for the last unit is near the CE price [generally observed]; 
(4) the total units traded is equal to the CE quantity [approximately observed]; (5) the 
final bid and ask in a period are close to the extramarginal redemption values and costs 
[Jamison and Plott, 1997].    
 
Review of ZI Robot Behavior (The Gode and Sunder Phenomena)  
A brief replication of the Gode and Sunder results will help motivate the questions we 
pose. The potential that trading can occur noisily along a Marshallian path, while 
receiving little formal attention6, is essentially underlying price convergence in the ZI 
robot demonstrations.  The purpose of this section is to briefly review the results on ZI 
robots and to show the robots’ tendency to trade noisily along the Marshallian path.   
 
In Gode and Sunder[1992],  ZI robots submit random bids and asks drawn from a 
uniform distribution with support equal to an agent’s budget constraint.  A buyer’s bids 
are distributed U[0,v], where v is the buyer’s value for a unit.  A seller’s ask is distributed 

                                                           
6 Gjerstad and Shachat[1996; p.14], and John Ledyard, in correspondence, has made the observation that 
the ZI algorithm and Marshallian path are really special cases of the “B-process” described for a general 
exchange economy in Hurwicz, Radner, and Reiter[1975a,b].  In the B-process, agents continually choose 
points in their upper-contour sets and suggest trades until competitive equilibrium is reached.  The ZI 
algorithm differs only by not allowing resale.  



 5 

U[c,H] where c is the seller’s cost for a unit and H is an upper limit of trading.  With the 
ZI robots, a pre-defined upper limit to trading is necessary as a uniform distribution over 
the seller’s actual budget constraint, U[c, ∞), would be ill-defined.  Typically, H is set at 
least as high as the highest buyer’s value.  
 
Under the standard double auction rules, a trade occurs when a new bid is made that is 
greater than a pre-existing ask, or when a new ask is made that is less than a pre-existing 
bid.  The trading price is equal to that of the pre-existing bid/ask, whose acceptance is 
triggered automatically by the new entry.  
 
Two important features of ZI robot trading immediately follow:  (1) ZI’s continue trading 
until gains from trade are exhausted, (2) while trades are random, the probability that the 
high value buyer trades with the low cost seller is higher than any other pairing.   
 
An example of a trading sequence from ZI robots is shown in Figure 2. In this example, 
the supply and demand curves of remaining traders are shown before and after each trade. 
Individual bids and asks of the ZI robots are not shown. In this example we see that the 
initial trades are far from equilibrium but the final trade occurs at a price (55) near the 
competitive equilibrium (55<P<60).  
 
Like the Marshallian path theory, early transaction prices can be far from the equilibrium 
while later transaction prices are generally forced closer to the equilibrium by the absence 
of high surplus buyers and sellers.  There is a possibility that early trades can involve 
extramarginal buyers or sellers, and so ZI trading need not be 100% efficient as would be 
predicted under the Marshallian path. Still, extramarginal trades are not frequent. ZI 
trading is a kind of noisy traversal of a Marshallian path in the following sense: although 
the buyers and sellers are picked more or less at random, at each moment in time the 
current high value buyer and current low cost seller have the highest probability of 
trading.   
 
The consistency of such patterns lead Gode and Sunder to the conclusion that markets 
populated by ZI traders converge to competitive equilibrium.  By repeating the example 
of figure 2, we can examine the basis for these claims. 
 
Figure 3 shows the price distributions of initial and final trades obtained in 1000 ZI 
trading periods using the environment of Figure 1.  Here we can clearly see that the initial 
trades are rather widely distributed in price compared to the final trades. The final trades, 
while not exactly clustered around the equilibrium of [55-60], are much closer to the 
equilibrium than the initial trades.  Thus, there is an appearance of convergence. 
 
If convergence of market prices to competitive equilibrium is due simply to the existence 
of a Marshallian path, then it might be possible to construct an environment where a 
classical Marshallian path does not exist in a classical sense. Constructing such an 
environment is the primary topic of our next section.   
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III.  CONTINUOUSLY REFRESHED SUPPLY AND DEMAND ENVIRONMENT 
The purpose of this section is to describe the parameters used in the experiments of 
section V.  In particular, we seek to construct a new kind of supply/demand environment 
together with the supporting methodology necessary to conduct laboratory research.   
 
Continuously refreshing the supply and demand parameters leads to an environment 
where the supply and demand curves do not shrink back to the left as trading progresses. 
Of course, the classical Marshallian path is removed as a process for price convergence.  
 
Previous Methodology 
A bit of explanation about the history of our methodology is useful.  In 
Chamberlin[1948] and subsequent early research7, buyers had cards which told them the 
value of purchasing a single unit.  The card could only be used only once. Similarly 
sellers had cards, usable only for sales of a single unit, which explained a unit’s cost.  
Later experiments (Plott and Smith, 1978) expanded the continuous auction methodology 
to multiple units.  Giving buyers and sellers sheets of paper on which redemption values 
and costs were listed facilitated accounting.  These sheets are typically called redemption 
value sheets for buyers and cost sheets for sellers.  The cards/sheets are private 
information.  Profits of a buyer or seller are simply the difference between the price 
obtained in the market and the value or cost on the sheet.   
 
The arbitrage of redemption values/costs against the market is the source of agents’ 
profits in traditional experiments.  The experimenter set the redemption values and costs 
privately and observed the resulting, public, market behavior.  That part of the 
methodology is retained. 
 
The new methodology involves 2 elements: a Private Markets methodology and a 
Refreshing methodology.  The Private Markets involve a move of the redemption 
value and cost sheets onto the computer in the fom of a private market,  where they 
can then be continuously refreshed in a particular way. 
 
Private Markets Methodology 
In our experiments the arbitrage opportunity takes the form of public and private markets 
instead of a market and cost/value sheets.  Each participant sat at a PC running a 
specialized market program prepared in Java. The program divided the participant’s 
screen into two sections – a private market and a public market. The public market was 
public in the sense that it provides a means for a participant to post offers to buy or sell 
that can be seen and acted upon by other participants. The private markets, however, are 
different for each participant.   
 
The private markets contain the equivalent of redemption value and cost cards or sheets. 
That is, the concept of a “private market” is one in which the participant receives offers 
from the experimenter. In the private markets, participants could not make counteroffers 
or negotiate in the private markets in any way.  The offers from the experimenter are 
                                                           
7 see Plott[1982] or Smith[1982] for a review of the results and methodologies in use from the 1960s-early 
1980s. 
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“private” in the sense that they can only be seen by or executed by a particular 
participant. The private markets serve as an electronic replacement for the redemption 
value and cost sheets used in traditional experiments, but the function is essentially the 
same.   
 
The division of subjects into roles as buyers or sellers is operationalized with private 
markets in the same way that it would be with value and cost sheets. For instance, a 
Buyer receives buy offers from the experimenter in the private market in our new 
experiments, just as a buyer would receive buy offers in the form of redemption values 
from the experimenter in a traditional experiment. A Seller receives sell offers from the 
experimenter in the private market, just as a seller would receive sell offers in the form of 
cost sheets from the experimenter in a traditional experiment.  
 
Offers placed in the private market by the experimenter expired after two minutes, but 
participants were also informed that new offers could appear on the screen at any time. 
Thus, if no new orders were distributed, the environment would have been similar to a 
traditional environment with two minute periods.  
 
The public market showed buy and sell offers from the other participants.  Participants 
could negotiate with each other in the public market under price improvement rules 
standard to most double auction experiments: buy offers must go up, sell offers must go 
down – and after a trade any remaining offers are cleared from the market. 
 
Continuously Refreshed Redemption Values and Costs 
When a unit was traded in a private market by exercising a private market offer, or when 
the two minutes expired, the offer was immediately recycled to another participant. For 
example, if buyer #3 used a private market offer (a redemption value) from the 
experimenter, this same offer would immediately be made to the next buyer (e.g., buyer 
#4).  Similarly, offers to sell (costs) were recycled to the next seller. Subjects had no 
knowledge at all about this refreshing8. Subjects knew only that new orders could appear 
in their private markets at any time.   
 
Refreshing the private offers in this way keeps the instantaneous supply and demand 
curves constant at every moment in time.  If an offer is used or expires, it does not vanish 
from the pool of supply and demand.  Instead, it is recycled to someone else.  Thus, the 
opportunities of gains from trade are never exhausted.  The market demand and supply 
functions as represented by redemption values and costs are always constant - 
independent of the patterns of trade.   
 
In practical terms, the experimenter has a finite cash budget and finite time to conduct the 
experiments. Eventually the experiment must be terminated. To avoid any end-of-

                                                           
8 Implications of revealing this information are unclear since any Pareto improvements in decisions would 
involve both coordination and public goods problems.  Our purpose was to study markets in which the set 
of redemption values and costs in a market are unchanged by trading without becoming involved with 
behavior that might be motivated by attempts to optimize payoffs by coordination over time.    
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experiment effect, participants were given only a general idea of how long the experiment 
would last (e.g., 2-3 hours).   
 
Experimental Parameters 
Table 1 and Figures 4-6 show the offers put into the private markets in each of the three 
experiments that were run. The Buy offers from the experimenter create an induced 
demand curve and the sell offers create an induced supply curve, allowing the calculation 
of competitive equilibrium prices in the usual way.  Each experiment consists of 
continuous trading under two or three different economic environments9. Unlike most 
experiments where a trading period has a start and end announced by the experimenter 
whereby subjects might be signalled that the environment is about to change, changes in 
environment in our experiment are unannounced. Because of these differences we will 
refer to trading intervals rather than trading periods.   
 
Notice that many of the environments have apparently identical competitive equilibria 
but different slopes in the induced supply and demand curves.  We chose the values 
shown in an attempt to separate various interpretations of the law of supply and demand.  
This will be more fully explained after covering models of the operations of the law are  
detailed in the next section.  
 
IV. MODELS IN THE NEW ENVIRONMENT 
The purpose of this section is to describe some qualitative models about how markets 
populated by either ZI robots or Human traders might behave given the continuously 
refreshed supply and demand environments of Section III.  As pointed out by Cason and 
Friedman[1993], Easley and Ledyard[1993] and others, there is no fully accepted model 
of double auction market dynamics.  As no fully worked out and acceptable models exist, 
what follows must by necessity be quite rough.  The discussion here will attempt to 
answer 3 questions:  (1) What concept of convergence has been used?  (2) What are some 
models of price convergence and non-convergence applicable to the continuously 
refreshed experimental environments?  (3) What are the hypothesized relationships 
between markets populated by ZI robots vs. markets populated by Humans?  
 
Price Convergence: Definition 
Typically in double auction data one observes a trend of prices, usually moving towards 
some notion of competitive equilibrium. This trend may be described as “price 
convergence”, but across the literature there is no universally adopted test for 
determining when this convergence is or is not taking place.  For purposes of making 
definitions operational this convergence will be characterized by three properties, which 
are given below: 
 
Properties of Price Convergence (relative to some theoretical equilibrium price Peq) 
1. Initial prices are further from the equilibrium than final prices. 
2. Variance of prices decreases over time 
3. If a parameter change moves Peq, the prices move towards the new equilibrium. 

                                                           
9 Changes in private market offers from one environment to another are done without stopping the trading 
or alerting the subjects, but are distributed in a continuous fashion to create a smoother “transition region”.  
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These properties of convergence requires a non-stochastic equilibrium concept, i.e. a 
single price or range of prices.  The next section explores what equilibrium concepts are 
appropriate to the experimental environments under consideration.  
 
Competitive Equilibrium Models 
Three equilibrium concepts can be identified with the literature. Two of these  are 
appropriate to environments with continuously refreshed supply and demand.  We will 
call these models the Traditional Supply and Demand, the Instantaneous Competitive 
Equilibrium (I-CE) and Velocity Adjusted Competitive Equilibrium (V-CE) models10.  
Different supply and demand curves are used in the two models, as stated below: 
 
T-CE Model.  Traditional Supply and Demand – the supply and demand curves are 
computed from the redemption values and costs that existed at the beginning of a period.  
Clearly the concept of a period is needed.  Since periods do not exist in the environment 
we study, this model is listed only for completeness.   
 
I-CE Model. Instantaneous Supply and Demand – The instantaneous supply and demand 
curves are computed from the private market orders that exist in the market at an instant. 
In a traditional environment these curves change after each trade.  In an overlapping 
generations environment the I-CE has been developed and studied by Aliprantis and Plott 
(1992).  In a continuously refreshed environment the instantaneous supply and demand 
curves are stationary. The intersection of instantaneous supply and demand curves 
determines the competitive equilibrium.  
 
V-CE Model. Velocity-adjusted (ex-post) Supply and Demand – the supply and demand 
curves are adjusted (ex-post) to take account of the number of times a particular supply or 
demand unit appeared in the private market of some participant (velocity).11  The 
intersection of adjusted supply and adjusted demand determines the equilibrium. This 
model can not be determined ex-ante, because the velocities are only known ex-post. 
 
In the environments we study, the fundamental predictive difference in the two models is 
that the V-CE model could be sensitive to the slopes of the private market offers whereas 
the I-CE model is only concerned with the intersection.  If units circulate at different 
speeds, the shape of the V-CE model curves will change and the equilibrium of the model 
could be changed as a result.   
 
Consider two environments that have the same I-CE.  Suppose one environment has a 
steeper slope in the buyers private offers than the other environment. Intervals 1 and 3 
                                                           
10 Smith[1962] makes a distinction between the  “initial” supply and demand as the basis of equilibria as 
opposed to  instantaneous supply and demand.  His primary reason for using the initial supply and demand 
is that it would be too cumbersome to recalculate the instantaneous supply and demand after each trade. He 
suggests  that the differences between initial and instantaneous equilibria are likely to be small when 
trading is efficient.  However, his concern indicates that the relevant equilibrium is by no means obvious.  
11 The idea of a flow or a rate of demanders and suppliers appearing in a market is frequently found in the 
classical literature.  For example Marshall makes an attempt to deal with it by postulating a long run 
analysis as opposed to a short run analysis. 
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defined above have this property (as do Intervals 2 and 4) with Interval 3 having the 
steeper slope in buyers’ induced values.  Suppose further that the steeper buyers’ 
surpluses in Interval 3 induces differences in trading velocities among the buyers in 
Interval 3 vis a vis the buyers in Interval 1. Ex-ante, one might expect trading velocity to 
increase with increasing profit, which would pull equilibrium prices higher in Interval 3.   
 
Non-Convergence Models 
Given the properties of price convergence above, many stationary stochastic models of 
prices will be a non-convergence model.  Three models are considered:  
 
IID Random – Prices are independent, identically distributed random draws from some 
stationary random distribution. 
Martingale – Prices drift with constant variance per unit trade.  Differences in prices 
from one trade to the next are normally distributed with mean 0 and finite, constant 
variance. 
Other  - Prices do not converge, but are not IID random or Martingale in nature.   
  
ZI Behavior under Continuously Refreshed Supply and Demand 
From our previous discussion of the operation of the ZI robots in section 2, it would 
appear that there is no mathematical mechanism for price convergence in the ZI-
populated markets when demand and supply are continuously refreshed.  The absence of 
a Marshallian path means that a squeeze between willingness to accept and willingness to 
pay never occurs.   Instead of drying up, demand and supply is continuously replenished. 
 
Under the ZI robot algorithm, the trading price PZI can be thought of as a random variable 
whose distribution is dependent upon the instantaneous supply and demand curves and 
whose support is limited to the range of possible voluntary trades. In previous, traditional 
market experiments the instantaneous supply and demand curves are shrinking in such a 
way that the support of PZI shrinks and prices appear to converge.   
 
Thus, with continuously refreshed supply and demand, the instantaneous supply and 
demand curves are held constant, and so PZI must give independent and identical (IID) 
distributed random draws.  There can be no price-convergence in ZI-populated markets in 
an environment with continuously refreshed supply and demand, according to this model. 
 
The primary issue in our experiments is whether or not we will see equilibration in 
markets populated by humans.  
 
V.  EXPERIMENTAL PROCEDURES 
Details regarding the special methodologies and parameters used in these experiments 
can be found in Section II.  
 
Laboratory Experiments 
Participants in the experiments were Caltech undergraduates recruited via an 
announcement on a web-based bulletin board.  Each experiment involved 16 participants 
and lasted 2-3 hours. Trading was continuous, with 1 or 2 unannounced parameter 
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changes and no announcements as to when the experiment would be terminated. 
Participants received cash payments in proportion to trading profits.12 
 
Software for the experiments was written in Java and ran inside a Netscape browser. 
Even though our software was web-capable, the experiments were conducted in the 
standard, controlled manner – with groups of participants assembling at the laboratory to 
listen to instructions, ask questions, and take part in the experiment.  
 
Each participant’s screen was divided into two sections, with the private market on the 
left side and the public market on the right side.  Each market displayed the current buy 
and sell orders against a grid of prices. Entering buy and sell offers into the public market 
was accomplished by using the mouse to click at the relevant price. The large 21” 
computer screens used in the laboratory made precision pricing of orders easy. The 
interface was very efficient and resulted in a much higher trading volume than could be 
expected with MUDA or similar double auction software.  
 
Examples of the screens and participant instructions are provided in Appendix A. 
 
ZI Simulations 
A Monte Carlo study of trades using the ZI robot algorithm was performed for 
comparison to the human-subject experiments.  The software was written in version 5 of 
the PERL language, which provides a built-in random number generator. Since most 
random number generators are, in fact, deterministic and since some are not sufficiently 
‘random’, the generator was tested.  This pre-simulation testing of the random number 
generator revealed no flaws either in distribution or serial correlation (independence of 
draws).  
 
The ZI algorithm was run on a Linux-based workstation for several hours.  Data were 
obtained for approximately 1.5 million trades13 for each of the 6 experimental 
environments.  In addition, we ran 1,000 period replications of environment 1 for the 
non-refreshed, standard supply and demand case.  This allowed a comparison with 
previous ZI results in order to check procedures and to generate Figures 2 and 3 used in 
our review of ZI trading behavior given in Section 2.   
 
 
VI.  EXPERIMENTAL RESULTS 
Figures 7 to 9 provide, for each of the three experiments, a side by side comparison of the 
predictions of the instantaneous CE model (left pane),the trading prices observed in the 
experiment (center pane), and the velocity-corrected CE model calculated ex-post (right 
pane).   
 

                                                           
12 These payments were on average, roughly US$30 per participant. 
13 Of course, since there is no natural stopping point in this environment, we could have kept going or 
terminated the programs earlier. This size does allow us to generate distributions for statistics such as 
finite-sample price means and variance. 
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In the center pane, the two solid lines show the instantaneous CE at various points in the 
experiment14. Two symbols are used for the trades.  Diamonds represent ‘buys’ or 
acceptances of a sell offer by a buyer, and pluses represent ‘sells’ or acceptances of a buy 
offer by a seller.  
 
Table 2 provides mean prices and overall price variance for each experiment.  Averages 
and variances are reported by experiment, by interval, and by every 100 trades within an 
interval.  For completeness, transition intervals are also identified and reported but do not 
play a role in the analysis presented here.  The table shows that within each interval, price 
variance tends to decrease as trades occur.   
 
The most striking feature of figures 7-9 is that prices appear to converge.  These 
tendencies are summarized as Result 1.  
 
Result 1:  Price convergence can occur in human-populated markets within 
continuously refreshed supply and demand environments. 
Support: Each of the three convergence properties of section 4 must be shown in 
operation. 
1. Initial prices are further from the equilibrium than final prices. From figure 7 we see 
that for interval 1, initial prices are near 100 and are further from either the V-CE or I-CE 
than the final prices which are near 60-65. Table 2 also supports this same observation as 
the first 100 trades of interval 1 have an average price of 81.2 while the final 93 trades 
have an average price of 63.4.  Similarly, for interval  2 in the latter part of figure 7, 
prices move toward the equilibrium from below. Interval 3 prices start high and move 
towards v-ce/I-ce equilibria -- from table 2 we see that the first 100 trades have an 
average price of 85.9, and the final 66 trades have an average price of 75.9. Interval 4, in 
the latter half of figure 8, shows convergence from below.  In Figure 9, Intervals 5 and 7 
show some evidence of convergence from above  while Interval 6 shows convergence 
from below.   
2. Variance of prices decreases over time.  While some notion of variance can be seen 
from the dispersion of points in the figures, Table 2 is more reliable, with the transaction 
price variance tabulated for groups of 100 trades. For Interval 1, the variance of the first 
100 trades is 85.5, followed by 26.3, 21.5, 18.1, 22.3, 8.9, 9.6 for each successive 100 
trades, and finally, for the last 93 trades, the transaction price variance 6.5.  Over Interval 
1 the variance decreases by a factor of 13:1, and with 2 minor exceptions, (18.1→22.3, 
8.9→9.6), the variance is strictly decreasing with time.  Similar patterns are seen in 
Interval 3 (decrease from 55.0 to 8.7), Interval 4 (decrease from 167 to 77), Interval 5 
(decrease from 97.1 to 9.3), and Interval 6 (decrease from 245.1 to 5.7).   
3. If a parameter change moves Peq, the prices move towards the new equilibrium. 
Intervals 2, 4, 6, and 7 involved a parameter shift from a previous trading interval.  In 
each transition, Table 2 shows a sudden increase in transaction price variance, while the 
Figures show the price moving toward the new equilibrium•  
 
                                                           
14 Note that the dashed lines also track the I-CE in the region where one period’s private values are being 
changed to another, such as the transition region of trades 793-820 that separates period 1 from period 2 in 
experiment 1.  
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The next result addresses the question of which model is more accurate. The 
Instantaneous-CE (I-CE) model seems to predict the trend of prices, though not the exact 
price to which prices converge. While we can not say that prices converge to the 
instantaneous CE model, a convergence phenomena does appear to be present as the 
prices do track changes in the parameters in a similar manner to the instantaneous CE. 
 
The right panes of Figures 7-9  provide the alternative model – the Velocity Adjusted 
Competitive Equilibrium (V-CE) model - that better approximates a convergence 
process. The visual impression is stated below as our next result. 
 
Result 2: The Velocity Adjusted Competitive Equilibrium (V-CE) Model best 
corresponds to the observed pattern of prices.  
Support:  The models defined in Section 4 are considered for completeness. Non-
convergence models can be rejected as Result 1 shows that price variance appears to be 
decreasing. The I-CE model, based on Instantaneous supply and demand, and the V-CE 
model, based on a velocity adjustment calculated ex-post, can be compared in Figures 7-
9. In particular, note that the I-CE model predicts identical outcomes for intervals 1 and 3 
[55≤P≤60], intervals 2 and 4 [180≤P≤185], and intervals 5 and 7 [80≤P≤85].  From Table 
2 we see that Intervals 2 and 4 and intervals 5 and 7 have almost identical final price 
levels, but in interval 3 prices are observed to converge to a much higher level [75.9 for 
the last 100 trades] than in interval 1 [63.4 for the last 100 trades]. Looking to Figures 7 
and 8 for Intervals 1 and 3, we see that both Intervals 1 and 3 fit the V-CE model very 
well.  Thus, the V-CE model accounts for a difference in observed prices that the I-CE 
model did not capture•  
 
Turning to examination of markets populated by the ZI robots, Figure 10 shows the price 
sequence of 1,000 ZI trades with the environment 1 continuously refreshed environment. 
Price variance is constant and prices are independent draws from a complicated random 
distribution.  We are left with result 3. 
 
Result 3: Price Convergence does not occur in markets populated by ZI traders with 
a continuously refreshed supply and demand environment.   
Support: The simulation produced exactly what the model predicts: trades have IID 
random prices, and price variances do not decrease over time but instead remain constant. 
The constant variances that were observed are reported in Table 3, and are generally quite 
high in comparison with even the initial variance in the markets populated by humans. 
Since prices are not decreasing in variance, by definition price convergence does not 
occur•  
 
A summary of the ZI trading data is reported in Table 3.  Results 4 and 5 will compare 
and contrast the markets populated by the ZI robots and markets populated by the 
humans.  While there are a number of differences, there also will remain a puzzling 
similarity:  although price convergence does not occur in the markets populated by ZI 
robots, the mean prices correspond well to V-CE equilibrium prices. 
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In the continuously refreshed case, markets populated by ZI robots exhibit neither price 
convergence nor pricing distributions similar to human markets. It is possible that there 
are significant differences between the behavior of markets populated by ZI-robots and 
markets populated by humans under conditions of ordinary supply and demand as well.  
The differences may be harder to detect in practice, but Fig. 10 and Fig. 11 suggest that 
they might exist.15  
A comparison of the distribution of prices between the markets populated by the ZI 
traders and the markets populated by human traders is shown as Figure 12.  In these 
graphs, the “Observed” data are from the humans and the “ZI” data is from the robot 
simulations.  
 
Each row of the graph provides this data for one of our three experiments, with the data 
for each interval shown sequentially in panes from left to right.  
 
Result 4: In environments with continuously refreshed supply and demand, markets 
populated by Humans differ from markets populated by ZI robots as follows:  

(a) transaction prices in markets populated by humans tend to converge 
whereas in markets populated by ZI robots transaction prices do not converge 

(b) the distribution of transaction prices is more tightly peaked in markets 
populated by Humans and does not exhibit the stepped artifacts of ZI Robot pricing 
distributions.  

(c) peaks of the observed distribution of transaction prices are in different 
locations in the two types of markets 
Support: (a) is merely a restatement of Results 1 and 3.  (b) The difference in tightness of 
the transaction price distribution can be clearly seen in any of the trading intervals in 
Figure 12. For example, Intervals 1, 2, and 3, given in the 3 larger panes of Figure 12, the 
density for markets populated by humans to peak at about 10-12%/franc. Given the same 
instantaneous supply and demand parameters, the transaction price distribution for 
markets populated by ZI-robots have peak densities of 1-2%/franc. (c) the difference in 
location of the peak of transaction price distribution can be seen in any of the trading 
intervals in Figure 12 with the exception of interval 1. For example, in Interval 2 the peak 
(or mode) of the distribution occurs at a price of about 170 for markets populated by 
humans, but at a price of about 190 for markets popualted by ZI•  
 

                                                           
15 Figure 3 shows the price distribution for 1000 repetitions of a interval 1 ZI market with non-refreshed 
supply and demand.  Figure 11 shows the price distribution from 1.5 million trades from a interval 1 ZI 
market with continuously refreshed supply and demand. In Figure 3, the upper pane shows the distribution 
of prices for all trades in 1000 repetitions of the standard environment.  The second pane shows the 
distribution of prices for the final trades in these 1000 repetitions.  Notice that while the variance decreases 
at the final trade of each interval, the distribution is somewhat skewed and has a large mass in the 40s -- 
well below the CE of 55<P<60.  Thus, convergence in the standard environment is not necessarily to the 
CE although the decrease in variance suggests some sort of convergence is occurring. Because the 
distribution in Fig. 11 is even flatter than that of the overall trades in Figure 3, and is peaked above the CE, 
it is clearthat price convergence does not occur with ZI robots when there is continuously refreshed supply 
and demand even though it does occur to a limited extent in the non-refreshed environment.  
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As can be seen, the mean transaction prices of ZI robots in environments 1, 3, and 5 are 
far from the instantaneous CE implied by the parameters.  While environments 2, 4, and 6 
show mean prices near the I-CE, the variance is constant and quite high as a proportion of 
price.  In contrast, the mean transaction prices correspond well with the V-CE calculated 
for the robot trading. Given the lack of price convergence for the ZI robot markets, the 
existence of a correspondence between the mean prices and the V-CE is a bit puzzling.   
 
 
The similarities between the markets populated by humans or ZI robots, related to the 
predictive abilities of the V-CE model in both cases is stated below as Result 5. 
 
 
Result 5: In environments with continuously refreshed supply and demand, the V-
CE model predicts mean transaction prices in markets populated by Humans as 
well as markets populated by ZI robots.   
Support: From Result 3 we know the V-CE model is appropriate to mean prices 
generated in human markets.  It remains to be shown that V-CE corresponds to mean 
prices observed in the robot simulations. Table 3 shows that the V-CE model also applies 
to the mean prices exhibited by the robots. In Environement 1, the I-CE price range is 
55<P<60, the V-CE price is 80, and the actual mean is 78.3.  Similarly, in Environment 
2, V-CE (175) compares more favorably to mean price (176.82) than the I-CE 
(180<P<185). While in each trading environment the mean transaction price of ZI robots 
corresponded more closely to the V-CE price than to the I-CE price, the biggest 
differences between V-CE and I-CE are seen in Environment 3 (I-CE (55,60), V-CE 90, 
mean[P]=95.04)  and  Environment 5 (I-CE (80,85), V-CE 110, mean[P]=118.16•     
 
VI.  CONCLUDING REMARKS 
The principle result is that the Marshallian path does not account for the observed 
accuracy of the law of supply and demand as a price discovery process in markets 
populated by humans. An immediate corollary is that some aspect of rationality in 
addition to that imposed by the budget constraint and trading institutions is operating. 
While the Marshallian path can be called the “cause” of price convergence in markets 
populated by ZI robots it is not the “cause” of price convergence in markets populated by 
humans.  While it might be helpful in some environments, it is not essential.  
 
The continuously refreshed environment offers a new paradigm for studying the type of 
market adjustments that the concept of tatonnement was designed to study.  Thus the 
environment holds the potential for theory development and testing. In this context the 
volume adjusted competitive model suggests itself as a step towards an improved theory 
for how markets adjust. The flows or speeds with which demand and supply units are 
received in the market are natural parameters with which to adjust the classical models. 
 
The experiments also help to focus on the fact that supply and demand equilibria 
correspond more to some form of time aggregation (where velocity can be important) 
than to an instantaneous model (where velocity is not important).  More work is clearly 
needed to understand the dynamics of price convergence in markets.  The V-CE model is 
in some ways too simple and unsatisfying. There are many alternatives. One could 
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consider models where there is a fixed time window into the past, or where various 
moving averages of instantaneous demands are taken.  Various forms of differential 
equations might also be considered.  
 
The experiments help define the context in which the use of robots might be most 
valuable. Humans are known to be more complex than ZI robots in their information 
processing capabilities.  ZI robots are designed not to learn, imitate, adapt, or otherwise 
react in a strategic manner.  It is this simplicity of ZI robots that is appealing in 
conducting simulations, as otherwise the simulations would depend on a number of initial 
parameters (beliefs, adaptation speeds, length of memory for use in histories, etc.) that 
are conveniently absent. However, this simplicity means that the ZI behavior will not 
robustly predict the behavior of humans in all possible market environments, as human 
behavior involves the complexities that are purposefully omitted from ZI robots.  The 
results reported here demonstrate that the path of convergence requires more intelligence 
thanthe Gode and Sunder ZI framework postulates.   
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Figure 2: Example ZI Robot Trading Period  

 

 

 
Efficiency = Total Trading Surplus / Maximum Possible Surplus = 360/360 = 100% 



Figure 3: Price Distributions within Markets populated by ZI traders 
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ZI closing prices distribution - standard environment
(mean=52.6, var=151.9)
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Figure 4 - Parameters for Experiment 1    
 
         
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
 
 
 
 
 
 
        
 
         
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
 



 
Figure 5 - Parameters for Experiment 2    
        
 
         
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
 
 
 
 

Interval 4 
Instantaneous CE = {180<P<185; Q=6} 

0

100

200

Q

P

Buy Orders 210 205 200 195 190 185 180 175 170 165 160 155 150 145 140 135

Sell Orders 40 65 90 115 140 165 190 195 200 205 210 215 220 225 230 235

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 
 



Interval 7 (same as Interval 5) 
Instantaneous CE = {80<P<85; Q=6} 

0

100

200

Q

P

Buy Orders 225 200 175 150 125 100 75 70 65 60 55 50 45 40 35 30

Sell Orders 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 
 
 



  
 

Figure 10: Highest Bids, Lowest Asks, and Transaction Prices [ZI Robots, 
Environment 1] 
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Figure 11: ZI Price Distribution with Continuously Refreshed Supply/Demand 
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Figure 12: Comparison of Price Distributions: ZI markets vs. Human markets 
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Table 1: Supply and Demand parameters maintained in the experiments 
Experiment Interval/ 

Environment 
Private Market Orders Instantaneous 

Competitive 
Equilibrium 

1 1/1 
(tr#1-793) 

 
2/2 

(tr#820-end) 

Buy (140,125,110,95,80,65,50,45,40,35,30,25,20,15,  10,   5) 
Sell (  30,  35,  40,45,50,55,60,65,70,75,80,85,90,95,100,105) 
 
Buy 
(210,205,200,195,190,185,180,175,170,165,160,155,150,145,140,135) 
Sell 
(100,115,130,145,160,175,190,195,200,205,210,215,220,225,230,235) 

55≤P≤60 
 

180≤P≤185 
(see Figure 

4) 

2 3/3 
(tr#1-466) 

 
4/4 

(tr#504-end) 

Buy (200,175,150,125,100,75,50,45,40,35,30,25,20,15,  10,    5) 
Sell (  30,  35,  40,   45,  50,55,60,65,70,75,80,85,90,95,100,105) 
 
Buy 
(210,205,200,195,190,185,180,175,170,165,160,155,150,145,140,135) 
Sell (  40,  65,  
90,115,140,165,190,195,200,205,210,215,220,225,230,235) 

55≤P≤60 
 
180≤P≤185 
(see Figure 

5) 

3 5/5 
(tr#1-162) 

 
6/6 

(tr#176-313) 
 

7/5 
(tr#348-end) 

Buy (225,200,175,150,125,100, 75,  70,65, 60,  55,  50,   45, 40,  35,  
30) 
Sell (  55,  60,  65,   70,  75, 80,  85, 
90,95,100,105,110,115,120,125,130)  
 
Buy 
(235,230,225,220,215,210,205,200,195,190,185,180,175,170,165,160) 
Sell (  65,  90,115,140,165,190,215, 
220,225,230,235,240,245,250,255,260) 
 
Buy (225,200,175,150,125,100, 75,  70,65, 60,  55,  50,   45, 40,  35,  
30) 
Sell (  55,  60,  65,   70,  75, 80,  85, 
90,95,100,105,110,115,120,125,130)  
Note: same as Period 5 

80≤P≤85 
 
 

205≤P≤210 
 

80≤P≤85 
(see Figure 

6) 

 
 
 
 
 
 



Table 2: Averages and Variances of Prices Observed in Experiments [Humans] 
   
Experiment/Interval/Trades Number of 

Transactions 
Mean 

[Transaction Price] 
Var 

[Transaction Price] 
Experiment 1 868 74.8 637.6 
Interval 1: trades 1-793 793 68.0 68.8 
Detail    
  1-100 100 81.2 85.5 
  101-200 100 75.8 26.3 
  201-300 100 69.8 21.5 
  301-400 100 64.8 18.1 
  401-500 100 63.7 22.3 
  501-600 100 63.2 8.9 
  601-700 100 61.9 9.6 
  701-793 93 63.4 6.5 
Transition 12: trades 794-819 26 112.8 1036.4 
Interval 2: trades 820-868 49 164.7 40.4 

    
Experiment 2 657 100.9 1304.9 
Interval 3: trades 1-466 466 80.5 32.5 
Detail    
  1-100 100 85.1 55.0 
  101-200 100 83.0 13.8 
  201-300 100 79.8 15.9 
  301-400 100 77.3 9.6 
  401-466 66 75.9 8.7 
Transition 34: trades 467-503 37 94.2 176.3 
Interval 4: trades 504-657 154 164.1 174.1 
Detail    
  504-603 100 159.5 167.3 
  604-657 54 172.5 77.7 

    
Experiment 3 459 134.3 1491.6 
Interval 5: trades 1-162 162 110.5 87.6 
Detail    
  1-100 100 114.3 97.1 
  101-162 62 104.2 9.3 
Transition 56: trades 163-175 13 107.5 5.0 
Interval 6: trades 176-313 138 187.6 216.0 
Detail    
  176-275 100 183.9 245.1 
  276-313 38 197.4 5.7 
Transition 67: trades 314-347 34 145.4 868.0 
Interval 7: trades 348-459 112 102.9 24.8 
 



Table 3. Price Data from ZI Markets 
 
ZI Parameters Data 

Collected 
(trades) 

Mean[P] Var[P] Instantaneous 
CE 
Ex-Ante 

Velocity-Adjusted 
CE Ex-Post 

S/D not 
refreshed  
Environment 1  

7075 trades 
1000 
periods 

67.0 (all 
trades) 
52.6 (final) 

  531 
  152 

55≤P≤60 
 

--- 

S/D 
continuously  
refreshed  
Environment 1  

1.56 
million 

  78.31   675 55≤P≤60   80 

Environment 2  1.41 
million 

176.82   486 180≤P≤185 175 

Environment 3  1.77 
million 

  95.04 1657 55≤P≤60   90 

Environment 4  1.57 
million 

169.58   964 180≤P≤185 165 

Environment 5  1.73 
million 

118.16 1650 80≤P≤85 110 

Environment 6  1.57 
million  

193.47 1017 205≤P≤210 190 

 
 


	II.  MARSHALLIAN PRICE DYNAMICS
	The Marshallian Path
	Review of ZI Robot Behavior (The Gode and Sunder Phenomena)
	
	
	III.  CONTINUOUSLY REFRESHED SUPPLY AND DEMAND ENVIRONMENT
	
	Previous Methodology


	Private Markets Methodology
	Continuously Refreshed Redemption Values and Costs
	Experimental Parameters
	IV. MODELS IN THE NEW ENVIRONMENT

	Price Convergence: Definition



	Properties of Price Convergence (relative to some theoretical equilibrium price Peq)
	
	
	Competitive Equilibrium Models
	
	Non-Convergence Models


	ZI Behavior under Continuously Refreshed Supply and Demand
	V.  EXPERIMENTAL PROCEDURES
	Laboratory Experiments
	ZI Simulations
	VI.  EXPERIMENTAL RESULTS
	VI.  CONCLUDING REMARKS



	1079fig.pdf
	Table 1: Supply and Demand parameters maintained in the experiments
	Table 3. Price Data from ZI Markets


