Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 28, 2022 | Submitted
Report Open

Kernel Interpolation as a Bayes Point Machine

Abstract

A Bayes point machine is a single classifier that approximates the majority decision of an ensemble of classifiers. This paper observes that kernel interpolation is a Bayes point machine for Gaussian process classification. This observation facilitates the transfer of results from both ensemble theory as well as an area of convex geometry known as Brunn-Minkowski theory to derive PAC-Bayes risk bounds for kernel interpolation. Since large margin, infinite width neural networks are kernel interpolators, the paper's findings may help to explain generalisation in neural networks more broadly. Supporting this idea, the paper finds evidence that large margin, finite width neural networks behave like Bayes point machines too.

Attached Files

Submitted - 2110.04274.pdf

Files

2110.04274.pdf
Files (478.7 kB)
Name Size Download all
md5:81b94887bf3cc002e35779abdac3e85f
478.7 kB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 23, 2023