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SUPPLEMENTARY NOTE 1: WAVE PROPAGATION SIMULATION AND PHASE MAPS OF

THE METASURFACES

In this section we present numerical analysis results of the QPGM. First, it is worth explaining

why the QPGM consists of two metasurface layers, and a single layer is not capable of doing so.

Then, we verify that the QPGM based on the two metasurface layers addresses the issues faced

in the system using a single metasurface. We used wave-propagation simulations to analyze the

systems in Fig. S1. In the simulations, the metasurfaces and the conventional lens are modeled as

ideal phase plates. Moreover, the thickness of all fused silica substrates is fixed at 1 mm. For all

metasurfaces, the distance between the optical axes for TE and TM polarizations, ∆s, is fixed at

1.5 µm along the y-axis. Finally, the phase sample shown in Fig. 1c is used for the all simulations.

Figure S1a shows a schematic of a DIC system based on a single birefringent metasurface lens

and a regular refractive lens, forming a 4- f imaging system. To implement the single metasurface

layer system, we use the thin lens equation for the phase profiles of the metasurface lens (ML1,a)

and the conventional lens (Lens2,a). More specifically, ML1,a has two different phase profiles for

TE and TM polarizations, (φML1,a,TE and φML1,a,TM), given by:

φML1,a,TE = −
π

λ f1
(x2 + (y +

∆s
2
)2) (S1)

φML1,a,TM = −
π

λ f1
(x2 + (y −

∆s
2
)2), (S2)

where x and y are Cartesian coordinates from the center of ML1,a and λ is the operating wavelength

in vacuum. Moreover, the polarization-insensitive phase profile of Lens2,a is written as, φLens2,a =

− π
λ f2
(x2 + y2). While one might expect that the configuration in Fig. S1a works similar to a

conventional DIC microscope, an additional spurious intensity gradient shows up in the formed

interference pattern, Isingle, as seen in Fig. S1b. The reason is that despite the 4- f imaging

system, the two slightly separated optical axes for the TE and TM polarizations cause the intensity

gradient not present in the original target (see Supplementary Note 2 and Supplementary Fig.

S2 for experimental results of the single metasurface system and theoretical analysis about the

degradation). Another clear issue with the system shown in in Fig. S1a which undermines

its miniature size is that it would require a variable phase retarder to retrieve quantitative phase

gradient information.
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To resolve the spurious intensity gradient issue first, we replace the refractive lens with a second

birefringent metasurface lens in Fig. S1c. For the system based on the two bifocal metasurface

lenses shown in Fig. S1c, the metasurface lens 1, ML1,c, is the same as ML1,a shown in Fig. S1a.

A second birefringent metasurface lens, ML2,c, is used in the system shown in Fig. S1c instead of

Lens2,a in Fig. S1a. The two phase profiles of ML2,c for TE and TM polarizations, (φML2,c,TE and

φML2,c,TM), are given by:

φML2,c,TE = −
π

λ f2
(x2 + (y +

∆s
2
)2) (S3)

φML2,c,TM = −
π

λ f2
(x2 + (y −

∆s
2
)2) + φo, (S4)

where φo is the phase offset between the two orthogonal polarizations. φo is fixed at 3π
4 for the

simulations. As a result, the simulated interference intensity map shown in Fig. S1d, Idouble, is

a clear DIC image of the transparent object with no intensity artifacts (see Supplementary Note

2 for theoretical explanation about the system of the two birefringent metasurface lenses). In the

experimental implementation, the values of φo are 3π
4 and π

4 for the QPGM using two separate

substrates and the double-sided QPGM, respectively.

In addition to birefringence, the capability of metasurfaces to simultaneously perform multiple

independent functions allows us to eliminate the requirement of a variable retarder, since several

images with different phase offsets can be captured simultaneously as shown schematically in Fig.

S1e. Moreover, we employed the ray tracing method instead of the thin lens equation to mitigate

geometric aberrations. In other words, the phase profiles are optimized for the metasurface layers

1 and 2 in Fig. S1e, Layer1,e and Layer2,e, to minimize the off-axis aberrations and increase the

field of view. Specifically, the phase profiles of the metasurfaces are defined by two terms. One

is a sum of even-order polynomials of radial coordinates (mostly implementing the focusing), and

the other is a linear phase gradient term associated with the three-directional splitting of light. The

phase profiles of Layer1,e for TE and TM polarizations, φLayer1,e,TE and φLayer1,e,TM, are given by:

φLayer1,e,TE =

5∑
n=1

an

R2n (x
2 + (y +

∆s
2
)2)n − kgrat,1y (S5)

φLayer1,e,TM =

5∑
n=1

an

R2n (x
2 + (y −

∆s
2
)2)n − kgrat,1y (S6)
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φLayer1,e,TE =

5∑
n=1

an

R2n (x
2 + (y +

∆s
2
)2)n − kgrat,1x (S7)

φLayer1,e,TM =

5∑
n=1

an

R2n (x
2 + (y −

∆s
2
)2)n − kgrat,1x (S8)

φLayer1,e,TE =

5∑
n=1

an

R2n (x
2 + (y +

∆s
2
)2)n + kgrat,1y (S9)

φLayer1,e,TM =

5∑
n=1

an

R2n (x
2 + (y −

∆s
2
)2)n + kgrat,1y, (S10)

where an are the optimized coefficients of the even-order polynomials in the shifted radial coordi-

nates, kgrat,1 is the linear phase gradient, and R denotes the radius of the metasurfaces. Detailed

information about an, kgrat,1, and R is given in Table S1. Since a single set of rectangular nano-

posts can only implement one pair of the birefringent phase maps, three different sets of rectangular

nano-posts are designed to achieve the three pairs of phase maps in (Eqs. S5 and S6), (Eqs. S7 and

S8), and (Eqs. S9 and S10). Then, the three maps of the rectangular nano-posts are interleaved

along the x-axis using the spatial multiplexing method [1–3]. With the phase profiles in Eqs. S5-

S10, the Layer1,e in Fig. S1e plays the role of a lens and a three directional beam-splitter at the

same time, at the cost of a drop in efficiency.

Layer2,e has three different birefringent metasurfaces which are identically displaced from the

center of Layer2,e. The distance from the center of the Layer2,e to the center of each lens, ∆D,

is 660 µm. The three coordinates of the centers of the lenses measured from the center of the

Layer2,e are (0,-∆D) (-∆D,0) and (0,∆D). The six phase profiles of the three lenses for TE and TM

polarizations are written as:

φLayer2,e,TE =

5∑
n=1

bn

R2n (x
2 + (y + ∆D +

∆s
2
)2)n + kgrat,2y (S11)

φLayer2,e,TM =

5∑
n=1

bn

R2n (x
2 + (y + ∆D −

∆s
2
)2)n + kgrat,2y + φo (S12)

φLayer2,e,TE =

5∑
n=1

bn

R2n ((x + ∆D)2 + (y +
∆s
2
)2)n + kgrat,2x (S13)

4



φLayer2,e,TM =

5∑
n=1

bn

R2n ((x + ∆D)2 + (y −
∆s
2
)2)n + kgrat,2x + φo +

2π
3

(S14)

φLayer2,e,TE =

5∑
n=1

bn

R2n (x
2 + (y − ∆D +

∆s
2
)2)n − kgrat,2y (S15)

φLayer2,e,TM =

5∑
n=1

bn

R2n (x
2 + (y − ∆D −

∆s
2
)2)n − kgrat,2y + φo +

4π
3
, (S16)

where bn are the optimized coefficients of the even-order polynomials of the shifted radial coor-

dinates and kgrat,2 is the linear phase gradient. The detailed information about bn and kgrat,2 is

given in Table S1. As a result, the two layers form the three different DIC images at the image

plane. Specifically, combinations of (Eqs. S5, S6, S11, and S12), (Eqs. S7, S8, S13, and S14), and

(Eqs. S9, S10, S15, and S16) result in the three phase-shifted DIC images in Fig. S1f, I1, I2 and I3,

respectively. To be specific, the desired phase offsets for the three-step phase shifting are achieved

by the phase maps of the second metasurface layer in Eqs. S11-S16. Moreover, we should point

out that I1, I2 and I3 in Fig. S1f are comparable to the ideal results shown in Fig. 1d. Figure S1g

shows the PGI calculated from the three DIC images in Fig. S1f by using Eq.2 in the main text,

and is in good agreement with the ideal PGI shown in Fig. 1e.

As shown in Figs. 4a and 4b in the main text, the QPGM is also implemented using double-sided

metasurfaces on a 1-mm thick fused silica wafer. The double-sided metasurface QPGM is designed

through an identical process used for the design of the QPGM based on two metasurface layers on

two separate substrates. The phase profiles of the double-sided metasurfaces are determined by

Eqs. S5-S16 with the optimized phase profile parameters such as an, bn, R, ∆D, ∆s, kgrat,1, and

kgrat,2 given in Table S2. The distances from the object plane to the metasurface layer 1 and from

the image plane to the metasurface layer 2 are 317 µm and 397 µm, respectively.
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SUPPLEMENTARY NOTE 2: EXPERIMENTAL AND THEORETICAL RESULTS WITH A

SINGLE BIFOCAL METASURFACE LENS

We fabricated a single bifocal metasurface and measured its performance. The phase map of

the device is determined by Eqs. S1 and S2. For the fabricated single bifocal metasurface lens,

the diameter, focal length, and separation of the focal points are 900 µm, 1.2 mm, and 2 µm,

respectively. The two focal points are characterized through the optical setup shown in Fig. S2a.

An 850-nm semiconductor laser (Thorlabs, L850P010) is coupled to a single mode fiber and a laser

collimator for illumination. The linear polarizer in front of the laser collimator is aligned to 0◦

(for TE), 90◦ (for TM), and 45◦ for characterization of the bifocal metasurface lens. The measured

intensity maps shown in Supplementary Fig. S2b clearly show the polarization dependent bifocal

property. The intensity profiles on the black dashed lines in Fig. S2b are shown in Fig. S2c. In Fig.

S2c, the FWHM of the two focal points and the distance between the two focal points are 1.21-1.35

µm and 2 µm, respectively. Moreover, the measured focusing efficiencies through a pin-hole with

a diameter of about 4×FWHM at the focal plane are ∼78% for both TE and TM polarizations.

We performed imaging experiments with the single bifocal metasurface lens using the optical

setup schematically shown in Fig. S2d. We employed a variable retarder to capture three different

DIC images. Moreover, oblique illumination from an LED was used to avoid saturation at the

central pixels of the camera resulting from undiffracted light. To limit the bandwidth, we employed

a band-pass filter with a center wavelength and bandwidth of 850 nm and 10 nm, respectively. The

three captured DIC images, I1, I2, and I3, are shown in Fig. S2e. The results clearly show that the

spurious graded intensity patterns degrade the DIC images as expected from Fig. S1b. In Fig.

S2f, the PGI is calculated from the three DIC images in Fig. S2e through the three-step phase

shifting method [4]. The graded phase gradient in the background in Fig. S2f also indicates the

imperfect imaging performance of the single bifocal metasurface lens.

The degradation exists both in the simulation results shown in Fig. S1b and the measurement

in Figs. S2e and S2f. The degradation can be explained using Fourier optics. If we consider the

optical system consisting of one metasurface bi-focal lens and a normal thin lens as in Fig. S1a

such that the z-axis passes through the center of the second lens (i.e. the optical axes of the first

lens for TE and TM polarizations are ∆s/2 distant from the z-axis), we can write down the relations

between the field at the object plane (U) and the fields at the Fourier plane (UF,TE and UF,T M)

through the Fresnel diffraction. For simplicity, let’s assume that the focal lengths of the two lenses
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in Fig. S1a are identical. In this case, the two optical fields formed by the first metasurface lens,

UF,TE and UF,T M are no longer simple Fourier transforms of U, but would instead be written as:

UF,TE (x, y) =
∬ ∬

U(x′′, y′′)exp[i π
λ f ((x

′ − x′′)2 + (y′ − y′′)2)]dx′′dy′′

× exp[−i π
λ f (x

′2 + (y′ + ∆s
2 )

2))])exp[i π
λ f ((x − x′)2 + (y − y′)2)]dx′dy′

= A1
∬

U(x′′, y′′)exp[i π
λ f (x

2 + x′′2 + y2 + y′′2)]

×
∬

exp[i π
λ f (x

′2 + y′2 − 2(x + x′′)x′ − 2(y + y′′ + ∆s
2 )y

′]dx′dy′dx′′dy′′

= A2exp(−i 2π
λ f
∆s
2 y)

∬
U(x′′, y′′)exp[−i 2π

λ f (xx′′ + (y + ∆s
2 )y

′′)]dx′′dy′′

= A2exp(−i 2π
λ f
∆s
2 y)Ũ( x

λ f ,
y+∆s2
λ f )

UF,T M(x, y) = A2exp(i 2π
λ f
∆s
2 y)Ũ( x

λ f ,
y−∆s2
λ f ).

where λ, f, and ∆s are the wavelength, focal length of the two lenses, and the separation between

the optical axes of the metasurface lens, respectively. Also, Ũ represents the 2D Fourier transform

of U. A1 and A2 are complex constants. Then, the fields at the image plane (Ui,TE and Ui,T M) can

be written through the 2D Fourier transform of UF,TE and UF,T M ;

Ui,TE (x, y) =
∬

UF,TE (x′, y′)exp[−i 2π
λ f (xx′ + yy′)]dx′dy′ = B1exp(+i 2π

λ f
∆s
2 y)U(−x,−(y + ∆s

2 ))

Ui,T M(x, y) =
∬

UF,T M(x′, y′)exp[−i 2π
λ f (xx′+ yy′)]dx′dy′ = B1exp(−i 2π

λ f
∆s
2 y)U(−x,−(y− ∆s

2 )),

where B1 is a complex constant. We should point out that the fields at the image plane are not

only shifted laterally by the separation ∆s, but also accompanied with a different phase gradient

for TE and TM polarizations. The different phase gradients for TE and TM polarizations cause

the spurious degradation shown in Figs. S1b, S2e, and S2f. Considering that ∆s is close to the

diffraction-limit scale, the simulation result in Fig. S1b and the measurement in Figs. S2e and

S2f clearly reveal that the system is very sensitive to even very small values of ∆s. Furthermore,

the inevitable axial misalignment between the double axes of the metasurface lens and the single

axis of the normal lens results in the phase gradient difference at the image plane. In other words,

lens-based DIC microscopy typically necessitates at least three optical elements which are two

lenses and a birefringent crystal such as a Wollaston prism between the two lenses. Although one

might suppose that the different linear phase gradients can be employed instead of the lateral shifts

along the y-axis in Eqs. S1 and S2 to remove the spurious degradation, it is worth pointing out

that both schemes are mathematically equivalent with a different complex constant and result in a

similar degradation.

In contrast, the two metasurface layers can avoid the unwanted degradation because the two

lenses have independent optical axes for both polarizations. For the system in Fig. S1c, the fields

at the image plane can be written as the Fourier transform with respect to the optical axis of each
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polarization. As a result, the fields at the image plane Ui,TE and Ui,T M can be written as;

Ui,TE (x, y) = U(−M x,−M(y + ∆s
2 ) −

∆s
2 )

Ui,T M(x, y) = U(−M x,−M(y − ∆s
2 ) +

∆s
2 ),

where M is the magnification of the system and is mainly determined by the phase maps of the

two bi-axial lenses. These equations clearly show that the two birefringent metasurface lenses are

able to capture the conventional DIC images with two polarizers. More interestingly, the simulation

results based on the wave propagation in Fig. S13 reveal that the proposed bi-axial system becomes

very robust against other kinds of misalignments in the fabrication or optical alignment procedures

once the separations of the optical axes for the both lenses are identical. As explained in the

main manuscript, it is worth noting that the metasurfaces uniquely admit arbitrary phase maps

in subwavelength scale for both polarizations. Thus, the separation is one of the most accurately

controllable variables in the design process of the metasurfaces. This is one of the reasons why

our system performs adequately in the experiments. Furthermore, we remark that bi-focal lenses

having an accurate separation close to the diffraction-limit are difficult to implement using any

conventional birefringent optics.
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SUPPLEMENTARY NOTE 3: THREE-STEP PHASE SHIFTING METHOD FOR UNIDIREC-

TIONAL QUANTITATIVE PHASE GRADIENT IMAGING

Phase-shifting is a widely known technique for phase retrieval in common interferometers.

Moreover, it has been also used for quantitative phase gradient imaging by modifying the classical

DIC microscope [5]. The technique utilizes multiple phase-shifted interference patterns to retrieve

the phase information. To be specific, a captured differential interference contrast (DIC) image at

the object plane is effectively written as;

I j = |U(x, y) −U(x, y − ∆y)eiφ j |
2
= B(x, y) − C(x, y)cos(θ(x, y) − φ j) (S17)

, whereU(x, y) = A(x, y)eiφ(x,y), B(x, y) = |A(x, y)|2+ |A(x,−∆y)|2, C(x, y) = 2|A(x, y)A(x,−∆y)|,

θ(x, y) = φ(x, y) − φ(x, y − ∆y), and φ j is a phase offset. Since B(x, y), C(x, y), and θ(x, y)

are unknown, it can be seen that a minimum of three independent measurements are required

for unambiguous retrieval of all unknowns. This is why the second metasurface layer in the

current work consists of three different polarization sensitive off-axis lenses. Moreover, it is worth

noting here that extensive investigations have previously been done to develop two-step phase

shifting algorithms with additional assumption, some form of a priori knowledge, or complicated

computations [6–8]. In the three-step phase shifting techniques, φ1, φ2, and φ3 are usually set to

0, 2π
3 , and 4π

3 . Using the Eq. S17, I1, I2, and I3 are written as;

I1 = B(x, y) − C(x, y)cos(θ(x, y)),

I2 = B(x, y) − C(x, y)cos(θ(x, y) − 2π
3 ), and

I3 = B(x, y) − C(x, y)cos(θ(x, y) − 4π
3 ).

With further calculations, one can see that θ(x, y) can be expressed in terms of I1, I2, and I3;

θ(x, y) = arctan(
√

3 I2−I3
2I1−I2−I3

)

Considering that θ(x, y) = φ(x, y) − φ(x, y − ∆y)≈∇yφ × ∆y and ∆y is small compared to the

sample feature sizes, ∇yφ can be calculated as;

∇yφ≈
1
∆y arctan(

√
3 I2−I3

2I1−I2−I3
)

In Eq. 2 in the main manuscript, a calibration term, ∇yφcali, is added to remove any kind of

unwanted background coming from imperfect experimental conditions. Specifically, ∇yφcali is the

background signal measured without any sample. The calibration process also allows for arbitrarily

choosing three phase offsets with the same difference of 2π
3 . For example, φ1 is set to 3π

4 and π
4
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for the device using the two separate metasurface layers and the device based on the double-sided

metasurfaces, respectively.
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Metasurface R (µm) ∆D (µm) ∆s (µm) a1 a2 a3 a4 a5 kgrat,1 (rad/µm)

Layer1 300 660 1.5 -4.70×102 2.05×101 -3.88×100 7.69×10−1 -7.30×10−2 2.23

Metasurface R (µm) ∆D (µm) ∆s (µm) b1 b2 b3 b4 b5 kgrat,2 (rad/µm)

Layer2 300 660 1.5 -2.37×102 3.58×10−1 1.07×101 -7.58×100 1.92×101 2.22

Table S1 Phase profile parameters for the two separate metasurface layers
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Metasurface R (µm) ∆D (µm) ∆s (µm) a1 a2 a3 a4 a5 kgrat,1 (rad/µm)

Layer1 100 210 1.5 -1.29×102 7.96×100 -1.17×101 6.98×100 -1.34×100 2.21

Metasurface R (µm) ∆D (µm) ∆s (µm) b1 b2 b3 b4 b5 kgrat,2 (rad/µm)

Layer2 100 210 1.5 -7.88×101 -5.19×100 4.53×100 -1.43×100 1.61×10−1 2.19

Table S2 Phase profile parameters for the double-sided metasurface QPGM
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Figure S1 System-level design and numerical analysis of the QPGM. a Schematic of an optical system
consisting of a single metasurface and a conventional thin lens. The metasurface works as a bifocal lens
with two focal points for TE and TM polarizations separated along the y axis. b Simulated intensity map at
the image plane formed by the system shown in a. c Schematic of an optical system consisting of two
birefringent metasurfaces. Each metasurface acts as a bifocal lens with two focal points for TE and TM
polarizations separated along the y axis. d Simulated intensity map formed in the image plane by the
system shown in c. e Schematic of the optical system composed of one multi-functional metasurface and
three bifocal lenses. As mentioned in Fig. 1b, the first metasurface collimates light from two focal points
for the TE and TM polarizations that are separated in the y direction and splits it in three directions towards
the three metasurfaces on the second layer. Similar to the system in c, the first metasurface forms a separate
imaging system with each of the metasurface lenses on layer 2. f Three simulated DIC images at the image
plane using the system shown in e. g The PGI calculated from the three DIC images in f. Pol.: linear
polarizer; ML: metasurface lens; da: 2.20 mm; dc: 2.81 mm; de: 2.70 mm ; f1: 687 µm; and f2: 1.51 mm.
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Figure S2 Phase gradient imaging with a single bifocal metasurface lens. a Schematic illustration of
the optical setup used for capturing focuses of the single bifocal metasurface lens and measuring focusing
efficiencies. The linear polarizer (L-Pol.) in front of the laser collimator is accordingly adjusted to confirm
the input polarization states. bMeasured focal points for different input polarization states. Left, center,
and right images are the measured intensity maps at the focal plane with the linear polarizer aligned to 0◦

(TE), 90◦ (TM), and 45◦, respectively. Scale bars: 2 µm. c Normalized intensity profiles at the focal plane
on the three black dashed lines in b. Green and blue dashed lines are the intensity profiles for TE and TM
polarized input light, respectively. The black line is the intensity profile with the 45◦ linear polarized light.
d Schematic illustration of the optical setup capturing the three interference intensity patterns with a single
bifocal metasurface and a variable retarder. An LED is used for the oblique illumination. BP: bandpass
filter. e Measured interference intensity patterns, I1, I2, and I3 that have phase offsets of 0, 2π

3 , and 4π
3

between the TE and TM polarizations, respectively. f PGI calculated through the three-step phase shifting
method from the three interference intensity maps in e. Scale bars: 30 µm.
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Figure S3 Schematic illustration showing the relation between ∆s and ∆y. ∆s is the separation
between the two optical axes for TE and TM polarizations. The green and blue dashed lines denote the
optical axes for TE and TM polarizations, respectively. ∆y is the effective shearing distance at the object
plane. In other words, two points that are ∆y apart along the y-axis in the object plane, are imaged to the
same points at the image plane for the two different polarizations. The green and blue solid lines represent
the rays coming from the green and blue points at the object plane, respectively. While the blue dot in the
object plane is imaged along the blue dashed line representing the optical axis of TM polarization, the
green dot is actually off-axis imaged at the position of the blue dot with respect to the green dashed line
showing the optical axis of TE polarization. The black dashed box shows the relation between ∆s and ∆y
given by ∆y = ∆s(1 + 1

M ), where M is the magnification of the optical system.
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Figure S4 Simulation results of the nano-posts at the wavelength of 850 nm. a-d Simulated
transmittance and transmitted phase of TE and TM polarized light for periodic arrays of meta-atoms as
functions of Dx and Dy . The amorphous silicon layer is 664 nm thick, and the lattice constant is 380 nm. a
and b: transmittance, c and d: transmitted phase e-h The optimized simulation results calculated from a-d
for complete polarization and phase control. Calculated optimal Dx and Dy as functions of the required
φTE and φTM are shown in e and f, respectively. Simulated transmittance of TE and TM polarized light as
functions of φTE and φTM are shown in g and h, respectively. i-l The optimized simulation results of the
nano-posts composed of 664-nm thick amorphous silicon and 60-nm thick Al2O3 on the fused silica
substrate. The nano-posts are arranged on a square lattice with a 390-nm lattice constant and cladded by an
∼8-µm-thick SU-8 layer. Calculated optimal Dx and Dy as functions of the required φTE and φTM are
shown in i and j, respectively. Simulated transmittance of TE and TM polarized light as functions of φTE

and φTM are shown in k and l, respectively.
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Figure S5 Simulated point spread functions of the QPGM. a Schematic showing the locations of point
sources used at the object plane for characterizing the point spread functions (PSFs). Cartesian coordinates
of each point are given under it. The coordinates are calculated from the center of the metasurface layer 1.
b The normalized PSFs at the image plane for TE polarization of the optical system shown in Fig. S1e.
The coordinates under the PSFs are the coordinates of the corresponding point sources. It is assumed that
the PSFs are identical for TE and TM polarizations. c The magnified intensity maps of the normalized
PSFs in b. The coordinates of the corresponding point sources are shown above the intensity maps. The
dashed black circles are airy disks whose radii are 2.54 µm at the image plane. All coordinates in the
figures are given in microns.
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Figure S6 Schematic of the measurement setup. Schematics of the custom-built microscope setup used
to measure the three DIC images captured by the QPGMs. L-Pol.: linear polarizer; BP: band-pass filter.
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Figure S7 Magnified PGIs of the phase resolution targets having different thicknesses. The
thicknesses of the targets are as follows; a: 54 nm; b: 159 nm; c: 261 nm; and d: 371 nm. Note that the
color bar scale in a is different from the other panels. Scale bars: 15 µm.
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Figure S8 Measurement of spatial and temporal noise levels. a Background phase gradient images
captured in an area with dimensions of 17.6×17.6 µm2 in the central part of the seven different
measurements with the seven different phase resolution targets used in Fig. 3d. Scale bars: 5 µm. b Phase
gradient histograms of the phase gradient images in a. Each image in a has 1681 points. The spatial noise
level is 16.4±0.3 mrad/µm calculated by measuring the standard deviation of the phase gradients in b. c
and d The 371-nm thick resolution target used in Fig. S7d is measured 50 times during 155 seconds. c The
first phase gradient image at t = 3.1s. d Map of the standard deviations over 50 frames. The average
standard deviation over the map is 11.4 mrad/µm. e Plots of the temporal phase gradient signals at the
different points marked with red, orange, black and green circles in c and d. The colors of the plots are
matched with the colors of the circles in c and d. The corresponding standard variations are noted over the
plots. Especially, the black line shows the maximum fluctuation having a standard deviation of 46.4
mrad/µm in the map.
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Figure S9 Investigation of the lateral resolution. PGIs of the smallest resolution groups that the QPGM
based on the two separate metasurface layers was able to resolve. The measured lateral resolutions along
the x and y directions are 2.76 µm and 3.48 µm, respectively. The thickness of the resolution target is 374
nm. Left: elements 2 and 3 in group 8; Right: elements 4 and 5 in group 8. Scale bars: 2 µm.
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Figure S10 Phase maps of the USAF 1951 phase resolution targets measured by Fourier
ptychography. aMeasured phase maps of the seven USAF 1951 phase resolution targets through the
Fourier ptychography method (FPM). An array of green LEDs with an operation wavelength of 522 nm
was utilized for Fourier ptychography. Scale bars: 40 µm. b Thicknesses of seven different parts of the
phase target calculated from the phase maps captured by Fourier ptychography (red), and those measured
by AFM (blue). The plotted estimated height values through Fourier ptychography are averaged over 100
arbitrarily chosen points. Error bars represent standard deviations of the estimated values.
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Figure S11 Compact QPGM setup and measurement results using a CMOS image sensor. a
Schematics of the custom-built miniaturized microscope setup using a CMOS image sensor. The red and
purple dashed boxes illustrate the illumination and detection parts of the setup, respectively. The magnified
schematic of the detection part is shown in Fig. 3f in the main manuscript. L-Pol.: linear polarizer; BP:
band-pass filter. b Optical image of the setup in a. The illumination and detection parts are represented by
the red and purple dashed boxes, respectively. c Phase gradient images captured for the same parts of the
phase target used in Figs. 3c and S7. The thicknesses of the three targets from top left to top right and the
four targets from bottom left to bottom right are as follows: Top: 54 nm; 105nm; and 159 nm. Bottom: 207
nm; 261 nm; 314 nm; and 371 nm. Note that the color bar scale for the thinnest sample is different from the
other panels. Scale bars: 15 µm. d Thicknesses of the phase targets calculated from the PGIs in c and those
measured by AFM. The plotted estimated thickness values through QPGM are averaged over 100 arbitrarily
chosen points at the sample edges. Error bars represent standard deviations of the estimated values.
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Figure S12 PGIs of the sea urchin samples captured by the doublet QPGM. PGIs of two sea urchin
samples measured using the double-sided metasurface QPGM shown in Fig. 4b of the main text. Scale
bars: 25 µm.
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Figure S13 Numerical investigation of the effects of misalignment between the two metasurface
layers. a, Schematic illustration of the the top view of the metasurface layer 2. The lateral misalignments
along x and y directions, ∆x and ∆y, are shown. b Schematic illustration of the the side view of the
QPGM. The axial misalignment along the z axis, ∆z, is shown. We assumed that the thicknesses of the two
substrates is identically changed by ∆z2 . c-f Simulated DIC images and PGIs for four different types of
misalignment. In simulation, the QPGM is based on the system shown in Fig. S1e with the phase profile
parameters given in Table S1. Left: misalignment vectors, (∆x, ∆y, ∆z). Center: three different DIC
images at the image plane corresponding to misalignment vectors shown on the left. Right: PGIs
calculated from the DIC images at the center. For calibration, we subtract the PGI calculated in the absence
of the sample with each misalignment from the PGI calculated from the three DIC images at the center.
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