Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2012 | Published + Submitted
Book Section - Chapter Open

Characterizing the impact of the workload on the value of dynamic resizing in data centers


Energy consumption imposes a significant cost for data centers; yet much of that energy is used to maintain excess service capacity during periods of predictably low load. Resultantly, there has recently been interest in developing designs that allow the service capacity to be dynamically resized to match the current workload. However, there is still much debate about the value of such approaches in real settings. In this paper, we show that the value of dynamic resizing is highly dependent on statistics of the workload process. In particular, both slow time-scale non-stationarities of the workload (e.g., the peak-to-mean ratio) and the fast time-scale stochasticity (e.g., the burstiness of arrivals) play key roles. To illustrate the impact of these factors, we combine optimization-based modeling of the slow time-scale with stochastic modeling of the fast time scale. Within this framework, we provide both analytic and numerical results characterizing when dynamic resizing does (and does not) provide benefits.

Additional Information

Copyright is held by the author/owner(s). This research is supported by the 973 Program of China (No. 2010CB328105), the National Natural Scientific Foundation of China (No. 61020106002 and No.60973107), and NSF grant CNS 0846025 and DoE grant DE-EE0002890.

Attached Files

Submitted - 1207.6295.pdf

Published - p405-wang.pdf


Files (1.9 MB)
Name Size Download all
756.4 kB Preview Download
1.1 MB Preview Download

Additional details

August 19, 2023
September 8, 2023