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for linear oscillatory gas flows

Daniel R. Ladiges and John E. Sadera)

School of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia

(Received 5 May 2015; accepted 16 September 2015; published online 9 October 2015)

Oscillatory non-continuum low Mach number gas flows are often generated by
nanomechanical devices in ambient conditions. These flows can be simulated using a
range of particle based Monte Carlo techniques, which in their original form operate
exclusively in the time-domain. Recently, a frequency-domain weight-based Monte
Carlo method was proposed [D. R. Ladiges and J. E. Sader, “Frequency-domain
Monte Carlo method for linear oscillatory gas flows,” J. Comput. Phys. 284, 351–366
(2015)] that exhibits superior statistical convergence when simulating oscillatory
flows. This previous method used the Bhatnagar-Gross-Krook (BGK) kinetic model
and contains a “virtual-time” variable to maintain the inherent time-marching nature
of existing Monte Carlo algorithms. Here, we propose an alternative frequency-
domain deviational Monte Carlo method that facilitates the use of a wider range of
molecular models and more efficient collision/relaxation operators. We demonstrate
this method with oscillatory Couette flow and the flow generated by an oscillating
sphere, utilizing both the BGK kinetic model and hard sphere particles. We also
discuss how oscillatory motion of arbitrary time-dependence can be simulated us-
ing computationally efficient parallelization. As in the weight-based method, this
deviational frequency-domain Monte Carlo method is shown to offer improved
computational speed compared to the equivalent time-domain technique. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4932108]

I. INTRODUCTION

Recent advances in nanoscale fabrication have driven strong activity in exploring the use of
nanomechanical devices in a range of applications, including atomic-scale mass measurement,1–3

imaging with atomic resolution,4,5 micro- and nanoscale measurement of fluid properties,6–8 and
ultrasensitive environmental sensing.9,10 Ability to model gas flows generated by small mechanical
devices in ambient conditions (in air) is particularly important given the ubiquity of this environ-
ment.

Three key features control the nature of the gas flows generated: (i) the device dimensions are
often comparable to the gas mean free path, (ii) these devices are commonly driven at resonance
and thus generate an oscillatory flow whose frequency can be similar to the gas molecular collision
frequency, and (iii) the gas flow speeds are in the low Mach number regime.

The first of these characteristics is quantified by the Knudsen number, Kn ≡ λ/L, where λ is the
gas mean free path and L is a dominant length scale of the flow. The second by the scaled oscillation
frequency, θ ≡ ω/ν, where ω is the device frequency and ν is the molecular collision frequency.
Together, these parameters indicate the degree of rarefaction (non-continuum nature) of the flow. In
the continuum limit, Kn → 0 and θ → 0, gas flows can be accurately modeled by the Navier-Stokes
equations which can be solved using standard numerical or analytical approaches in many cases
of practical interest. However, such solutions do not apply if the continuum hypothesis is violated,
i.e., either Kn or θ is not infinitesimally small. While approaches exist to extend the validity of the
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Navier-Stokes equations to weakly non-continuum flows through use of slip models,11–13 solutions
for arbitrary Kn and θ require alternative methods.

The Boltzmann equation describes the time evolution of the distribution of gas particles in
both the particle velocity and spatial domains; such high dimensionality complicates its solution
using standard numerical techniques. This issue is circumvented through the use of particle based
approaches, foremost of which is the direct simulation Monte Carlo (DSMC) method, originally
proposed by Bird.14 DSMC employs a statistical approach in which simulator particles are used to
represent a large number of real particles in a gas flow. Time evolution of these simulator particles
is specified by the Boltzmann equation, with collisions being determined probabilistically. Despite
its broad applicability, use of standard DSMC is problematic in modeling gas flows generated by
nanomechanical devices due to their operation at low Mach number.

Low Mach number gas flows exhibit very small deviations from equilibrium. Use of a stochas-
tic method such as DSMC will tend to obscure these deviations with statistical noise associated
with this equilibrium. Recently, a range of alternative particle-based Monte Carlo techniques has
been proposed to address this issue. Utilizing the method of control variates,15 rather than solving
for the complete distribution function of the gas, these techniques simulate only the deviation from
a specified equilibrium. They may be broadly grouped into two classes:16 (i) deviational and (ii)
weight-based methods. In the first class, velocities of the simulator particles directly represent the
deviation of the distribution function from equilibrium. In contrast, weight-based methods account
for deviations from equilibrium through the allocation of weights as a function of molecular ve-
locity. In the case of weight-based methods, the chosen equilibrium is a spatially constant global
equilibrium. However, deviational methods may use either a global equilibrium or a spatially vary-
ing local equilibrium. Since the local equilibrium is specified using the local density, bulk velocity,
and temperature at a given position, this tends to be “closer” to the actual distribution function of the
flow at that position — often resulting in fewer simulator particles being required to represent the
deviation.

The deviational approach has been implemented using the Bhatnagar-Gross-Krook (BGK) relax-
ation model,17–19 hard sphere (HS) interactions,20,21 and variable hard sphere (VHS) collisions.16,18

The weight-based approach has also been implemented using the BGK relaxation model;22,23 however,
attempts at more realistic collision models24–26 lead to difficulties with algorithmic stability. This effect
is alleviated by periodically “reconstructing” the distribution function, at the price of introducing im-
plicit velocity discretization, and increasing the computational cost. Other differences exist between
these two classes in terms of computational efficiency and ease of implementation. For example, devi-
ational methods concentrate simulator particles where the deviation from equilibrium is large, whilst
weight-based methods use a spatially uniform distribution of particles. This lends an advantage to the
deviational approach in unbounded problems, which often contains large regions of negligible flow.
On the other hand, weight-based methods tend to be algorithmically simpler and easier to apply.

Each of these Monte Carlo methods can efficiently simulate the nanoscale gas flows described
above, at low Mach number and arbitrary Knudsen number. Importantly, gas flows generated by
many nanoscale devices are time-dependent and oscillatory in nature. While the above-mentioned
Monte Carlo methods can also effectively simulate oscillatory flows at arbitrary frequency, they
are inherently time-domain techniques. A solution in the frequency-domain is therefore useful and
desirable because this would provide direct access to the amplitude and phase of the flow field
(information that is often required) and potentially lead to computational savings.

Recently, a frequency-domain lattice Boltzmann (LB) method was proposed.27 Based on the
linearized Boltzmann-BGK equation,28–31 this approach makes use of a “virtual-time” variable to
maintain the inherent time-marching nature of the LB algorithm. In this method, steady solutions
in virtual-time correspond to actual solutions in the frequency-domain. These, in turn, are directly
related to oscillatory solutions in the time-domain. This approach (like all LB methods) is formu-
lated primarily for continuum flows,32 and its applicability outside of this regime is limited to
weakly non-continuum flows, i.e., small Kn and θ.33 In Ref. 34, we presented an approach that
combines this virtual-time concept with a low Mach number Monte Carlo method, enabling direct
simulation in the frequency-domain for arbitrary Kn and θ. In addition to providing direct access
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to amplitude and phase information, this frequency-domain approach was shown to exhibit supe-
rior statistical convergence with a corresponding improvement in computational speed, compared
to the equivalent time-domain Monte Carlo simulation. This previous frequency-domain method34

applies the weight-based approach described above, using the BGK relaxation operator.23 While
extension to more realistic collision models is possible in principle, difficulties identical to those of
the time-domain weight-based methods are encountered.24,26

In this article, we develop the frequency-domain Monte Carlo concept using a deviational low
Mach number approach. This allows the method to be efficiently applied using a wider range of
relaxation/collision models — we demonstrate the BGK and HS models here. In Section II, we
provide an overview of the linearized Boltzmann equation. The algorithm for the frequency-domain
Monte Carlo method using a deviational approach is then presented. This method is validated in
Section III for two canonical flow problems: (i) oscillatory plane Couette flow and (ii) the flow
generated by an oscillating sphere. Comparisons are made with existing accurate numerical BGK
solutions,35 deviational time-domain Monte Carlo solutions, and previous results using the weighted
frequency-domain method.34 In Section IV, a quantitative assessment of the convergence properties
and computational cost of the deviational frequency-domain method, relative to the corresponding
time-domain method, are provided. Finally, an approach to efficiently parallelize the algorithm for
oscillatory flows of general time-dependence is given in Section V. Concluding comments are given
in Section VI with additional comments and calculations relegated to the Appendices.

II. DEVIATIONAL FREQUENCY-DOMAIN MONTE CARLO METHOD

The deviational frequency-domain Monte Carlo method is now described. We begin by summa-
rizing the linearized Boltzmann equation with both the BGK relaxation model and HS collision
operator, and its form in the frequency-domain. The virtual-time concept27 is then applied to this
frequency-domain equation, which is solved using a modification to the deviational time-domain
algorithms of Homolle, Radtke, and Hadjiconstantinou that have been implemented for both of
these molecular models.17,20 Throughout, the subscripts b, c, and f are used to indicate a boundary,
cell, and cell interface, respectively.

A. Frequency-domain Boltzmann equation

The Boltzmann equation is

∂ f
∂t
+ c · ∂ f

∂x
= Q[ f ], (1)

where f is the number density distribution function of gas particles, t is the time, x is the position,
and c is the particle velocity. Throughout, the term “distribution function” shall refer to a number
density distribution function. The operator Q specifies the collision/relaxation process. As discussed
above, we focus on both HS collisions and the BGK relaxation process. The HS collision operator is
given by

QHS [ f (c)] =
 ∞

−∞

 4π

0

�
f (c′) f (c′1) − f (c) f (c1)� |c − c1|ηdΩdc1, (2)

where c′ and c′1 indicate post collision velocities, η is the collisional cross section of the particles,
andΩ is the solid angle. The BGK relaxation operator is

QBGK[ f ] = ν( f eq − f ), (3)

where ν is the molecular collision frequency, and f eq is the local equilibrium distribution function,
given by the Maxwell-Boltzmann distribution

f eq =
n(x, t)

[2πR T(x, t)]3/2 exp
(
− |c − u(x, t)|2

2R T(x, t)
)
, (4)

where R is the specific gas constant.
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The bulk flow properties of the gas are obtained from the moments of the distribution function,
f , with the local number density, flow velocity, and temperature specified by

n =
 ∞

−∞
f dc, u =

1
n

 ∞

−∞
c f dc, T =

1
3nR

 ∞

−∞
|c − u|2 f dc, (5)

respectively.
We assume that all gas particles impacting a solid boundary are re-emitted diffusely in equilib-

rium with the boundary velocity and temperature, i.e.,

fb =
nb(x, t)

[2πR Tb(x, t)]3/2 exp
(
− |c − ub(x, t)|2

2R Tb(x, t)
)
, (6)

where ub and Tb are the velocity and temperature of the boundary; the subscript b refers to the
boundary. Here, nb is the number density of particles emitted and is determined by mass conserva-
tion, with 

n·(c−ub)<0
f n · (c − ub)dc = −


n·(c−u)>0

fbn · (c − u)dc, (7)

where n is the outward normal.
We are interested in flows that deviate only slightly from a known global equilibrium distribu-

tion, given by

f̄ eq =
n0

[2πRT0]3/2 exp
(
− c2

2RT0

)
, (8)

where n0 and T0 represent the number density and temperature of the gas at rest, and c = |c|. We
therefore express the distribution function as

f = f̄ eq + g, (9)

where g defines the perturbation from the global equilibrium. The local number density and temper-
ature may be expressed as

n = n0(1 + σ), T = T0(1 + κ), (10)

with the local number density, velocity, and temperature perturbations given by

σ =

 ∞

−∞

g

n0
dc,

u =
 ∞

−∞
c
g

n0
dc,

κ =
2
3

 ∞

−∞

(
c2

2RT0
− 3

2

)
g

n0
dc.

(11)

We note that g, σ, u, and κ may all be time-dependent. The local equilibrium distribution function,
Eq. (4), is expanded to linear order, giving

f eq = f̄ eq + geq, (12)

where

geq = f̄ eq

σ +

c · u
RT0
+

(
c2

2RT0
− 3

2

)
κ


(13)

is the perturbation to the global equilibrium distribution function, f̄ eq. We designate geq the “equi-
librium perturbation.”

Substituting Eq. (9) into Eq. (1) yields the required linearized Boltzmann equation

∂g

∂t
+ c · ∂g

∂x
= L[g], (14)
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where L is the linearized collision/relaxation operator,17,20

LHS[g(c)] =
 ∞

−∞
K(c,c1)g(c1)dc1 − ν̂(c)g(c), (15a)

LBGK[g] = ν(geq − g). (15b)

The functions K and ν̂ are derived in Ref. 36; further details are given in Appendix A. The diffuse
boundary condition for g is

gb = f̄ eq

σb +

c · ub

RT0
+

(
c2

2RT0
− 3

2

)
κb


, (16)

where

σb = ub · n


π

2RT0
− 1

2
κb − 2

√
π


n·c<0

n · c g

n0
dc. (17)

Because we are interested in oscillatory (time-dependent) flows, the perturbation functions g and
geq are expressed in terms of the following time dependence:

g(t,c,x|ω) = g̃(c,x|ω)e−iωt, geq(t,c,x|ω) = g̃eq(c,x|ω)e−iωt, (18)

where ω is the angular oscillation frequency and i is the imaginary unit. Equation (14) then becomes

c · ∂g̃
∂x
= L[g̃] + iωg̃, (19)

which is the linearized Boltzmann equation in the frequency-domain. The tilde “∼” indicates the
spatial and particle velocity component of the distribution function, with the time-dependence
removed; see Eq. (18). This separation of the time-dependence is applied to all bulk flow vari-
ables, leading to the following expressions for the number density, bulk velocity, and temperature
perturbations:

σ̃ =

 ∞

−∞

g̃

n0
dc,

ũ =
 ∞

−∞
c
g̃

n0
dc,

κ̃ =
2
3

 ∞

−∞

(
c2

2RT0
− 3

2

)
g̃

n0
dc,

(20)

and the equilibrium perturbation

g̃eq = f̄ eq

σ̃ +

c · ũ
RT0
+

(
c2

2RT0
− 3

2

)
κ̃


. (21)

The boundary conditions in Eqs. (16) and (17) are specified accordingly.
As in Ref. 34, we introduce the virtual-time variable, τ,27 and thus replace the left hand side of

Eq. (19) with the material derivative of g̃,

Dg̃

Dτ
=

∂g̃

∂τ
+ c · ∂g̃

∂x
= L[g̃] + iωg̃. (22)

Clearly, the steady solution to Eq. (22) corresponds to the solution of Eq. (19). This simple modi-
fication allows us to retain the basic structure of a steady time-domain Monte Carlo method,
whilst explicitly solving in the frequency-domain. In Sec. II B, we employ the low Mach number
time-domain deviational algorithms of Homolle, Radtke, and Hadjiconstantinou to solve Eq. (22).

B. Deviational frequency-domain Monte Carlo method

We begin by splitting Eq. (22) into advection, collision/relaxation, and oscillatory operations,

∂g̃

∂τ

�����adv
= −c · ∂g̃

∂x
, (23a)
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∂g̃

∂τ

�����col
= L[g̃], (23b)

∂g̃

∂τ

�����osc
= iωg̃, (23c)

respectively. We note two major differences between the frequency-domain Monte Carlo and the
corresponding time-domain methods: (i) the perturbation, g, to the distribution function is now
complex-valued and (ii) the addition of new oscillatory operation, Eq. (23c).

In a time-domain deviational Monte Carlo method, the perturbation g is represented by the
distribution of simulator particles in the spatial and particle velocity domains. Because g may be
negative, each particle carries a “value” of W = ±1 to indicate whether it represents a positive
or negative part of the distribution. This value is distinct from the weight used in weight-based
methods, in that it is restricted to two discrete values only. The number of physical particles rep-
resented by a simulator particle is WNp, where Np is a constant. When WNp is positive, this
represents an addition of Np particles to the equilibrium state at the simulator particle’s location and
velocity. When it is negative, a subtraction of Np particles is indicated.

In the frequency-domain deviational method, we extend this approach to use complex particle
values, W̃ . In this case, the real and imaginary parts of W̃Np indicate how many physical particles
are added or subtracted to both the real and imaginary parts of the equilibrium, respectively. Whilst
W is restricted to a discrete set of values in the time-domain method, this restriction applies to the
value of |W̃ | in the frequency-domain method, with |W̃ | = 1 or

√
2, as we discuss in Secs. II B 1

and II B 2.
As for the time-domain deviational approach, the actions of collisions and boundary interac-

tions on g̃ are represented by changes to the distribution of simulator particles in velocity space,
while advection is represented by changes to the spatial distribution of the simulator particles. The
oscillatory operation in Eq. (23c) is applied using updates to W̃ for each particle, which are detailed
below. Following the standard DSMC algorithm, the spatial domain is divided into discrete cells.
Simulations are progressed by solving and applying the operations in Eq. (23) in each cell, over a
small virtual-time step ∆τ.

As mentioned above, simulator particles are used to indicate the deviation from an equilibrium
state. This may be either the spatially uniform global equilibrium or the spatially varying local
equilibrium. Following the approach of Refs. 17 and 20, we split the perturbation from the global
equilibrium distribution into two parts,

g̃ = g̃eq + g̃d, (24)

where g̃eq is the spatially varying equilibrium perturbation; see Eq. (21). The distribution g̃d now
represents the deviation from local equilibrium; see Eq. (9). When using simulator particles to
represent g̃d, the number density, bulk velocity, and temperature perturbations are stored for each
cell. We may then avoid the use of particles to represent g̃eq by calculating it directly using Eq. (21).
When g̃eq is given as a spatially piecewise-constant function, this approach has been demon-
strated17,21 to reduce the number of particles required in simulations of simple one-dimensional
flows. Discussion of the simulation of higher dimensional cases using a continuous function for g̃eq

is contained in Refs. 37 and 38.
Depending on the flow being simulated, here, we either use the piecewise-constant method

to specify the local equilibrium or simply employ particles to represent the whole of g̃, i.e., the
deviation from the global equilibrium. The effect of this choice is discussed in Section III. We now
give a separate description of each approach.

1. Using particles to represent the deviation from global equilibrium

a. Oscillatory operation. We first consider Eq. (23c), which we solve explicitly over the in-
terval ∆τ. This yields the following relationship connecting the solution for g̃ at the current
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virtual-time τ to a future virtual-time τ + ∆τ:

g̃(τ + ∆τ) = eiω∆τg̃(τ). (25)

Equation (25) is applied by updating W̃ for every particle using



W̃re,new

W̃im,new


=



cos(∆τω) − sin(∆τω)
sin(∆τω) cos(∆τω)





W̃re

W̃im


, (26)

where the subscripts “re” and “im” refer to the real and imaginary components, respectively. This
operation preserves the value of |W̃ |. We next consider Eq. (23b) and solve for the BGK model and
HS particles separately.

b. Collision operation (BGK model). The BGK relaxation operation is solved analytically over
the interval ∆τ, giving

g̃(τ + ∆τ,c) = e−ν∆τg̃(τ,c) + (1 − e−ν∆τ)g̃eq(τ,c). (27)

To implement this solution in each cell, we evaluate the moments of g̃(τ,c) using Monte Carlo
integration,

σ̃ =
Np

n0Vc

Nc
i

W̃i,

ũ =
Np

n0Vc

Nc
i

W̃ici,

κ̃ =
Np

n0Vc

2
3

Nc
i

W̃i
*
,

c2
i

2RT0
− 3

2
+
-
,

(28)

where Vc is the volume of the cell, and the sums are taken over the Nc particles in the cell, with
the index i indicating the ith particle. Next, Nc(1 − e−ν∆τ) particles are deleted from the cell, re-
taining the fraction e−ν∆τ as per Eq. (27). Finally, following the deviational approach, particles are
generated from the distribution

g̃gen(τ,c) = Vc(1 − e−ν∆τ)g̃eq(τ,c), (29)

where g̃eq is found by inserting the moments calculated using Eq. (28) into Eq. (21). The superscript
“gen” is used to indicate distributions that are used to generate particles.

There are a range of methods available17,39 to sample the distribution g̃gen(τ,c). For simplicity,
we describe a single general method for distribution sampling for use throughout this article, the
acceptance-rejection method,36 whilst noting that considerable performance gains are available by
tailoring the approach to individual distributions.17,36 We first select Ng candidate particles from the
distribution p(c), where

p(c) > max{|g̃gen
re (τ,c)|, |g̃gen

im (τ,c)|} (30)

and

Ng =
1

Np

 ∞

−∞
p(c)dc. (31)

A particle is accepted if

Rp(c) < max{|g̃gen
re (τ,c)|, |g̃gen

im (τ,c)|}, (32)

where R is a uniformly distributed random variable with R ∈ [0,1]; if the condition in Eq. (32) is
not met, the particle is discarded. In the case,

Rp(c) < |g̃gen
re (τ,c)|, (33)

the real particle value is set to

W̃re = sgn[g̃gen
re (τ,c)], (34)
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FIG. 1. Examples of particle generation for any generating distribution. Left panel: real and imaginary parts of an example
generating distribution, g̃ gen. Right panel: illustration showing the particle selection and assignment of W̃ . Magnitudes of
the real and imaginary parts of W̃ (either 0 or 1) are dictated by the distributions |g̃ gen

re | and |g̃ gen
im | that enclose the chosen

particle velocity; their signs are given by those of the original distributions g̃ gen
re and g̃

gen
im . Examples: points (solid dots) are

selected randomly beneath the bounding distribution p(c). The upper left point lies above both |g̃ gen
re | and |g̃ gen

im |; it is therefore
rejected. In the lower left cases, one point lies below |g̃ gen

im | only and is assigned the value W̃ = i; because g̃
gen
im > 0. The other

point lies below both |g̃ gen
re | and |g̃ gen

im | and is assigned the value W̃ =−1+ i; because g̃
gen
re < 0 and g̃

gen
im > 0. The right-most

point is correspondingly assigned the value W̃ = 1.

otherwise W̃re = 0. Similarly, where the condition

Rp(c) < |g̃gen
im (τ,c)| (35)

is met, the imaginary particle value is given by

W̃im = sgn[g̃gen
im (τ,c)], (36)

with W̃im = 0 otherwise. If only one of the two conditions in Eqs. (33) and (35) is met, a particle
with |W̃ | = 1 results. If both conditions are met, a particle with |W̃ | = √2 is created. This particle
generation procedure is illustrated in Fig. 1.

The accepted particles are placed randomly within the cell. The simplest choice of p(c) is a
uniform sphere given by |c| < cmax, where cmax is appropriately large. Alternatively, performance
may be improved by using importance sampling.36

c. Collision operation (HS model). Unlike the BGK model, the HS collision operation is not
analytically tractable. We therefore use the approximate finite difference solution,20,21,36

g̃(τ + ∆τ,c) = [1 − ∆τν̂(c)]g̃(τ,c) + ∆τ
 ∞

−∞
K(c,c1)g̃(τ,c1)dc1, (37)

where the collision kernel, K , and the collision frequency term, ν̂, are detailed in Appendix A. To
implement Eq. (37), we first mark each particle in a given cell for deletion with probability ∆τν̂(c).
Note that, in contrast with the BGK deletion process, this probability is velocity dependent. These
particles are not immediately removed, because they are now required for the particle generation
step. The distribution from which the particles are generated is

g̃gen(τ,c) = ∆τ
 ∞

−∞
K(c,c1)g̃(τ,c1)dc1. (38)

As with the BGK model, we again apply the acceptance-rejection method to sample this distribu-
tion. Monte Carlo integration is used to evaluate Eq. (38), and this integral is performed for every
candidate particle. Computational time may be saved, at the expense of increased variance, by using
only a subset of the particles in the cell for each integration. Evaluating the real and imaginary parts
separately gives

g
gen
re (τ,c) = ∆τ Nc

Ns

Ns
i

K(c,ci)W̃re, i, (39a)
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g
gen
im (τ,c) = ∆τ Nc

Ns

Ns
i

K(c,ci)W̃im, i, (39b)

where Ns is the size of the subset of particles in each cell and the index i again refers to the ith
particle.

Equations (39a) and (39b) are calculated for Ng candidate particles (Eq. (31)), which are then
accepted or rejected according to Eq. (32). If accepted, the real and imaginary particle values are
then set according to Eqs. (33)-(36). Upon completion of the particle generation step, the particles
earlier marked for deletion are removed from the simulation.

d. Advection operation. Advection operation, Eq. (23a), is solved deterministically by moving
each particle in a straight line, and updating the location accordingly,

x(t + ∆τ) = x(τ) + ∆τc. (40)

Boundary interactions are handled during the advection stage. First, particles crossing a bound-
ary are removed from the simulation.

Open boundaries are then modeled using a reservoir of gas which is in equilibrium with speci-
fied density, bulk velocity, and temperature perturbations, given by σ̃b, ũb, and κ̃b, respectively; the
subscript b again indicates the boundary. The generating distribution at the boundary is therefore

g̃
gen
b

(τ,c) = Ab∆τ f̄ eq(c) c · n

σ̃b +

c · ũb

RT0
+

(
c2

2RT0
− 3

2

)
κ̃b


, c · n > 0, (41)

where Ab is the area of the boundary in question. Particles are generated using this distribution in a
similar fashion to the collision step, i.e., Eqs. (30)-(36). In addition to the procedures detailed above,
we restrict candidate particles to velocities with c · n > 0.

For solid boundaries, the density perturbation is given by

σ̃b = ũb · n


π

2RT0
− 1

2
κ̃b + σ̃r . (42)

The net mass of particles crossing a solid boundary over the virtual-time step is m̃r , and σ̃r is
chosen to ensure that the same mass of particles is re-emitted, i.e.,

σ̃r =
m̃rNp

Ab∆τ n0


2π
RT

. (43)

Finally, all particles generated on the (open or closed) boundary are advected for a random fraction
of the virtual-time step, R∆τ.

2. Using particles to represent the deviation from local equilibrium

To represent the deviation from a local equilibrium, the effect of the operations in Eq. (23) in
each cell must be considered separately for the equilibrium perturbation g̃eq and the particles repre-
senting g̃p; see Eq. (24). Recall that in each cell, we first calculate the local density, bulk velocity,
and temperature moments which are then used to construct g̃eq from Eq. (21). We denote these local
moments σ̃c, ũc, and κ̃c, respectively, where the subscript c is used to indicate cell specific values.

a. Oscillatory operation. We once again begin with oscillatory operation, Eq. (23c). As before,
the particle values for W̃ are updated using Eq. (26), and the moments for each cell are evaluated in
the same fashion,



σc,re,new

σc,im,new


=



cos(∆τω) − sin(∆τω)
sin(∆τω) cos(∆τω)





σc,re

σc,im


, (44)

with ũc and κ̃c treated in exactly the same manner.
b. Collision operation (BGK model). When considering BGK relaxation process, Eq. (27), we

note that the particle generation term in Eq. (29) is a Maxwell-Boltzmann distribution. Because we
know the analytical form of this function, we may apply Eq. (29) directly to the stored value of g̃eq,
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which is evaluated (from Eq. (21)) using the stored moments of the cell,

σ̃c,new = σ̃c + (1 − e−ν∆τ) Np

n0Vc

Nc
i

W̃i,

ũc,new = ũc + (1 − e−ν∆τ) Np

n0Vc

Nc
i

W̃ici,

κ̃c,new = κ̃c + (1 − e−ν∆τ) Np

n0Vc

2
3

Nc
i

W̃i
*
,

c2
i

2RT0
− 3

2
+
-
.

(45)

Equations (21) and (45) yield analytical equations for the component of g̃ represented by g̃eq,
eliminating the need to produce simulator particles as part of the collision process. As in Sec. II B 1,
Nc(1 − e−ν∆τ) particles are deleted from each cell.

c. Collision operation (HS model). In contrast to the BGK relaxation process, HS generating
distribution, Eq. (38), does not exactly correspond to a Maxwell-Boltzmann distribution and there-
fore cannot be represented exactly by changes to g̃eq. Nonetheless, we proceed, as above, by up-
dating the stored cell moments using the moments of the generating distribution. Details regarding
the moments of the generating distribution are given in Appendix A, Eq. (A5). Evaluating these
moments using Monte Carlo integration, and adding them to the stored values in the cells, gives

σ̃c,new = σ̃c + ∆τ
Np

n0Vc

Nc
i

ν̂(ci)W̃i = σ̃c + ∆σ̃c,

ũc,new = ũc + ∆τ
Np

n0Vc

Nc
i

ν̂(ci)W̃ici = ũc + ∆ũc,

κ̃c,new = κ̃c + ∆τ
Np

n0Vc

2
3

Nc
i

ν̂(ci)W̃i
*
,

c2
i

2RT0
− 3

2
+
-
= κ̃c + ∆κ̃c.

(46)

Particles are then generated to account for the remainder of the change to g̃, by subtracting the
change in g̃eq from Eq. (38),

g̃gen(τ,c) = ∆τ
 ∞

−∞
K(c,c1)g̃(τ,c1)dc1 − Vc∆g̃

eq, (47)

where

∆g̃eq = f̄ eq

∆σ̃c +

c · ∆ũc

RT0
+

(
c2

2RT0
− 3

2

)
∆κ̃c


(48)

is obtained by substituting the change in the moments, ∆σ̃c, ∆ũc, and ∆κ̃c (see Eq. (46)), into
Eq. (21). Equation (48) yields the Maxwell-Boltzmann distribution “closest” to Eq. (38), minimiz-
ing the number of particles generated by Eq. (47); discussion of this approach is given in Ref. 36.

At the beginning of the collision step, particles are again marked for deletion with probability
∆τν̂(c) and removed at the end of the operation.

d. Advection operation. The advection operation is applied by inserting Eq. (23b) into Eq. (24)
and considering each part separately,

∂g̃d

∂τ

�����adv
= −c · ∂g̃

d

∂x
, (49a)

∂g̃eq

∂τ

�����adv
= −c · ∂g̃

eq

∂x
. (49b)

To implement Eq. (49a), the particles representing g̃d are advected in the usual manner; see Eq. (40).
Equation (49b) represents advection due to differing values of the equilibrium perturbation in adja-
cent cells, i.e., g̃eq

+ and g̃
eq
− . Its solution is given by generating particles at the cell boundaries, with
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the distribution given by

g̃
gen
f
(τ,c) = Af∆τ c · n

�
g̃

eq
− (τ,c) − g̃eq

+ (τ,c)
�
, (50)

where Af indicates the area of the cell interface, and the normal, n, is oriented from minus to plus; the
subscript f refers to the cell interface. Particles are generated from the distribution, g̃gen

f
(τ,c), placed

randomly on the cell interface and advected for a random fraction of the virtual-time step, R∆τ.
As before, particles crossing boundaries are removed from the simulation. The generating

distribution of the boundaries is now given by

g̃
gen
b

(τ,c) = Ab∆τ f̄ eq(c) c · n

σ̃m +

c · (ũb − ũc)
RT0

+

(
c2

2RT0
− 3

2

)
(κ̃b − κ̃c)


, c · n > 0, (51)

where subscript c is used here to refer to the cell adjacent to the boundary. For open boundaries,

σ̃m = σ̃b − σ̃c, (52)

and for closed boundaries,

σ̃m = (ũb − ũc) · n


π

2RT0
− 1

2
(κ̃b − κ̃c) + σ̃r . (53)

Once again, each particle generated from Eq. (51) is placed randomly on the boundary and advected
for a random fraction of the virtual-time step, R∆τ.

C. Algorithm summary

We now summarize each step of the deviational frequency-domain algorithm as follows.

1. Particle movement: Particle positions are updated according to Eq. (23a). If a local equilibrium
perturbation is used, as per Eq. (24), particles are generated on the cell interfaces with Eq. (50)
and advected for a random fraction of the virtual-time step; no such operation exists when
using the global equilibrium.

2. Boundary interaction: Particles intersecting a boundary during the virtual-time step are re-
moved from the simulation. For solid boundaries, the net mass of these particles is recorded;
this operation is not performed for open boundaries. Particles are then generated on the bound-
ary, using Eq. (41) for the deviation from global equilibrium, or Eq. (51) for the deviation
from local equilibrium. In each case, the recorded mass of simulator particles crossing the
boundary is used to calculate σ̃r . The generated particles are advected for a random fraction of
the virtual-time step.

3. (a) Particle relaxation (BGK): In each cell, the local density, bulk velocity, and temperature
moments due to the particles are calculated using Eq. (28). The fraction (1 − e−ν∆τ)
of these particles is then removed from the simulation. When generating the deviation
from a global equilibrium, the moments are used to construct Eq. (29), from which new
particles are drawn. From a local equilibrium, these values are used to update the stored
moments of the cell, as in Eq. (28).

(b) Particle collisions (HS): Particles are marked for deletion with probability ∆τν̂(c) in
each cell. When simulating the deviation from global equilibrium, Eq. (38) is used to
generate new particles. For a local equilibrium, the local density, bulk velocity, and
temperature moments due to the particles are calculated. These values are used to (i) up-
date the stored moments of the cell using Eq. (46) and (ii) construct Eq. (47) from which
new particles are generated. Finally, the particles marked for deletion are removed.

4. Particle oscillation: The value of every particle is updated according to Eq. (26). The stored
moments for each cell are also updated when using a local equilibrium, as per Eq. (44); this
step does not exist when using a global equilibrium.

For simplicity, an asymmetric time/virtual-time splitting algorithm is used. We note that
convergence may be improved through the use of symmetrized splitting;17,40,41 its incorporation
should be straightforward, although this has not been investigated.
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Importantly, setting ω to zero recovers the original time-domain algorithms17,20—these can be
used to simulate time-dependent (transient) flows with the addition of time-dependent boundary
conditions.

III. TEST CASES

To assess the deviational frequency-domain Monte Carlo method, two standard oscillatory
flows are considered: (i) one-dimensional Couette flow between two flat surfaces and (ii) the
three-dimensional flow generated by a sphere oscillating in an unbounded gas.

For Couette flow, simulations are performed using both of the approaches detailed in Sec. II,
i.e., deviation from local and global equilibria. For low frequency flows, we simulate the deviation
from a local equilibrium, whereas for high frequency flows, deviation from the global equilibrium
is used, as discussed below. For each of these complementary approaches, we compare the conver-
gence properties of the time and frequency-domain methods as a function of both cell size and
time/virtual-time step size. Frequency-domain BGK solutions are then validated against existing
accurate numerical solutions of the Boltzmann-BGK equation.35 Frequency-domain HS solutions
are validated by comparison to the corresponding time-domain simulations (obtained by setting
ω = 0 in the frequency-domain method; see above).

For the 3D flow generated by an oscillating sphere, simulations are performed of the deviation
from the global equilibrium only. We make a single comparison of the frequency-domain BGK and
HS solutions to their corresponding time-domain solutions. Additionally, the deviational frequency-
domain BGK solution is compared to that obtained using the weighted frequency-domain method,
results of which are presented in Ref. 34.

The relaxation frequency ν is a free parameter in the BGK model. In all BGK simulations, we
relate this value to the mean free path via the most probable molecular speed, i.e., ν =

√
2RT0/λ.

Henceforth, we make use of scaled variables, which are denoted with “*.” Time and virtual-time
are scaled by the relaxation frequency, with t∗ = tν and τ∗ = τν, respectively. Spatial position is
scaled by the geometric length scale of the flow, x∗ = x/L, in both the time and frequency-domain
methods. For Couette flow, L is the distance between the two plates, whereas for the oscillating
sphere, L is its radius.

When performing HS simulations, a modified Knudsen number K̂n = Kn
√
π/2 is used.42 This

matches the HS viscosity to the BGK viscosity. However, given the differing Prandtl numbers
(Pr) of the two models, Pr = 1 (BGK) and Pr = 2/3 (HS),43 we cannot simultaneously match their
thermal diffusivities.

An extensive review of BGK and HS solutions for one-dimensional steady isothermal flows is
given in Ref. 44, where good quantitative agreement between the two collision models is found. Our
results confirm that this agreement holds for oscillatory Couette flow (in Fig. 7). We also examine
the consequences of the above-mentioned Prandtl number difference for the oscillating solid sphere
(in Fig. 11), which inherently generates a non-isothermal flow.

Simulation results are given in the form of time/virtual-time series of the instantaneous bulk
flow properties, such as density, bulk velocity, stress, and temperature. Because Monte Carlo
simulations inherently contain stochastic noise, these series are analyzed using a least-squares fit.
Specifically, series for the frequency and time-domain methods are fit to the functions

Γ̃(τ∗, γ, ζ) = γ + ζ i, (54a)

Γ(t∗, ξ, µ) = ξ cos(θt∗) + µ sin(θt∗), (54b)

respectively, where γ and ζ are the real and imaginary fit parameters in the frequency-domain, while
ξ and µ are the corresponding in-phase and out-of-phase fit parameters in the time-domain.

Simulations are run until a steady state is achieved, following which the above fit functions are
applied. Each simulation is then time/virtual-time stepped, and the fit reevaluated, until the variation
in the above parameters is less than 1%.
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FIG. 2. Schematic of oscillatory Couette flow geometry showing the coordinate system and the time-dependent velocity of
the upper plate. The bottom plate is stationary. Reprinted with permission from D. R. Ladiges and J. E. Sader, J. Comput.
Phys. 284, 351 (2015). Copyright 2015 Elsevier.

A. Oscillatory plane Couette flow

We begin with the oscillatory Couette flow problem. The flow geometry is bounded in the
y-direction by two infinite parallel plates at y∗ = 0 and y∗ = 1; see Fig. 2. The domain is un-
bounded in the x- and z-directions and discretized into cells of height ∆y∗ ≪ min(Kn,1). The upper
plate oscillates in the x-direction with velocity amplitude U and scaled angular frequency θ, whilst
the lower plate is stationary. The solid plate boundaries are assumed to be diffusely reflecting with
temperature T0, as described in Section II.

Figures 3 and 4 show the percentage relative error/difference in the simulated shear stress
on the oscillating plate, obtained using the deviational frequency-domain and time-domain Monte

FIG. 3. [BGK model, oscillatory Couette flow]: relative percentage error in shear stress at oscillating plate as a function of
step and cell size (which are varied simultaneously); benchmark in Ref. 35. Red solid line: time-domain solution, in-phase
shear stress. Blue dashed line: frequency-domain solution, real shear stress. In each simulation, ∆y∗ has been selected such
that the number of cells per mean free path is double the number of steps per relaxation period. For θ = 0.1 and θ = 1,
the deviation from local equilibrium is simulated. For θ = 10 and θ = 100, deviation from global equilibrium is used. All
simulations are run with Np = 5×109.
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FIG. 4. [HS model, oscillatory Couette flow]: relative percentage difference in shear stress at oscillating plate as a function
of step and cell size; relative to the average result for the smallest two step/cell sizes, which are varied simultaneously. See
caption of Fig. 3 for simulation parameters and description.

Carlo methods with the BGK and HS operators, respectively. The error is shown as a function
of step and cell size, which are varied simultaneously; see the captions of Figs. 3 and 4. The
high accuracy numerical results in Ref. 35 are used as the benchmark for the BGK simulations,
whilst the specified difference in the HS simulations is given relative to the average result for the
smallest two step/cell sizes. For the frequency-domain simulations, the real component of the shear
stress is reported. Equivalently, the in-phase component of the time-domain simulations is shown.
For smaller normalized frequencies, i.e., θ = 0.1 and θ = 1, the deviation from a local equilibrium
is simulated, which is more efficient than simulating deviations from the global equilibrium. For
larger normalized frequencies, simulating the deviation from global equilibrium is found to be more
efficient, requiring a smaller number of particles. Note that the time and frequency-domain methods
exhibit nearly identical convergence with respect to step and cell size, regardless of the normalized
frequency or type of deviation used.

Next, we examine the bulk velocity profiles for a range of Knudsen numbers and scaled
oscillation frequencies. Figure 5 compares the deviational frequency-domain BGK results to the
high accuracy literature solutions,35 whereas Fig. 6 provides a comparison of the deviational
frequency-domain HS results and the corresponding time-domain solutions. In each case, the
frequency-domain method is found to accurately capture the bulk velocity profile over the entire
flow domain.

It is also interesting to compare the results of the BGK and HS models, to explore the quan-
titative differences in their predictions. Figure 7 provides this comparison, showing that the flow
profiles are very similar — they virtually overlap. This comparison demonstrates that the BGK
model is capable of accurately modeling more realistic oscillatory gas flows.
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FIG. 5. [BGK model, oscillatory Couette flow]: streamwise bulk velocity profiles. Solid lines: frequency-domain results.
Open circles: published high-accuracy numerical results.35 For the θ = 0.1 and θ = 1 cases, 1/∆τ∗,1/∆t∗= 32, Kn/∆y∗= 60,
Np = 5×109, and the deviation from local equilibrium is simulated. For the θ = 100 case, 1/∆τ∗,1/∆t∗= 1024, Kn/∆y∗=
2048, Np = 2.5×109, and the deviation from global equilibrium is simulated.

Collectively, these results show that the deviational frequency-domain method provides a
robust method to accurately simulate oscillatory unidirectional flows. This provides a complemen-
tary approach to the previously described weight-based frequency-domain method,34 whilst more
easily accommodating a broader range of collision models. The relative computational requirements
of the time and frequency-domain methods are discussed in Section IV. An example extending the
use of the frequency-domain method beyond strictly sinusoidal flows is given in Section V.

B. 3D oscillating sphere

Next, we consider a sphere of radius L, with a diffusely reflecting surface of fixed temperature
T0, centered at the origin of a spherical domain of radius Rb; see Fig. 8. The sphere executes
rectilinear oscillations along the x-axis, with velocity amplitude U and scaled frequency θ. The
outer boundary is open, as described in Section II, with density, bulk velocity, and temperature set
at the global equilibrium values. The z = 0 plane is discretized radially into segments of length
∆r . These segments are further divided into cells subtending an angle ∆α. For each segment, this
angle is selected such that r∆α ≈ ∆r whilst fitting an integer number of cells at the given radius.
The flow in question is symmetric around the x-axis. Consequently, the collision/relaxation process
is independent of φ, and we are therefore able to rotate these cells through the entire coordinate,
φ ∈ [0,2π).

The collision/relaxation process is performed in a spherical coordinate frame. Because the
advection process is implemented in the usual Cartesian frame, particle velocities must be converted
into spherical coordinates to evaluate the integrals given by Eqs. (28), (39), (45), and (46). This is
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FIG. 6. [HS model, oscillatory Couette flow]: streamwise bulk velocity profiles. Solid lines: time-domain results. Dashed
lines: frequency-domain results. For the θ = 0.1 and θ = 1 cases, 1/∆τ∗,1/∆t∗= 128, Kn/∆y∗= 250, Np = 5×109, and the
deviation from local equilibrium is simulated. For the θ = 100 case, 1/∆τ∗,1/∆t∗= 4096, Kn/∆y∗= 8192, Np = 0.6×109,
and the deviation from global equilibrium is simulated.

achieved using



cr
cα
cφ



=



cos α sin α 0
− sin α cos α

0 0 1





1 0 0
0 cos φ sin φ

0 − sin φ cos φ





cx
cy
cz



. (55)

Due to the high computational cost of three-dimensional simulations, we restrict our analysis to
a comparison of the time and frequency-domain methods at Kn = 1 (BGK), K̂n = 1 (HS), and
θ = 1—this represents a strongly non-continuum flow. The method of simulating the deviation from
global equilibrium is used, because the approach of using a piecewise-constant function to represent
the local equilibrium is not efficient for 3-dimensional flows; see Refs. 37 and 38 for discussion of
more advanced approaches that may be applied in this case. The radius of the computational domain
is incremented in steps of 5L, until the relative changes in both the real (frequency-domain) and
in-phase (time-domain) drags are less than 1%; a value of R∗

b
= 20 fulfills this requirement.

Figures 9 and 10 show the BGK and HS solutions, respectively. The temperature, density, and
bulk velocity along the axis of rectilinear oscillation are shown, along with the angular slip velocity
on the surface of the sphere. The time and frequency-domain results obtained using the deviational
method are given, along with frequency-domain results using the weight-based method described
in Ref. 34. In all cases, we observe close agreement, demonstrating the validity of the deviational
frequency-domain method for higher-dimensional flows.

Figure 11 compares the frequency-domain BGK and HS results using the deviational fre-
quency-domain method. This comparison is particularly interesting because the generated flow
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FIG. 7. [BGK and HS model comparison, oscillatory Couette flow]: streamwise bulk velocity profiles. Solid lines: frequency-
domain BGK results. Dashed lines: frequency-domain HS results. See captions of Figs. 5 and 6 for simulation parameters.

is non-isothermal, due to the presence of a temperature jump at the solid sphere surface — this
arises because the surface orientation is not parallel to the oscillation direction everywhere.12 As
discussed above, the HS and BGK models exhibit different Prandtl numbers: for the BGK model,
we have Pr = 1, whilst Pr = 2/3 for the HS model.43 Since the Prandtl number controls the relative
diffusion of vorticity and heat, a significant difference in the predictions of these two models may
be expected. Even so, excellent agreement between the predictions of the two models is observed
for the bulk velocity and density profiles. Further, even the temperature profiles agree well, albeit

FIG. 8. Schematic of oscillating sphere geometry showing coordinate system. Left: 3D perspective. Right: z = 0 cross section
(x-y plane). Reprinted with permission from D. R. Ladiges and J. E. Sader, J. Comput. Phys. 284, 351 (2015). Copyright
2015 Elsevier.
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FIG. 9. [BGK model, oscillating sphere]: density, bulk velocity, and temperature profiles. Solid lines: time-domain results.
Dashed lines: frequency-domain results. Open circles: results obtained using weighted frequency-domain method.34 Simula-
tions run using Np = 32×109, 1/∆r ∗= 6, and 1/∆τ∗,1/∆t∗= 64.

with slightly greater differences occurring. This highlights the utility of the BGK model for oscilla-
tory flows, which can provide good quantitative predictions for higher-dimensional non-continuum
flows, that are generally non-isothermal due to the inevitable presence of a temperature jump at a
solid wall.12

IV. COMPUTATIONAL PERFORMANCE

As discussed in Section III, bulk flow properties (such as the density, velocity, and temperature)
are obtained using a least-squares fit to the time/virtual-time series of instantaneous values; see
Eq. (54). Because these series inherently contain stochastic noise, the observed variances in all
bulk flow properties decrease with an increasing number of time/virtual-time steps, i.e., as a larger
sample is obtained. We refer to this reduction in variance as the statistical convergence.

The total computational time of a simulation depends on two factors: (i) the statistical conver-
gence and (ii) the time required to perform each time/virtual time step. In this section, we compare
these factors in the deviational time and frequency-domain methods, to determine the relative
computational performance of the methods.

A. Statistical convergence

Formulas describing the relative statistical convergence of the weight-based time and fre-
quency-domain Monte Carlo methods were previously derived in Ref. 34, using the theoretical
framework of Ref. 45. These formulas also apply to the deviational method proposed in this
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FIG. 10. [HS model, oscillating sphere]: density, bulk velocity, and temperature profiles. Solid lines: time-domain results.
Dashed lines: frequency-domain results. Simulations run using Np = 32×109, 1/∆r ∗= 6, and 1/∆τ∗,1/∆t∗= 64.

article and give the variance of the fit parameters in Eq. (54), as a function of the number of
time/virtual-time steps. In Ref. 34, it was shown that the weight-based frequency-domain method
exhibits superior statistical convergence relative to the corresponding time-domain method. Here,
we investigate the relative statistical convergence of the proposed deviational frequency-domain
method.

The formulas in Ref. 34 show that the relative statistical convergence of the deviational
frequency and time-domain methods may be described in two asymptotic limits: βM ≪ 1 and
βM ≫ 1. Here, M is the number of time/virtual-time steps in the simulation, and β = θ∆t∗ = θ∆τ∗

is proportional to the ratio of the time (or virtual-time) step to the oscillation period. When β ≪ 2π,
many time (or virtual-time) steps occur in an oscillation period, and β ≫ 2π indicates that a single
step encompasses many oscillation periods.

In the small βM limit, the time-domain fit parameters exhibit a variance of O
�(βM)−2M−1�,

whereas the variance of the frequency-domain fit parameters is of O(M−1). Statistical convergence
of the frequency-domain method (i.e., with increasing M) is therefore superior in this region. In the
large βM limit, both methods display O(M−1) behavior. Importantly in this limit, the variance of
each fit parameter (ξ, µ) in the time-domain is given by a constant multiple of the corresponding
variance in the frequency-domain,

Var(ξ) = 3
2

(
1 +

1
3

a
)

Var(γ), (56a)

Var(µ) = 3
2

(
1 +

1
3

a−1
)

Var(ζ), (56b)

where a is a positive constant dependent on the properties of the simulations.34 It follows that
each time-domain fit parameter (ξ, µ) must have a variance more than 1.5 times greater than the
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FIG. 11. [BGK and HS comparison, oscillating sphere]: density, bulk velocity, and temperature profiles. Solid lines:
frequency-domain BGK results. Dashed lines: frequency-domain HS results. See captions of Figs. 9 and 10 for simulation
parameters.

corresponding frequency-domain parameter (γ, ζ). Additionally, if one time-domain parameter has
variance close to this minimum value, the variance of the other parameter will tend to be larger.46

Next, we assess the validity of these theoretical predictions by direct comparison to simulation
results using both time and frequency-domain methods.

Figure 12 presents results for the two asymptotic limits described above, using two of the
oscillatory Couette flow cases from Section III A. These results focus on the in-phase component
of the time-domain simulations and the corresponding real component of the frequency-domain
solution. Results for a small value of β (and βM) are given in the left panel of Fig. 12 as a
function of the number of steps, M . These results show that variance (standard deviation is plotted)
of the time-domain fit parameter is orders of magnitude larger than that of the corresponding
frequency-domain result. Results for large βM are shown in the right panel of Fig. 12, correspond-
ing to the region where variance in each method is related by a constant factor; in this case, the fac-
tor is 1.6, see Eq. (56). In all cases, excellent agreement is achieved between the above-mentioned
formulas and the observed statistical convergence in the simulation results; further examples are
given in Appendix B.

Figure 13 shows comparisons for both the real/in-phase and imaginary/out-of-phase parame-
ters, for the oscillating sphere problem of Section III B. Again, excellent agreement is found be-
tween the formulas and simulations. In the region βM ≫ 1, ratio of the real and in-phase variance is
1.6, close to the minimum value. As expected from the above discussion, the ratio of the imaginary
and out-of-phase variances is much larger; a value of 8.1 is observed.

The results in Figs. 12 and 13, together with those in Appendix B, show that the deviational
frequency-domain method exhibits superior statistical convergence relative to the corresponding
time-domain method.
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FIG. 12. [BGK model, oscillatory Couette flow]: percentage relative standard deviation in the shear stress at the oscillating
wall. Red dashed lines: time-domain simulations, in-phase component. Blue dashed lines: frequency-domain simulations,
real component. Solid lines: analytical predictions of equations given in Ref. 34. Ratio of the standard deviations of the time
and frequency-domain results is theoretically predicted to be greater than 1.22 for a large number of steps. After 400 steps,
data in the left panel (βM = 1.25) give a ratio of 1.64. Data in the right panel (βM = 78) give a ratio of 1.26.

B. Computational expense per step

We begin by noting that the computational expense on a per particle basis is similar for the time
and frequency-domain deviational Monte Carlo methods. Some operations are duplicated between
the real and imaginary parts in a frequency-domain simulation, whilst additional expense is incurred
generating simulator particles from time varying distributions in the time-domain. Even so, the
majority of operations are identical between the two methods.

Time and frequency-domain simulations will, in general, not contain the same number of simu-
lator particles. As a consequence, the relative computational efficiency of the two methods cannot
be inferred entirely from the statistical convergence as a function of the number of time/virtual-time
steps. The computational time taken to complete each step must also be considered. This contrasts
to a weight-based Monte Carlo approach, where time and frequency-domain simulations employ an
equal (and constant) number of particles.

FIG. 13. [BGK model, oscillating sphere]: percentage relative standard deviation in the drag. Red dashed lines: time-domain
simulations. Blue dashed lines: frequency-domain simulations. Solid lines: analytical predictions of equations given in
Ref. 34. Left: imaginary and out-of-phase components. Right: real and in-phase components. Ratio of the imaginary and
out-of-phase standard deviations after 400 steps is 2.85, whilst the ratio of the real and in-phase standard deviations is 1.28.
Each of these values agrees with the theoretically predicted minimum of 1.22 when βM ≫ 1.
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The ratio of the number of particles in a frequency-domain simulation to that in the corre-
sponding time-domain simulation, denoted Nratio, cannot be predicted without prior knowledge of
the flow field. However, bounds on Nratio can be estimated by examining the components of the
algorithm where particles are generated: the collision/relaxation process, boundary interactions, and
flux between cells. In each of these components, (i) particles are created by sampling from a distri-
bution which we refer to as a “generating distribution,” and (ii) the number of particles created is
proportional to the magnitude of this distribution. In the frequency-domain method, these generat-
ing distributions are given by Eqs. (29), (38), (41), (47), (50), and (51). Here, we focus on boundary
generating distribution, Eq. (41), noting that the same analysis holds for the other distributions.

In a time-domain simulation, Eq. (41) is real-valued and varies sinusoidally with time,

g
gen
b

(t,c) = Ab∆τ f̄ eq(c) c · n

σb +

c · ub

RT0
+

(
c2

2RT0
− 3

2

)
κb


cos(ωt), c · n > 0. (57)

We designate



g

gen
b

(t)� = Y


c·n>0
|ggen

b
(t,c)| dc, (58)

where Y is a normalization constant chosen such that


g

gen
b

(t)� has an amplitude of 1, giving a
time-averaged value of 2/π, i.e., the average magnitude of a sinusoid with unit amplitude; see
Fig. 14. The number of particles generated from Eq. (57), in a time-domain simulation, is propor-
tional to



g

gen
b

(t)�.
Similarly, in a frequency-domain simulation, we define



g̃

gen
b

(τ)� = Y


c·n>0
max{|ggen

re (τ,c)|, |ggen
im (τ,c)|} dc, (59)

where we use the same normalization constant Y , as chosen for Eq. (58), to enable comparison of
the two functions,



g

gen
b

(t)� and


g̃

gen
b

(τ)�. The number of particles generated in a frequency-domain
simulation using Eq. (41) is proportional to



g̃

gen
b

(τ)�. Depending on the phase of g̃gen, the value
of



g̃

gen
b

(τ)� may vary from 1/
√

2, when the magnitude of the real and imaginary parts of g̃gen is
equal, to 1 when the real part of g̃gen attains its maximum amplitude and the imaginary part is zero
(or vice versa). We label these two states “mixed-phase” and “in-phase,” respectively; see Fig. 14
(left panel). Therefore, for the in-phase case, the boundary will generate 1/(2/π) ≈ 1.57 times
more particles in a frequency-domain simulation than the average in a time-domain simulation. For
mixed-phase, this ratio will be (1/√2)/(2/π) ≈ 1.11.

The same bounds hold for all other particle generating processes throughout the flow domain.
The overall maximum Nratio (see definition above) value is therefore obtained if all generating
functions are in the in-phase state. The lowest Nratio value occurs if all generating functions are in

FIG. 14. Relative magnitude of particles generated at boundary. Left: frequency-domain, in-phase case shown in blue and
mixed-phase case shown in red. Right: time-domain, solid line indicates time dependent value and dashed line is time
averaged value. The ratio of the in-phase case to the time average is 1.57, and the ratio of the mixed-phase case to the
time average is 1.11.

 11 O
ctober 2023 21:11:45



102002-23 D. R. Ladiges and J. E. Sader Phys. Fluids 27, 102002 (2015)

TABLE I. Ratio of the number of particles in the frequency-domain to the
average number in the time-domain, denoted Nratio, as a function of the
boundary velocity phase, ϕ. BGK simulation conditions in Fig. 5 are used,
with a range of boundary phases: ũb = (U [1+0i],0,0), ũb = (U [0.924+
0.383i],0,0), and ũb = (U [0.707+0.707i],0,0). Phase shift ϕ = 0 repre-
sents the “in-phase” condition discussed above. A phase shift of ϕ = π/4
represents the “mixed-phase” condition. Note that HS simulations produce
a similar outcome. The value of Nratio= 1.58 attained for θ = 100 approxi-
mately agrees with the predicted maximum value of 1.57.

Nratio

Kn θ ϕ = 0 ϕ = π/8 ϕ = π/4

0.1 0.1 1.40 1.39 1.42
0.1 1 1.44 1.30 1.44
1 100 1.58 1.48 1.17
10 0.1 1.52 1.43 1.27

the mixed-phase state. In practice, the phase varies throughout the flow field, and most generat-
ing functions will yield a ratio of particles between the frequency and time-domain methods that
lie somewhere between these two extremes. The overall ratio of particles in the frequency and
time-domains, Nratio, will therefore fall between 1.11 and 1.57.

Table I gives values for Nratio corresponding to the simulations shown in Fig. 5. A range of
cases is given where the phase of the boundary velocity, ϕ, is varied; whilst this phase can be set
arbitrarily (because there is no external reference), its specification affects the number of parti-
cles used; see Eq. (59). When ϕ = 0, the boundary velocity is real and the maximum number of
boundary particles is generated; this boundary condition is used in Section III and corresponds to
the “in-phase” state discussed above. For ϕ = π/4, the real and imaginary parts of the boundary
velocity have equal magnitude, corresponding to the “mixed-phase” condition which minimizes the
number of particles generated at the boundary.

For high frequency flows, such as θ = 100, the magnitude of g̃ decreases rapidly away from the
wall, and the majority of the simulator particles are observed to be in-phase with the boundary. In
this case, changing the boundary phase dramatically affects the number of particles in the simula-
tion, as seen in row 3 of Table I. For high Knudsen number flows, e.g., Kn = 10, a relatively low
spatial variation in the phase of g̃ occurs. Once again, changing the phase of the boundary strongly
impacts the total number of particles. This is illustrated in row 4 of Table I. Away from each of
these extreme limits, the choice of boundary phase exerts a smaller effect on the overall number of
particles; see rows 1 and 2 of Table I.

For the BGK model, computational expense of the algorithm scales linearly with the number of
particles. The relative computational expense per step of the time and frequency-domain methods is
therefore specified by the relative number of particles, Nratio. For HS simulations, most of the algo-
rithm again scales linearly with the number of particles, with the exception of particle generation
during the collision operation in Eqs. (38) and (39); these terms exhibit O(N2

c) scaling behaviour,
i.e., quadratic dependence on the number of particles per cell. However, the relative effect of this
nonlinear dependence is minor in all of the examples considered above, i.e., the relative time taken
to complete a step in each domain is found to be proportional to the relative number of particles to a
very good approximation.

C. Relative computational performance

Here, we combine the findings regarding the relative statistical convergence and the relative
computational expense per step, to determine the relative computational performance of the time
and frequency-domain methods. As the relative statistical convergences of the two methods have
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been theoretically calculated in the small and large βM limits, βM ≪ 1 and βM ≫ 1 (see above),
we now describe the overall computational performance in terms of these two limits.

1. Small βM

Based on the minimum and maximum values of Nratio given in Section IV B, a single step
in the frequency-domain method takes 1.11 to 1.57 times longer to complete than the average
step in the time-domain method. However, as discussed in Section IV A and Appendix B, the
frequency-domain method exhibits dramatically superior statistical convergence when βM ≪ 1; it
far exceeds the above maximum factor of 1.57. The frequency-domain method is therefore much
more efficient than the time-domain method in this parameter region.

2. Large βM

For large βM , the lowest variance achievable in a single fit parameter using the time-domain
method is 1.5 times greater than that of the corresponding parameter using the frequency-domain
method; see Eq. (56). However, as noted in the discussion pertaining to Eq. (56), there is a recip-
rocal relationship between the variances of the two fit parameters in the time-domain method:
decreasing the variance of the in-phase parameter increases the variance of the out-of-phase param-
eter, and vice versa.

If the frequency-domain simulations contain the maximum relative number of particles, Nratio =

1.57, and the in-phase fit parameter in the time-domain simulations displays the minimum rela-
tive variance of 1.5, the two effects largely cancel, i.e., both methods have similar computational
performance in determining the in-phase and real fit parameters. However, due to the reciprocal
relationship described above, the frequency-domain method displays superior computational perfor-
mance when comparing the out-of-phase and imaginary parameters. That is, the frequency-domain
method displays better computational performance in both fit parameters collectively, even when
the most favorable conditions are selected for the time-domain method.

3. Arbitrary βM

The above discussion shows that the frequency-domain method exhibits superior computational
efficiency relative to the time-domain method, in the asymptotic limits of small and large βM .
Since operation at intermediate βM exhibits features of both these limits, an identical conclusion is
expected for all βM and is borne out in simulations (data not shown).

D. Time for flow to be fully developed

In the preceding comparison of the computational performance of the time and frequency-
domain methods, the flow is fully developed, i.e., all transients in the simulation have decayed. The
time taken for the flow to fully develop increases with decreasing Kn and θ and for larger domain
size.

A fully developed flow can always be obtained by starting the simulation with less computa-
tionally intensive parameters, such as larger values for Np, ∆t, or ∆τ. These values are systemati-
cally reduced over the course of flow development, thus refining the solution. This approach can be
used to ensure that the flow development time decreases to a negligible level relative to the overall
computational time.

V. OSCILLATORY FLOWS OF ARBITRARY TIME-DEPENDENCE

In Section III, time and frequency-domain deviational methods were used to simulate flows
generated by boundary conditions with a sinusoidal time-dependence; these methods can also be
applied to flows driven by forces that vary sinusoidally. In Section IV, it was shown that, due
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FIG. 15. Triangular time-dependent velocity boundary condition used in non-sinusoidal oscillatory Couette flow.

to superior statistical convergence, frequency-domain simulations provide improved computational
efficiency. Here, we describe the extension of the deviational frequency-domain method for the
efficient simulation of non-sinusoidally varying flows. While we focus on the deviational method, a
similar approach may be used for the weight-based method of Ref. 34 (results not shown).

To apply the deviational frequency-domain method to such flows, we first express the time-
domain boundary conditions (or driving forces) of the flow in their Fourier series. Each sinusoidal
term in these Fourier series is then simulated individually using the frequency-domain method and
combined to obtain the required result. This process naturally affords computational parallelization,
which when combined with the superior computation efficiency of the frequency-domain method,
and enables highly efficient simulations of oscillatory flows with arbitrary time-dependencies.

We illustrate this approach by way of example, using an unsteady Couette flow whose velocity
boundary condition at its upper solid wall is a “triangular wave” of period Tosc,

ub(t) =
(
U

(
t

Tosc
+

1
2
−


t
Tosc
+ 1

)
(−1)⌊t/Tosc+1⌋,0,0

)
, (60)

where ⌊ ⌋ indicates the floor (greatest integer) function and U is the velocity amplitude, see Fig. 15;
as before, the lower wall is stationary. This boundary condition may be expressed in its Fourier
series of the x-component,

ub,x(t) =
∞
j=1

4U
π2(2 j − 1)2 cos(2[2 j − 1]ωosct), (61)

where ωosc = 2π/Tosc, and the subscript x denotes the x-component of the velocity. The time-
domain boundary condition in Eq. (60) may then be approximated by a finite number of individual
frequency-domain simulations, corresponding to the lowest order terms in Eq. (61) with velocity
boundary conditions,

u( j)
x =

4U
π2(2 j − 1)2 (62)

and angular frequencies

ω j = 2 jωosc. (63)

The frequency components in Eq. (62) are independent and can therefore be treated separately.
However, dramatic gains in computational efficiency are obtained by exploiting any “overlap” in the
distribution functions, g̃j, i.e., where a candidate particle is enclosed by more than one g̃j, where
each j corresponds to a single (and different) frequency component.
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As noted previously, processes such as collisions/relaxation and boundary interactions involve
the creation of simulator particles through the sampling of “generating distributions.” This proce-
dure is defined in Eqs. (30)-(36) and illustrated in Fig. 1. We may extend this approach to the
overlapping parts of the generating functions for different j, representing different frequencies
of the Fourier series in Eq. (61). This procedure is encapsulated in the following mathematical
description.

For J individual simulations, representing different frequencies of the Fourier series, we rewrite
Eq. (30) as

p(c) > max{|ggen
1,re(τ,c)|, |ggen

1,im(τ,c)|, . . . , |ggen
J,re(τ,c)|, |ggen

J,im(τ,c)|}. (64)

As such, a particle is accepted when

Rp(c) < max{|ggen
1,re(τ,c)|, |ggen

1,im(τ,c)|, . . . , |ggen
J,re(τ,c)|, |ggen

J,im(τ,c)|}. (65)

Each simulator particle now carries a value W̃j for each of the J simulations. For the jth simulation,
in the case

Rp(c) < |ggen
j,re(τ,c)|, (66)

the real part of the jth value is set to

W̃j,re = sgn[ggen
j,re(τ,c)]. (67)

Correspondingly, when

Rp(c) < |ggen
j,im(τ,c)|, (68)

the imaginary part of the jth value is set to

W̃j,im = sgn[ggen
j,im(τ,c)]. (69)

This particle generation procedure is illustrated in Fig. 16.
Calculation of the moments (or any other integration) of each g̃j(τ,c) is performed separately,

using the corresponding particle values. For example, Eq. (28) becomes

FIG. 16. Particle generation examples using more than one frequency component. Left panel: two example generating
distributions, g̃ gen

1 and g̃
gen
2 . Right panel: extension of the particle generation procedure given in Section II B to the case

of multiple distributions. Overlapping parts of separate distributions are treated in the same manner as the real and imaginary
parts of a single distribution; see Fig. 1. In the lower left example, the randomly selected point lies beneath all of |g̃ gen

1,re|,
|g̃ gen

1, im|, |g̃ gen
2,re|, and |g̃ gen

2, im|, and the particle is therefore assigned real and imaginary values for both distributions; namely,
because g̃

gen
1,re < 0 and g̃

gen
1, im > 0, we assign W̃1=−1+ i, and as g̃ gen

2,re > 0 and g̃
gen
2, im < 0, we assign W̃2= 1− i. Other particles

are assigned in the same manner, as indicated.
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σ̃ j =
Np

n0Vc

Nc
i

W̃j, i,
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+
-
,

(70)

where again the index i refers to the ith particle. Note that the factors multiplying W̃j, i in Eq. (70)
are independent of the frequency index j and are not recalculated for each simulation. The particle
oscillation operation is performed separately on each set of cell moments and particle values, for
example, Eq. (26) becomes



W̃j,re,new

W̃j,im,new


=



cos(∆τω j) − sin(∆τω j)
sin(∆τω j) cos(∆τω j)





W̃j,re

W̃j,im


. (71)

The rest of the frequency-domain algorithm, i.e., particle deletion and advection, is unchanged.
Because these latter operations are independent of the frequency index j, they apply to multiple
frequency components simultaneously. For example, if a simulator particle carries non-zero values
for W̃1 and W̃2, i.e., it represents both g̃1 and g̃2 (for two frequency components), the advection of
this particle applies simultaneously to both frequency components 1 and 2. This results in a consid-
erable improvement in computational efficiency compared to advecting two particles in separate
simulations of each frequency component.

Increasing the number of individual (and concurrent) simulations, J, results in an increase in
the total computational cost. However, the additional cost for each simulation (at each frequency

FIG. 17. [BGK model, triangular time-dependent Couette flow]: shear stress at the oscillating wall, comparison of time,
and frequency-domain deviational results when simulating a non-sinusoidal “triangle” flow. Left: the black dots are the
instantaneous output in the direct time-domain simulation of the triangular boundary condition. The red line is the six term
Fourier series constructed from the parallelized frequency-domain method. For each frequency-component, a fit is made to
the frequency-domain simulation output to determine the coefficient in the Fourier series. Right: black curve is the variance
of the direct time-domain simulation (black dots in left panel), i.e., the variance of the instantaneous output, measured using a
moving window of 20 points and averaged over multiple cycles. Red curve: this variance is synthetically constructed from the
frequency-domain simulations (it is used for comparison with the black curve). It is constructed as follows: (1) the variance
of the amplitude of each frequency component of the parallelized frequency-domain simulation is measured. (2) Noise is then
added to the Fourier reconstructed time-series in the left panel (red), using a random number generator of variance equal to
that of point 1. (3) A moving window of 20 points is used on the noisy Fourier reconstruction from point 2 and averaged over
multiple cycles, as was performed for the direct time-domain simulation. This variance (red) can then be compared directly
to the variance in the time-domain simulation (black). The small mismatch between the red and black curves is due to the
truncation of the Fourier series to 6 terms. Simulation parameters: Kn= 1, θosc= 0.1, Kn/∆y∗= 20, 1/∆τ∗,1/∆t∗= 64, and
Np = 40×109.
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component) rapidly diminishes due to (i) the increasing degree of “overlap” (see above) between
the set of g̃j as more simulations are added, and (ii) the decreasing magnitude of the Fourier
components with increasing j, which reduces the number of simulator particles required.

Results using the above-described algorithm for a triangular wave Couette flow simulation are
given in Fig. 17. In the left panel, direct time-domain deviational method simulations of the flow
are compared to the result of simulating the first six Fourier terms in Eq. (61) using the parallelized
frequency-domain method (summed in Fourier space to give a time-domain response). In the right
panel, the stochastic noise in the time-domain solution is compared to the combined noise of each
Fourier component from the frequency-domain simulation; see the figure caption for further details.
The very similar results between the two methods indicate that the stochastic noise in a transient
time-domain simulation is given by the sum of the noise in the Fourier components. The results of
Section IV are therefore applicable to the individual Fourier components of a general transient flow,
regardless of whether the frequency-domain method or time-domain method are used.

For this example flow, the parallelized frequency-domain method displays superior statistical
convergence compared to the time-domain simulation; the predicted relative convergence for the first
two frequency components is shown in Fig. 18. A single virtual-time step of the combined frequency-
domain simulations, i.e., one step in all six frequency components (used in this example), takes approx-
imately 1.5 times more computational time than a step in the time-domain simulation. The simi-
larity of this figure to the predicted maximum of 1.57, given in Section IV B, is coincidental — the
bounds calculated in Section IV B apply to simulations of individual frequency components, but not
to the combined parallelized simulation. This longer computational time per step in the combined
frequency-domain simulations is greatly outweighed by the superior statistical convergence of the

FIG. 18. [BGK model, triangular time-dependent Couette flow]: percentage relative standard deviation in the shear stress
at the oscillating wall for the first two frequency components. Left column: first component, j = 1. Right column: second
component, j = 2. Blue dashed lines: frequency-domain simulations. Solid lines: analytical predictions due to equations
given in Ref. 34.
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frequency-domain method. As such, the parallelized frequency-domain simulation displays much
better computational efficiency than the time-domain simulation.

This general parallelized approach thus enables trivial and efficient extension of the frequency-
domain method to boundary conditions of periodic and arbitrary time-dependence.

VI. CONCLUSIONS

We have proposed a deviational frequency-domain Monte Carlo method to simulate oscillatory,
low Mach number gas flows. This is based on the linearized Boltzmann equation and easily accom-
modates a wider range of collision operators than previous work using a weight-based method;34

both BGK relaxation and HS collision operators were considered in this article. This deviational
frequency-domain method is formulated by extending current deviational time-domain Monte Carlo
methods17,20 to the frequency-domain, using the underlying complex-variable solution of Ref. 34.
The accuracy of this deviational frequency-domain method was verified using two model flows:
oscillatory Couette flow and solid sphere oscillating in an unbounded gas. Comparison to existing
high accuracy numerical solutions of the Boltzmann-BGK equation for oscillatory Colette flow, and
to conventional time-domain simulations for both flows, was performed. Excellent agreement was
achieved in all cases.

We also compared predictions of the BGK and HS models for both isothermal (Couette) and
non-isothermal (solid sphere) oscillatory flows. Strikingly, the BGK model was found to produce
highly accurate results relative to the more realistic HS model in both cases, despite the Prandtl
numbers differing between the two kinetic models.

The relative performance of the deviational time and frequency-domain methods was analyzed
by considering (i) the number of simulator particles required and (ii) the statistical convergence
properties of each method. The frequency-domain method requires a slightly larger number of
particles (maximum of approximately 1.57×) than the time-domain method, leading to a greater
computational expense on a per step basis. However, due to superior statistical convergence, the
frequency-domain method requires fewer steps, leading to a significant improvement in overall
computational efficiency.
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APPENDIX A: HARD SPHERE COLLISION OPERATOR

The collision kernel, K , and the relaxation frequency, ν̂, are derived in Ref. 36, based on a form
of the HS collision operator given by Hilbert.43 The collision kernel is

K(c,c1) = K1(c,c1) − K2(c,c1), (A1)

where

K1(c,c1) = 1

λ
√
π3RT

1
|c − c1| exp

(
− [c · (c − c1)]2

2RT |c − c1|2
)
, (A2a)

K2(c,c1) = 1
4λ(πRT)3/2 |c − c1|exp

(
− c2

2RT

)
. (A2b)

Note that K1 has a singularity at c = c1. To avoid difficulties associated with generating particles
from an unbounded distribution, the mean value is used in the region |c − c1| < cm, given by

K̄1(c,c1) = 3

2πλ
√

RT
erf

( |c1|√
2RT

)
1

cm|c1| , (A3)

where the error function is defined as

erf(χ) = 2
√
π

 χ

0
exp

�
−υ2� dυ.
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The collision frequency term is

ν̂(c) =


RT
π

1
2λ




√
π erf

( |c|
√

2RT

)
*
,

√
2RT
|c| +

2|c|
√

2RT
+
-
+ 2 exp

(
− c2

2RT

)

. (A4)

It follows from conservation of mass, momentum, and energy that ∞

−∞

 ∞

−∞
K(c,c1)g̃(c1)dc1dc =

 ∞

−∞
ν̂(c)g̃(c)dc, ∞

−∞

 ∞

−∞
cK(c,c1)g̃(c1)dc1dc =

 ∞

−∞
cν̂(c)g̃(c)dc, ∞

−∞

 ∞

−∞
c2K(c,c1)g̃(c1)dc1dc =

 ∞

−∞
c2ν̂(c)g̃(c)dc.

(A5)

These moments are employed when calculating the mass, bulk velocity, and temperature perturba-
tions used in Eqs. (46)-(48).

APPENDIX B: ADDITIONAL ANALYSIS OF STATISTICAL CONVERGENCE

In this appendix, we discuss the approach used to generate the variance (standard deviation)
data given in Section IV A and provide some additional examples.

FIG. 19. [BGK model, oscillatory Couette flow]: percentage relative standard deviation in the shear stress at the oscillating
wall. Red dashed lines: time-domain simulations, in-phase component. Blue dashed lines: frequency-domain simulations,
real component. Solid lines: analytical predictions of equations in Ref. 34. Ratio of the standard deviations of the time and
frequency-domain method results is theoretically predicted to be greater than 1.22 for large steps. After 400 steps, data in the
top right and bottom left panels (βM ≫ 1) give ratios of 1.49 and 1.28, respectively. The top left and bottom right panels
(βM = 1.25) give 1.64 and 1.76, respectively.
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For Couette flow, shear stress at the oscillating wall is determined, whilst for the oscillating
sphere, we solve for the drag. Using the same approach as Ref. 34, at least 8000 simulations are
used in both the time and frequency-domain simulations. For each simulation, fits of M = 1 to
400 steps are made, starting at a random time/virtual-time after the flow has fully developed. For
each number of steps, the standard deviation in the fit parameters is then calculated. The time and
frequency-domain results are compared to predictions of the equations in Ref. 34.

For the frequency-domain method, choice of the starting virtual-time (after the flow has
reached steady-state) has no effect on the rate of statistical convergence. However, this is not the
case for the time-domain method, where the location of the starting point within an oscillation
period influences the variance of the fit. The time-domain method simulation data shown here and
in Section IV A therefore give the rate of statistical convergence averaged over all choices of
starting time. For further discussion of this point, see Ref. 34. Figure 19 gives the standard deviation
in the Couette flow BGK simulations, using the parameter range in Fig. 5, whilst Fig. 20 shows
the corresponding HS results. Figures 13 and 21 give results for the oscillating sphere, using the
parameters from Figs. 9 and 10, respectively.

It is important to emphasize that the equations in Ref. 34 are derived under the ideal assumption
of statistical independence between steps; however, in practice, there is some (unavoidable) small
degree of correlation. This accounts for the small discrepancies between the predicted and observed
rates of convergence.

FIG. 20. [HS model, oscillatory Couette flow]: percentage relative standard deviation in the shear stress at the oscillating
wall. Red dashed lines: time-domain simulations, in-phase component. Blue dashed lines: frequency-domain simulations,
real component. Solid lines: analytical predictions of equations in Ref. 34. Ratio of the standard deviations of the time and
frequency-domain method results is theoretically predicted to be greater than 1.22 for large steps. After 400 steps, data in the
top right and bottom left panels (βM ≫ 1) give ratios of 1.30 and 1.32, respectively. The top left and bottom right panels
(βM ≪ 1) give 5.35 and 5.57, respectively.
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FIG. 21. [HS model, oscillating sphere]: percentage relative standard deviation in the drag. Red dashed lines: time-domain
simulations. Blue dashed lines: frequency-domain simulations. Solid lines: analytical predictions due to equations given in
Ref. 34. Left: imaginary and out-of-phase components. Right: real and in-phase components. Ratio of the imaginary and
out-of-phase standard deviations after 400 steps is 2.73, whilst the ratio of the real and in-phase standard deviations is 1.22.
Each of these values agrees with the theoretically predicted minimum of 1.22 when βM ≫ 1.
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