1 SUPPORTING INFORMATION

² Propyne: Determination of physical properties and

³ unit cell parameters under Titan-relevant conditions

- 4 Theresa C. Marlin^{1,2,*}, Morgan L. Cable¹, Tuan H. Vu¹, Helen E. Maynard-Casely³, Melissa
- 5 Ugelow⁴, Carrie Anderson⁴, Robert Hodyss¹
- ¹NASA Jet Propulsion Laboratory, California Institute of Technology (4800 Oak Grove Drive,
 Pasadena, CA 91109)
- 8 ²Division of Geological and Planetary Sciences, California Institute of Technology (1200 E
- 9 California Blvd, Pasadena, CA 91125)
- ³Australian Nuclear Science and Technology Organisation (Locked Bag 2001, Kirrawee DC,
 NSW 2234, Australia))
- ⁴NASA Goddard Space Flight Center (8800 Greenbelt Road, Greenbelt, MD, 20771)
- 13 *Corresponding author: Theresa Marlin; tmarlin@caltech.edu
- 14

Figure S-1. Raman spectroscopy of pure propyne ice deposited at 75 K under low pressure, with
increasing temperatures. A phase transition is observed around 105-107 K. Expanded views of
various spectral regions are shown at the bottom panels.

Figure S-2. Spectra at 105 K; low-temperature deposition at 75 K (increasing temperature series;
warmed to 105 K), high-temperature deposition at 120 K (decreasing temperature series cooled
to 105 K), and direct deposition at 105 K comparisons. Direct deposition at 105 K has a
crystalline structure.

Figure S-3. Raman spectroscopy of pure propyne ice deposited at 120 K under low pressure,
with decreasing temperatures. No phase transitions are observed. Expanded views of various
spectral regions are shown at the bottom panels.

31

32

Figure S-4. Infrared spectroscopy temperature series of pure propyne deposited at 15 K and
annealed to 105 K, under vacuum. Transition from amorphous to crystalline propyne is observed
between 65 K and 75 K. Spectra highlighted in purple and denoted with an asterisk (8 K, 70 K,
and 80 K) are from previously published work by Hudson et al. 2021²³ (Figures 11-13).

