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Supplementary Figures

Low-Dimension Distortion
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Supplementary Figure 1: Principal Components of Equidistant Points. a) First and second principal
components shown for varying numbers of equidistant points, i.e. the In identity matrix in Rn, for n = 3, 5, 10, 15, 20
and 50. b) Max/min ratios for the projections (see Methods ; Supplementary Note 2) of simplices in two-dimensions.
* denotes where the minimum distance in the ratio is 0 (points are collapsed onto each other), and the max/min
ratio is infinite. [Code]
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https://github.com/pachterlab/CBP_2021/blob/main/figures/simplexPCAPlots.R


Group Sizes in ‘Near and Equidistant’ Groups

Variance in Equidistant Cell Distances
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Supplementary Figure 2: Embeddings of Near and Far Equidistant Points in Integrated Ex- and In-
Utero E10.5. a) Histogram of group sizes (number of equidistant cells) in the selection of ‘near and equidistant’
groups. b) Variance of pairwise distances across groups in each latent space. c) Ratio of the maximum to minimum
pairwise distance (max/min ratio) across groups. d) Ratio of the maximum to minimum pairwise distance (max/min
ratio) for each cell’s neighborhood of 10 nearest neighbors (NNs). e) Histogram of group sizes (number of equidistant
cells) in the selection of ‘far and equidistant’ groups. f) Variance of pairwise distances across groups in each latent
space. g) Ratio of the maximum to minimum pairwise distance (max/min ratio) across groups. h) Ratio of the
maximum to minimum pairwise distance (max/min ratio) for each cell’s neighborhood of 10 nearest neighbors (NNs).
For all plots bars denote the 95% C.I. [Code]
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https://github.com/pachterlab/CBP_2021/blob/main/notebooks/equidistCells.ipynb


10x VMH Neurons
Variance in ‘Mid-Range’ Equidistant Cell Distances
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Supplementary Figure 3: Distortion of Equidistant Points Across Latent Spaces. a) Variance in pairwise
distances and max/min ratios measured for the ‘mid-range’ equidistant groups in the 10x mouse VMH neurons dataset
with and without PCA-coupled t-SNE/UMAP. ‘2D’ latent spaces directly embed ambient space into two-dimensions,
with increasing dimensions of PCA-reduced ambient data coupled with t-SNE or UMAP shown down the columns. b)
Variance in pairwise distances and max/min ratios measured for the ‘mid-range’ equidistant groups in the integrated
E10.5 mouse embryo dataset with and without PCA-coupled t-SNE/UMAP. For all plots bars denote the 95% C.I.
[Code]
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https://github.com/pachterlab/CBP_2021/blob/main/notebooks/allEquidistDistortions.ipynb


‘Mid-Range’ Equidistant Cells
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Supplementary Figure 4: Embeddings of Equidistant Points in Integrated Ex- and In-Utero E10.5.
a) Selection of ‘mid-range’ sets of equidistant points, with distances close to the average pairwise distance, and
their respective positions in the generated UMAP. b) Histogram of group sizes (number of equidistant cells) in the
selection of mid-range’ groups. c) Variance of pairwise distances across groups in each latent space. d) Ratio of
the maximum to minimum pairwise distance (max/min ratio) across groups. e) Ratio of the maximum to minimum
pairwise distance (max/min ratio) for each cell’s neighborhood of 10 nearest neighbors (NNs). For all plots bars
denote the 95% C.I. [Code]
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https://github.com/pachterlab/CBP_2021/blob/main/notebooks/equidistCells.ipynb


‘Mid-Range’ Equidistant Cells
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Supplementary Figure 5: Properties of Equidistant Points in 10x VMH Neurons. a) Selection of ‘mid-
range’ groups, with distances close to the average pairwise distance, in the 10x Mouse VMH Neurons dataset. b)
Histogram of group sizes (number of cells in a group) in the selection of mid-range’ groups. c) Variance of pairwise
distances across groups in each latent space. d) Ratio of the maximum to minimum pairwise distance (max/min ratio)
across groups. e) Ratio of the maximum to minimum pairwise distance (max/min ratio) for each cell’s neighborhood
of 10 nearest neighbors (NNs). f) Selection of ‘mid-range’ groups of cell type centroids, with distances close to the
average pairwise distance. g) Ratio of the maximum to minimum pairwise distance (max/min ratio) across the groups
of centroids. For all plots bars denote the 95% C.I. [Code]

6

https://github.com/pachterlab/CBP_2021/blob/main/notebooks/equidistCells.ipynb
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Supplementary Figure 6: Distortion of Nearest Neighbor Distances Across Latent Spaces. a) The
max/min ratios measured within each cell’s 10 nearest neighbors in the 10x mouse VMH neurons dataset with and
without PCA-coupled t-SNE/UMAP. ‘2D’ latent spaces directly embed ambient space into two-dimensions, with
increasing dimensions of PCA-reduced ambient data coupled with t-SNE or UMAP shown down the columns. b)
The max/min ratios measured within each cell’s 10 nearest neighbors in the integrated E10.5 mouse embryo dataset
with and without PCA-coupled t-SNE/UMAP. For all plots bars denote the 95% C.I. [Code]
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https://github.com/pachterlab/CBP_2021/blob/main/notebooks/allEquidistDistortions.ipynb
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10x VMH Neurons
Jaccard Distance to Ambient Neighbors
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Jaccard Distance to n-D PCA Neighbors

dMERFISH Developing Neurons
Jaccard Distance to Ambient Neighbors

MERFISH Developing Neurons
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Ex Utero E8.5 Embryo
Jaccard Distance to Ambient Neighbors
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Supplementary Figure 7: Low Dimensional Dissimilarity to Higher Dimensional Neighbors. a) eCDF of
Jaccard distances (dissimilarity) of 30 nearest neighbors in each designated latent space, including Picasso embeddings,
as compared to the ambient/higher dimensional input space for the ex-utero E8.5 embryo data. First columns
denote comparisons to ambient neighbors, and second columns denote comparisons to neighbors in the respective
n-dimensional PCA space (coupled to t-SNE or UMAP). b) eCDF of Jaccard distances (dissimilarity) of neighbors in
each designated latent space as compared to the ambient/higher dimensional input space for the SMART-Seq mouse
VMH neurons dataset. c) eCDF of Jaccard distances (dissimilarity) of neighbors in each designated latent space as
compared to the ambient/higher dimensional input space for the MERFISH developing neurons dataset. d) eCDF
of Jaccard distances (dissimilarity) of neighbors in each designated latent space as compared to the ambient/higher
dimensional input space for the 10x mouse VMH neurons dataset. [Code] [Plots]
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https://github.com/pachterlab/CBP_2021/blob/main/notebooks/all2DDistortions.ipynb
https://github.com/pachterlab/CBP_2021/blob/main/notebooks/combinedFigurePlots.ipynb


Picasso Results
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Supplementary Figure 8: Inter- and Intra-Distance Calculations. Inter-label distances, for a given class of
labels, as calculated between the cells/centroids of each label. Intra-label distances as calculated between cells within
each label.
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Supplementary Figure 9: Detailed Analysis of Picasso Embeddings. a) Picasso embedding of the MERFISH
mouse primary motor cortex (MOp) data fit to a flower-like boundary. b) Picasso embedding of the MERFISH MOp
data fit to a ‘von Neumann’ elephant. c) Comparison of correlation metrics between the flower Picasso embedding
and the other baseline 2D embeddings, including densVis embeddings [29]. d) Comparison of correlation metrics
between the elephant Picasso embedding and the other baseline 2D embeddings, including densVis embeddings [29].
e) Picasso embedding of the ex-utero mouse Embryo E8.5 data fit to a flower-like boundary. f) Comparison of
correlation metrics between the flower Picasso embedding and the other baseline 2D embeddings, including densVis
embeddings [29]. g) Picasso embedding of the SMART-Seq mouse VMH neurons dataset fit to a ‘von Neumann’
elephant. h) Comparison of correlation metrics between the elephant Picasso embedding and the other baseline 2D
embeddings, including densVis embeddings [29]. For all plots bars denote the 95% C.I. [Code a-d] [Code e,f] [Code
g,h] 10

https://github.com/pachterlab/CBP_2021/blob/main/notebooks/ContinuousData/ContMCML.ipynb
https://github.com/pachterlab/CBP_2021/blob/main/notebooks/ExInUteroE85/uteroPicassoAnalysis.ipynb
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https://github.com/pachterlab/CBP_2021/blob/main/notebooks/VMHNeurons/kimetal_smartseq_picasso_bmcml.ipynb


Impact of Non-Linear Reduction
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Cell Type Neighbor Rankings vs Ambient Cell Type Neighbor Rankings vs 50D PCA

Cell Type Neighbor Rankings vs Ambient Cell Type Neighbor Rankings vs 50D PCA
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K-S Test: 0.9563K-S Test: 0.9171

Supplementary Figure 10: Effect of Reduction on Separation and Neighbor Rankings. a) Kendall’s
Tau correlation (from -1 to 1) of cell type neighbor rankings for each type, to ambient rankings for SMART-Seq
VMH data (see Methods). b) Kendall’s Tau correlation of cell type neighbor rankings for each type, to 50D PCA
rankings (then coupled to t-SNE or UMAP). c) Kolmogorov–Smirnov test statistic for measuring distance/separation
between pairwise inter- or intra-type distances in the SMART-Seq VMH data. Distributions scaled to the same mean
for comparison. d) Kendall’s Tau correlation of cell type neighbor rankings for each type, to ambient rankings for
MERFISH data. e) Kendall’s Tau correlation of cell type neighbor rankings for each type, to 50D PCA rankings
(then coupled to t-SNE or UMAP). f) Kolmogorov–Smirnov test statistic for measuring distance/separation between
pairwise inter- or intra-type distances in the MERFISH data. Distributions scaled to the same mean for comparison.
For box plots, whiskers denote 1.5 times the IQR. [Code]
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https://github.com/pachterlab/CBP_2021/blob/main/notebooks/allInterIntraDistortions.ipynb


Digit Fraction
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8 0.829944
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Latent Pearsonr
PCA 50D 0.994942
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UMAP -0.750536
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Supplementary Figure 11: MNIST Embedding Properties. a) Default t-SNE of the MNIST dataset. b)
Default UMAP of the MNIST dataset. c) t-SNE MNIST plot with hidden points plotted in reverse order. d) UMAP
MNIST plot with hidden points plotted in reverse order. e) Fraction of the correct digit in each of the ten k-means
clusters from the t-SNE embedding (see Methods). f) Fraction of the correct digit in each of the ten k-means clusters
from the UMAP embedding. g) Pearsonr correlation of intra-distances (internal variance) of each digit, in each
embedding, to the ambient variances. h) Kendall’s Tau correlation of each digit’s neighbor rankings to ambient
space. For box plots, whiskers denote 1.5 times the IQR. [Code]
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https://github.com/pachterlab/CBP_2021/blob/main/notebooks/allInterIntraDistortions.ipynb


MCML Results
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MERFISH Elephant Picasso Loss
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Supplementary Figure 12: Training and Testing Loss Curves for Picasso and MCML. a) Training and
testing set loss plots for the MERFISH flower Picasso embedding. Loss plots include the loss for fitting to the shape’s
boundary (LShapeAware in Methods), reconstruction loss (LReconstruction in Methods), and the total combined loss.
Training set represents 80% of the input data, and the testing set represents the remaining 20%. b) Training and
testing set loss plots for the MERFISH flower Picasso embedding. c) Training and testing set loss plots for the
MERFISH spatial coordinate MCML embedding. Loss plots include the discrete and continuous losses for the label-
aware cost (LLabelAware in Methods), reconstruction loss (LReconstruction in Methods), and the total combined loss.
Only spatial coordinate labels are used (continuous values). d) Training and testing set loss plots for the 10x mouse
VMH neuron cell type MCML embedding. Only cell type labels are used (discrete values). [Code a-c] [Code d]
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https://github.com/pachterlab/CBP_2021/blob/main/notebooks/ContinuousData/ContMCML.ipynb
https://github.com/pachterlab/CBP_2021/blob/main/notebooks/VMHNeurons/kimetal_tenx_predictions.ipynb


a

b

Supplementary Figure 13: Scalability of MCML for Prediction Tasks. a) Runtimes, per epoch, for each
method used for cell type prediction in Fig. 4c (excluding netAE) across a range of cell numbers. b) Cell type
label prediction accuracy for MCML on the three tested datasets, with lower fractions of labeled cells (see Methods).
[Code]
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https://github.com/pachterlab/CBP_2021/blob/main/notebooks/combinedFigurePlots.ipynb


MCML Spatial Prediction with Cell Type and Spatial Labels

Spatial Coordinate MCML - MERFISH MOp

Prediction of Cell Type Labels for 30% Unlabeled Data

Avg. Distance - 50 NNs Avg. Pairwise 
Distance

a

b
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Supplementary Figure 14: Prediction Accuracy with Two-Dimensional Embeddings. a) Cell type pre-
diction accuracy including accuracy scores for two-dimensional embeddings with semi-supervised UMAP (UMAP
Sup.). For all plots bars denote the 95% C.I. b) eCDFs of Jaccard distance to ambient spatial neighbors including
distances for two-dimensional embeddings (t-SNE and UMAP). c) Distributions of distance of predicted locations
from actual spatial locations, including predictions from two-dimensional embeddings (t-SNE and UMAP). [Code a]
[Code b,c]
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https://github.com/pachterlab/CBP_2021/blob/main/notebooks/combinedFigurePlots.ipynb
https://github.com/pachterlab/CBP_2021/tree/main/notebooks/ContinuousData
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Supplementary Figure 15: Recapitulation of Ambient Properties with bMCML. a) Correlation metrics
for bMCML (Biased MCML) with intra-sex distance correlation as cost function, for the SMART-Seq mouse VMH
neurons. b) Correlation metrics for bMCML with intra-sex distance correlation as cost function, for the 10x mouse
VMH neurons. c) Correlation metrics for bMCML with intra-type distance correlation as cost function, for the
SMART-Seq mouse VMH neurons. d) Correlation metrics for bMCML with intra-type distance correlation as cost
function, for the 10x mouse VMH neurons. (See Methods). For all plots bars denote the 95% C.I. [Code a,c] [Code
b,d]
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https://github.com/pachterlab/CBP_2021/blob/main/notebooks/VMHNeurons/kimetal_smartseq_picasso_bmcml.ipynb
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Inter-type Distances for ‘Rare’ & Orthogonal Cells (MERFISH MOp data)

a b

Supplementary Figure 16: Inter-Distance Correlation for Rare, Orthogonal Cell Type. a) Pearson
correlation of inter-type distances to ambient distances, from simulated ‘rare’ and orthogonal cells embedded with
Recon MCML (MCML with reconstruction error only). b) Correlation of inter-type distances to ambient distances,
from simulated ‘rare’ and orthogonal cells embedded with PCA. (See Methods) [Code]
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https://github.com/pachterlab/CBP_2021/blob/main/notebooks/ContinuousData/ContMCML.ipynb


Cell Embeddings

10x VMH Neurons MCML Latent Space (50D)
Gene Weights per Latent Dimension

Supplementary Figure 17: Extraction of Gene Weight Loadings in Latent Space. On the left, embeddings
of 10x mouse VMH neuron cells in various latent dimensions of Z are colored by cell type and sex (Male ‘M’ and
Female ‘F’). Embedding constructed from MCML with cell type and sex labels. Right hand column shows weight
loadings for genes in each of the respective latent dimensions, with highly weighted genes labeled for each dimension.
[Code]
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https://github.com/pachterlab/CBP_2021/blob/main/notebooks/VMHNeurons/kimetal_tenx_bmcml_linDecoder.ipynb


a b

Supplementary Figure 18: Comparison of MCML and sklearn NCA Loss Values. a) Value of the
NCA cost function (likelihood) described in [40], equivalently LDiscrete in Methods, measured on the sklearn NCA
implementation and MCML (with no/zero reconstruction error) latent output, with 10x mouse VMH neurons and
MERFISH MOp datasets as input. Uses only cell type labels for MCML and sklearn NCA. b) Total runtime for each
method, using the same processing specifications as in the prediction method runtime comparisons (see Methods),
with no GPU. [Code]
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https://github.com/pachterlab/CBP_2021/blob/main/notebooks/RuntimeComparisons/sklearnTime.py


Data Tables

Name DOI Link

C. elegans Developmental Lineage

counts.mtx https://data.caltech.edu/records/2060

cells.csv https://data.caltech.edu/records/2061

genes.csv https://data.caltech.edu/records/2062

MERFISH MOp

metadata.csv https://data.caltech.edu/records/2063

counts.h5ad https://data.caltech.edu/records/2064

10x VMH Neurons

metadata.csv https://data.caltech.edu/records/2065

tenx.mtx https://data.caltech.edu/records/2072

var.csv https://data.caltech.edu/records/2066

tenx raw.mtx https://data.caltech.edu/records/2073

SMART-Seq VMH Neurons

metadata.csv https://data.caltech.edu/records/2067

smartseq.mtx https://data.caltech.edu/records/2071

smartseq raw.mtx https://data.caltech.edu/records/2070

gene names.npy https://data.caltech.edu/records/2068

smartseq.csv https://data.caltech.edu/records/2075

Developing Mouse Brain

gene names.npy https://data.caltech.edu/records/2069

dev all hvg.mtx https://data.caltech.edu/records/2043

dev all raw.mtx https://data.caltech.edu/records/2044

lamannometadata.csv https://data.caltech.edu/records/2045

Supplementary Table 1: Availability of Processed Data. Links to DOI registered data for all the pre-processed
data used for the MCML and Picasso analyses.
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Supplementary Notes

1. Limitations of Two-Dimensional Embeddings of Equidistant Points

For completeness, we review why no more than n+ 1 points in Rn can be equidistant.

Let X be a set of m equidistant points {x1, ...,xm} in Rn, i.e. ||xi − xj || = |xk − xl|| for all
i 6= j, k 6= l, and suppose, without loss of generality, that the distances between them are 1. For
any given i, we note that the difference vectors (xi − xj) for all i 6= j are linearly independent i.e.
if
∑

j 6=i λj(xi − xj) = 0 then all λj must be equal to 0. This is trivial for m = 1 and m = 2. For
m ≥ 3, suppose, towards contradiction, that the difference vectors are not linearly independent,
i.e. there are some coefficients λj (j 6= i) not all equal to 0 such that∑

j 6=i
λj(xi − xj) = 0. (1)

Choose some point xk where k 6= i and note that the dot product of the difference vector (xi−xk)
with (1) is ∑

j 6=i
λj(xi − xj) · (xi − xk) = λk‖xi − xk‖2 +

∑
j 6=i,k

λj(xi − xj) · (xi − xk)

= λk +
1

2

∑
j 6=i,k

λj( by the law of cosines)

= λk +
∑
j 6=i

λj = 0. (2)

Given that (2) is true for any k 6= i we can sum (1) over all k 6= i to obtain

∑
k 6=i

λk +
∑
j 6=i

λj

 = m
∑
j 6=i

λj

⇒
∑
j 6=i

λj = 0. (3)

As (2) applies to any point xk, it follows that for any k′ 6= i,

λk′ +
∑
j 6=i

λj = λk +
∑
j 6=i

λj

⇒ λk′ = λk . (4)

Thus all coefficients λj (j 6= i) sum to zero (3) and are equal (4), implying they are all zero which
is a contradiction. Therefore all vectors (xi−xj) for j 6= i are linearly independent. Since we have
identified m − 1 linearly independent vectors, and every basis for Rn has size n, it follows that
m ≤ n+ 1, i.e. in Rn, there can be a maximum of n+ 1 equidistant points.
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2. Bounds on Distortion of Equidistant Points

Induced distortion has been investigated in the literature for various conformations and embed-
ding of points, e.g. the minimum distortion bound for embedding an n-point spherical metric onto
a line [44] (akin to pseudotime inference), and the number of dimensions required to embed a metric
space into a low-dimension normed space (defined by some l-norm) [45]. However, investigation of
the implication of these bounds in real datasets across the sciences has been limited. Here we focus
on the case of equidistant points and their distortion in two-dimensions to provide a more concrete
realization of such bounds in the context of single-cell gene expression.

A trivial case of the result in Supplementary Note 1 is that of n = 2, namely that no more than
three points can be equidistant points in R2. This raises the question of how close to equidistant
more than three points in R2 can be? An impossibility theorem by [20] shows that it is impossible to
obtain equality among even a subset of the pairwise distances distances of more than seven points.
Even near-equality is impossible; specifically, a lower bound on the ratio between the maximum
and minimum pairwise distances shows that distortion, which increases with the number of points,
is inevitable.

A straightforward way to see this is via the two-dimensional isodiametric inequality which states
that among all shapes of a given diameter, the circle has the greatest area (for a simple proof see
[21]). Formally, for any body in R2, the area A is bounded above by π

4 times the square of the
diameter D (the supremum of distances between any pair of points), i.e.

A ≤ π

4
D2. (5)

Theorem 1 Given n ≥ 3 points in R2, let d be the minimum distance among all pairs of points,
and D the maximum distance (i.e. the diameter). The ratio of D to d satisfies

D

d
≥
√
n− 2

2
. (6)

Proof: Let B be the set of points consisting of the convex hull of n points in R2, and let I
denote the remaining points, with |B| = k and |I| = n − k. Note that for each point in I, there
exists a semi-circle of radius d

2 centered at the point that does not touch any other point, or extend
beyond the convex hull of the points (Supplementary Note Fig. 1). If we denote the sum of the
areas of these semi-circles by AI , we obtain

AI =
1

2

(
π

(
d

2

)2
)

(n− k)

=
πd2

8
(n− k) .
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Boundary - B

Interior - I

Enclosed Area

Supplementary Note Fig. 1: Bounding the Area Enclosed by Points in Two-Dimensions. Example of a
set of 10 points showing the enclosed area for points in the I and B sets in the proof of Theorem 1.

Furthermore, for each of the k points in B, there is a circle sector of radius d
2 spanning the

interior angle of the convex hull at that point that does not touch any other point, or extend beyond
the convex hull. Since the sum of the interior angles of a k-gon is (k − 2)π, we find that the sum
of the areas of the circle sectors, which we denote by AB, is given by

AB = π

(
d

2

)2((k − 2)π

2π

)
=

πd2

8
(k − 2) .

Summing AI and AB, we obtain a bound for the area enclosed by the n points:

A ≥ AI +AB

=
πd2

8
(k − 2) +

πd2

8
(n− k)

=
πd2

8
(n− 2) . (7)

Combining the upper (5) and lower (7) bounds for the area A, we find that

π
D2

4
≥ πd2

8
(n− 2)

⇒ D

d
≥

√
n− 2

2
. (8)
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3. Principal Components of Equidistant Points

An implicit assumption typically relied on when applying principal components analysis (PCA)
is that the linear transformation to a space that captures variation in the data is unique. While
this is generically true, it fails in some pathological cases that are mostly uninteresting, but as
highlighted here, relevant in understanding distortions that can result from the PCA map. We
review one such case: PCA applied to equidistant points. Without loss of generality, we assume
that a set of equidistant points has been scaled to the standard simplex, i.e. the points are described
by the identity matrix In ∈ Rn×n. Let Cn ∈ Rn×n be the mean-centered identity matrix where the
column means are subtracted out:

Cn = In −
1

n
Jn; J := 11> .

Singular Value Decomposition (SVD) of Cn produces the principal components of the equidistant
points, and the singular values of Cn are found from the eigenvalues of C>nCn. These are straight-
forward to compute.

First, note that

C>nCn = (In −
1

n
Jn)>(In −

1

n
Jn)

= In −
2

n
Jn +

n

n2
Jn

= In −
1

n
Jn = Cn .

Thus, the eigenvalues of C>nCn are just those of Cn. One of these is zero and the remaining n− 1
are equal to 1. This is because

Cn1 = In1−
1

n
Jn1

= 1− 1

= 0 · 1,

and if v is a mean-centered vector with
∑

i vi = 0 then

Cnv = Inv −
1

n
Jnv

= v − 0

= 1 · v.

Thus, any vector v satisfying
∑

i vi = 0 is an eigenvector with the same eigenvalue, meaning
that not only are the principal components not unique, but any direction captures an equal fraction
of the total variance. In practice, application of PCA to a set of equidistant points produces an
arbitrary projection that will depend on software implementation details, including random number
seeds and the numerical methods implemented for computing eigenvalues and eigenvectors.
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4. Initialization of a Neural Network as Dimensionality Reduction

The Kaiming He initialization of neural networks, as described in [30], provides a default dis-
tribution from which weights are drawn to initialize neural networks in PyTorch. It was developed
as an alternative to the practice of drawing weights from a normal distribution with fixed standard
deviation [33] as a way to circumvent instability problems during backpropagation resulting from
ReLU activation functions.

Instead of using a fixed standard deviation for the weights, for each layer l, He initialization
draws weights from a normal distribution with mean 0 and variance 2

nl
where nl is the number

of inputs to layer l. This achieves stability in the variance across layers, i.e. the variance from
the output layer will be matched to the variance at the input across layers. The derivation of the
formula, which we omit, is straightforward using elementary properties of variance and expectation.

For the datasets in Figs. 2 and 3, we see that He initialization alone (‘No Training’) provides
dimension reduction to two-dimensions that is competitive with t-SNE and UMAP on inter- and
intra-distances. See (Supplementary Note Fig. 2).

MERFISH MOp CorrelationsEx Utero E8.5 Correlations VMH Neuron Correlations

Distance Metric

C
or

re
la

tio
n 

to
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t

Supplementary Note Fig. 2: Default Neural Network Weight Correlation Metrics. Inter- and intra-
distance correlations for the ex-utero embryo E8.5 data, the (SMART-Seq) VMH neurons data, and the MERFISH
MOp data. Two-dimensional embeddings with zero training epochs, i.e. a single forward pass through the autoencoder
network, denoted as ‘No Training’. [Code Ex Utero] [Code VMH] [Code MOp]

Though He initialization was designed for convolutional neural networks (CNNs) implementing
ReLU activation functions, linear activation functions are also commonly employed in CNNs with
other techniques for weight initialization [32,33]. Such methods include, as previously mentioned,
drawing from a Gaussian distribution with fixed standard deviations [33] or a scaled uniform dis-
tribution (equivalently a Gaussian with zero mean and variance of 1/n) [32] to initialize weights
and avoid vanishing/exploding gradients over the network’s many layers. It has also been noted
that in particular CNN architecures, weight initialization alone can be surprisingly informative
for feature learning [35]. As has been noted in the machine learning community [31], initialization
methods for CNNs can be seen as analogous to the random projection of the Johnson-Lindenstrauss
Lemma, whereby random n × k projection matrices selected from the standard Gaussian [19,36]
or uniform distribution [34], are applied to points in Rn, providing a linear map from Rn to Rk
which preserves the pairwise distances [18]. Thus, the methods developed to minimize exponential
variance over neural network layers resemble the random projections for dimensionality reduction
and distortion-minimization of the Johnson-Lindenstrauss Lemma, with implications for preserving
feature representation in biological datasets.
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5. Minimizing Distortion

While Theorem 1 (Supplementary Note 2) shows that the distortion among points in R2 in-
creases with the number of points, the bound does not resolve the question of what the best low-
dimension embeddings are, in practice, for points that are equidistant in high dimension. Work
on optimal packing arrangements (see, for example, [47]) has produced arrangements of points in
R2 that maximize the minimum pairwise distance between points distributed in a unit circle. Nu-
merical methods have been used to determine good packing arrangements, which are in some cases
optimal, for up to 65 points [47] (see Supplementary Note Fig. 3 for examples). In this optimization
framework, S represents a set of points placed in the unit circle, namely {s1, s2, ..., sn}, and the
minimum distance

d(S) = min{‖si − sj‖ : 1 ≤ i ≤ j ≤ n}

is maximized. Such arrangements could, in principle, be utilized in low dimension embedding
methods in order to minimize distortion of equidistant points at different length scales.

n = 3 n = 7

n = 10 n = 15

Supplementary Note Fig. 3: Optimal Packings. Diagrams of packed points (centers of black circles) in a unit
circle which minimize the max/min ratio of the pairwise distances between the points (centers). Adapted from [47].
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