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FOREWORD 

This is the last of the volumes prepared by the staff of the 13ateman 
Manuscript Project, an enterprise whose origin and aims were described 
in the prefatory material to the first volume. There are altogether three 
volumes of Higher Transcendental Functions supplemented by two volumes 
of Tables of Integral Transforms. The present volume contains chapters 
on automorphic functions, Lame and Mathieu functions, spheroidal and 
ellipsoidal wave functions, functions occurring in number theory and 
some other functions; and there is also a chapter on generating functions. 
The volume was prepared after the staff of the Bateman Manuscript 
Project left Pasadena, but Professor Magnus continued working on 
Chapters XIV,XVII,XIXafter he joined the staff of New York University. 

The chapter on automorphic functions contains examples of automorphic 
functions which can be constructed explicitly. The general theorems 
given in this chapter serve mainly the purpose of establishing a back­
ground for the examples, and the deeper algebra ical and number-theoret­
ical aspects of the subject are definitely outside the scope of our book. 
In the chapter on Lame' functions we neglected somewhat Lame' poly­
nomials (which are discussed adequately in several easily accessible 
books) and devoted our attention chiefly to the more recent theoriesof 
periodic Lame' functions and Lame-"'angerin functions. Our account of 
Mathieu functions is largely descriptive and leans heavily on McLachlan's 
book which is the standard book on the subject. Another book on Mathieu 
functions, by Meixner and Schafke, is in preparation and is expected to 
appear soon. There are in essence two rival systems of notations for 
Mathieu functions: we adopted the one which is used by all British, 
most European, and many American mathematicians, even though the 

ix 



X SPECIAL FUNCTIONS 

most extensive numerical tables of these functions (those prepared by 
the National Bureau of Standards) use the other notation, In the sections 
on spheroidal wave functions we neglected much of the older literature 
(accounts of which are available in other books) and attempted to sum­
marize the results obtained by Bouwkamp, Meixner, and others in the 
last fifteen years. The forthcoming book by Meixner and Schafke will 
cover this field too. The brevity of the sections dealing with ellipsoidal 
wave functions reflects in some measure the lack of information on this 
subject. In the chapter on the functions of number theory we attempted 
to give some of the more important properties of certain arithmetical 
functions. Here again the more profound aspects of the subject are out­
side of the scope of our book. Professor Apostol very kindly read this 
chapter, and he supplied sec. 17 .11. We have included brief sections on 
some of the lesser known special functions, to which several papers 
have been devoted in recent years. The final chapter, on generating 
functions, contains an extensive list of generating functions. This is 
one of several similar chapters planned by the late Professor Bateman. 
The others were to contain lists of differential equations, power series, 
nth derivative formulas, etc, defining special functions, and it was with 
regret that we decided to omit them. Chapters XIV and XVII are frankly 
experimental but we hope that they will prove useful enough to justify 
their inclusion in a book of this nature. 

As in the first two volumes, a list of references is given at the end 
of each chapter. These lists are by no means complete but they should 
be sufficient to document the presentation and to enable the reader to 
find further information about the functions in question. Bibliographies 
of the various functions are referred to in the text. 

At the end of the volume there is a Subject index and an Index of 
notations. Some of the notations introduced in the earlier volumes have 
been included, others (the more common ones) have not been repeated, 
The system of references is the same as in the first two volumes. In the 
text, references to literature state the name of the author followed by the 
year of publication, detailed references being given at the end of the 
chapter. Equations within the same section are referred to simply by 
number, equations in other sections by the section number followed by 
the number of the equation. Chapters are numbered consecutively through­
out the book, Chapters I to VI being in vol. I, Chapters VII to XIII in 
vol. II, and Chapters XIV to XIX in the present volume, Thus, 3.7(27) 
refers to equation (27) in section 3.7, and will be found on p. 159 of 
vol. I, while 15.3(2) is on p. 57 of the present volume, 



FOREWORD xi 

Thanks of the California Institute of Technology to various organiza­
tions and persons contributing in their several ways towards the success 
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CHAPTER XIV 

AUTOMORPHIC FUNCTIONS 

This chapter contains a number of basic definitions and some easily 
accessible examples of automorphic functions, in particular of modular 
functions. The numerous ramifications of the subject involving the theory 
of groups, various branches of geometry, the theory of numbers, and 
important aspects of the general theory of complex variables will be 
left aside. The fundamental ideas of Felix Klein, the painstaking inves­
tigations of Fricke, more recent discoveries by Heeke and C.L. Siegel, 
and the relevance of their results in the theory of numbers, are scarcely 
mentioned, and the brief remarks on Poincar~'s theta series are far from 
being adequate. 

A list of references is given at the end of the chapter. The most 
important works for the whole of this chapter are Fricke (1901-1921), 
Fricke and Klein (1897, 1912), Fubini ( 1908), Giraud ( 1920), Schlesinger 
(1924), and Ford (1929, with an extensive bibliography). For occasional 
references to number theory consult Tie id (1910), and for algebra van der 
Waerden (1949). 

Specific references for individual sections are 
14.1.4 Ford (1929) 
14.3 Klein (1884) 
14.4 Krazer and Wirtinger (1901-1921) 
14.6 Kl e in and Fricke (1890, 1892) 
14.6,4 Fricke (1916, 1922). 

Other references will be g iven as they are needed . 

14.1. Discontinuous groups and homographic transformations 

14.1.1. Homographic transformations 

Let z be a complex variable which will be represented either as a 
point z = x + iy in the complex plane (completed by the point a t infinity), 
or else as a point (x,. x 

2
, x 

3
) on the sphere 
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(l) 

in three dimensional space : this sphere will be denoted by S
0 

and called 
the Riemann sphere. The correspondence between the points of the com­
plex plane and the points of the n iemann sphere is determined by the 
equations 

(2) 

(3) 

XI 
X=---, 

l + x
3 

2x 

x2 
y= ' 

l +X 
3 

Z =X+ iy 

x3 

The mapping of S
0 

on the z -plane is conformal and is known as the 
stereographic projection. The circles on the sphere are mapped upon 
circ les or straight lines in the plane. In this chapter straight lines will 
be regarded as special c ircles (those passing through z = oo) so that 
circle will mean circle or straight line, and circular arc will mean a 
segment of a circle or a segment of a straight line. If a segment of a 
straight line contains the point at infinity, its representation in the 
Eucl idean plane will contain two components; nevertheless, in the 
complex plane the segment is a connected set (the two components being 
joined at infinity). 

Let a, b, c, d be any complex numbers such that 

(4) ad - be = l. 

The relation 

(5) 
az + b 

z '= = a(z) 
cz + d 

defines a mapping of the z -plane, or of S
0

, onto itself: this mapping is 
cal led a homographic transformation (or substitution) a. In this inter­
pretation z 'appears as another point of the complex plane. An alternative 
interpretation regards z 'as a new variable, or as new coordinates, of the 
same point but in this chapter we shall generally adhere to the first 
interpretation. The mapping (5) is non-degenerate if ad - be ~ 0, and 
since (5) is homogeneous in a, b, c, d, it is always possible to achieve 
that (4) Lolds. Thus, (4), (5) define the most general non-degenerate 
mapping of the form (5). [For a degenerate mapping (5), ad - be = 0, and 
the map is either indeterminate or else it consists of a s ingle point .] 
The relationship between z and z 'is one- one . From (4) and (5) we have 

dz '- b 
(6) z =---,--

-cz +a 
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(7) 

Let a' be a second homographic substitution 

a 'z + b' 
a'(z) =---­

c 'z + d' ' 
a'd'-b'c'= l. 

Then 

(a 'a + b 'c) z + a 'b + b 'd 
a '[a (z)] =~--------­

(c 'a+ d 'c) z + c 'b + d 'd 
(8) 

defines a homographic substitution, since 

(a 'a+ b 'c) (c 'b + d 'd)- (a 'b + b 'd) (c 'a + d 'c) 

=(ad- be) (a 'd '- b 'c ') = l. 

The substitution (8) is called the product of the substitutions a' and a 
(in this order) and is denoted by a' a. The product of any (finite) number 
of homographic substitutions is defined in a similar manner, In general 
a' a and aa 'are different, The inverse of a is the homographic substitu­
tion 

(9) z 
dz- b 
---- = a- 1 (z), ad- be= l. 
-cz +a 

and is denoted by a - 1 If I is the identity substitution, I(z) = z, then 
clearly 

aa - 1 = a - 1 a = I 

or 

a [a - 1 (z )] =a - 1 [a (z)] = z, 

Any homographic substitution maps any circle of S
0 

onto a circle, 
and conversely, any continuous one- one mapping of S

0 
onto itse If which 

maps circles onto circles, is a homographic transformation, 

14.1.2. Fixed points. Classification of traosfonnations 

The point ( is called a fixed point of the transformation a (z) if 
a(z) = z. If c I= 0, the fixed points of the transformation a given by (5) are 

1 
( =-la-d+[(a+d)2 -tl.]~! 

1 2c 

1 
r =-la-d-[(a+d)2 -tl.]~l· 
':.z 2c ' 

and if c = 0 and a /= d, the fixed points are 

3 
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If c = 0 and a = d, both fixed points coinc ide a t infinity, unless also 
b = 0 when every point is a fixed point. In writing down the formulas for 
(

1 
a nd (

2 
in the genera l case use was made o f (4), 

Homographi c transforma ti ons may be classified accord ing to their 
fixed points as fo llows : 

(i) The identity. Every point is a fixed point, 

a=d=±l, b=c=O. 

(ii) Parabolic s ubstitutions. The tw o fixed points coincide, 

a+ d = ±2, (
1 

= (
2 

= ( . 

The substitution may be put in on e of the forms 

l l 
---=--+o 
z '- ( z - ( 

z ' =z+o 

In the first case 

(a+ d) 2 = 4, 
a-d 

(= -, 
2c 

a nd in the second case 

o = ±c f, 0, 

a= d = ±l, c = 0, o = b/ d f, 0. 

(iii) Substitu ti ons with tw o distinc t fixed po ints, (
1 

and (
2

• Such 
substitutions may be put in one of the forms 

z '- ( 1 z - ( 1 
--..:...!... = ,\ __ .:._ 

z ,- '2 z - '2 
z , - ( 1 = ,\ (z - ~ 1) (1f,oo, 

where 

A~=_!:_l(a+d)-[(a+d) 2 - 't] ~ l if c~ O, ,\=a if c = O, 
2 

a nd there are three possibilities 
(iii a) J,\J = l. Elliptic s ubs titution 
(iii b) ,\real. Hyperbolic substitution 
(iii c) ,\ is not real a nd J,\J ~ l. Loxodromic substitution. 

For a ny homograph ic subs titution r , the substitutions a and r- 1 ar a re 
called similar, Similar substitutions belong to the same type, i .e ., both 
a re el li pti c , or both paraboli c e t c . 
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14 .1.3. Discontinuous groups 

A set G of homographic substitutions a, a', is called a group if it 
has the followins properties: 

(i) The identity lis in C. 
(ii) If a isinG then also a- 1 is in C . 
(iii) If a and a' are in (; then also aa' is In G. 

The substitutions a 1 , a 
2

, ••• are called generators of G if any substi­
tution of G is a product of a finite number of positive or nesative powers 
of some of the substitutions a • 

Two points P and P '(of 5
0 
'or of the complex plane) are called equiv­

alent or congruent Y.ith respect toG if PI= P ',and C contains a substi­
tution which maps P upon P ', 

Let f\ be a fixed open region (= open connected set of points) on 5
0 

or 
in the complex plane, and let C be a group of homographic substitutions 
each of which maps D 

0 
onto itself. Some of the substitutions of G may 

have fixed points in n 
0

, Let us remove from D 
0 

all points which are 
either fixed points of some substitution of G (other than I) or else are 
limit points of fixed points; we assume that the remaining set D 

1 
(which 

is open) is connected and hence a region. For any point P 
1 

of D 
1 

con­
sider the set of all points equivalent to P 

1 
with respect to G. If P 

1 
is 

not a limit point of the set of points equivalent to P 
1

, i.e., if all points 
equivalent to P

1 
lie outside some neighborhood of P,. and if this happens 

for all points of D 
1

, then G is called a discontinuous group in the region 
D 

0
• For a simple proof of a criterion for discontinui ty of a group of real 

substitutions see Siegel (1950). 

14.1.4. Fundamental region 

We sha ll consider a group G of homographic substitutions with which 
it is possible to associate a closed region (= closed connected set) F * 
with the following properties. (i) F * is bounded by a finite number of 
circles or arcs of circles (several disjoint arcs of the same circle may 
occur). We shall denote these c ircles and circular arcs by A1 , A

2
, •••, An; 

a point at which two arcs meet will be called a vertex, and the vertices 
will be denoted by V

1
, V

2
, ... , V, • (ii) No two interior points ofF* are 

equivalent with respect to C . (iii) The components A
1

, ... , An of the 
boundary may be arranged in pairs Av, A/, vi= v' in such amannerthat 
for each v there exists exactly one a* in C which maps A onto A '• v v v 
(iv) The substitutions a~ of (iii) are generators of C, that is, every 
substitution of G is a product of (positive or negative) powers of the a~ · 

We first remark that no substitution of G (other than I) has a fixed 
point in the interior of F*. If P ( in the interior of F *) were a fixed point 
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of a in G then a maps a neighborhood of P onto some neighborhood of P, 
both may be assumed to lie in F*, and this is excluded by (ii).Consider 
now the maps of F* under all substitutions of G. The union of all these 
maps forms a region [the union being a connected set by virtue of (iii) 
and (iv )]. No point occurs twice as the map of interior points of F*, for 
if we assume a (P) = a '(P ') for two interior points P, P ~ we have 
P ' = a ,_ 1 La (P)], a,_ 1 a belongs to G, and this contradicts either (ii), if 
P -1 P ', or the remark about the absence of fixed points, if P = P '. On 
the other hand a point which is a ma£ of a boundary point of F* certainly 
occurs several times, for instance a P = IP , where P is a point on v v v , v 
A v' and P v ,, is the corresponding point on A v '• By removing part of the 
boundary of F* we shall construct a region F which is neither open nor 
closed and whose maps under the substitutions of G cover a region of 5

0
, 

or of the z-plane, simply. The region F will be called a fundamental 
region or fundamental domain of G. 

To construct F, take the bounding circles and (open) arcs of 1~*, 

arranged in pairs Av, Av, as above: from each pair remove one arc, 
retaining the other. Remove also those vertices at which an infinite 
number of maps of F* meet, and divide the remaining vertices in classes 
of equivalent vertices, retaining one of each class, and removing all the 
others. The set of all remaining points (and this includes all interior 
points ofF*) is a fundamental region F of G: it contains no two equivalent 
points. 

Let a 
1
, a 

2
, ••• be the substitutions of C, a 

1 
being the identity. The 

substitution armaps F onto Fr, and F
1 
=F. The union of all the Fr forms 

a region D
1 

(which in general is neither open nor closed), and the interi01; 
D

0
, of D

1 
is the open region which was discussed in sec. 14.1.3. 

Let z be any point ofF, and s e t z r = a r(z). A limit-point of these­
quence lz) is called a limit point of G (oo may occur as a limit point). 
The set of all limit points is mapped upon itself by any substitution of 
G, and may be used to define the boundary of D

0 
or D

1
• 

A given group G does not determine ·a urtique fundamental region F, 
and it may be proved (see Fricke and Klein 1897, Chapter 2, P• 128) that 
F can always be chosen in such a manner that none of its vertices is a 

fixed point of a hyperbolic or of a loxodromic substitution. At an elliptic 
vertex V of F*, the angle between two arcs meeting at V is of the form 
2rr/l where l .is a positive integer. If V is a fixed point of the elliptic 
substitution a of C, then a 1 is the identity; l is called the order of a or 
of V. A vertex ofF* which is a fixed point of a parabolic substitution of G 
is called a parabolic cusp. 

Two groups, G and G ',of homographic substitutions are called similar 
or equivaLent if there exists a fixed substitution r such that G '= r - 1 G r, 
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i ,e,, such that for each a in C, the substitution a'= r - 1a r is in C : and 
such that every a' in C 'may be obtained in this manner from a substitution 
a in C. IfF is a fundamental reg ion of C, then r- 1 F = F' is a fundamental 
region of C '[r - 1 F being the set of all points r - 1 (z) when z ranges over 
F]. 

Our de finition of a fundamental region is needlessly restrictive, and 
has been adopted here for the sake of simplicity; for a more general 
discussion see Fricke and Klein (1897). It if; not at all essential for the 
fundamental region to be bounded by a finite number of circles and 
circul ar arcs; it is essential that the fundamental region should form a 
complete set of non-equivalent points, that it should be connected, and 
that it should have a reasonably regular shape. The first two of these 
requirements is fairly easy to formulate but it is very difficult to express 
the third condition in a manner which is both simple and precise, and 
sufficiently general. The assumption of a finite number of vertices ofF 
implies certain restrictions on the automorphic functions to be considered, 
and these restrictions lead to a comparatively simple formulation of 
certain genera l theorems. 

For the definition of fundamental regions of automorpltic functions of 
several variables see the literature quoted in sections 14.11, 14.12. 

14.2. Definition of automorphic functions 

Let C be a sroup of homographic substitutions 

a z + b 
r r z = a (z) 

r r c z + d 
(l) 

r r 

a 
0 

being the identity, 

a
0 

= d 
0 

= ± 1, b 0 = c 0 = 0. 

r = 0, l, 2, ••• , 

Let C be discontinuous in a region 0
0

, and let F be a fundamental region 
of C . We shall consider automorphic functions, ¢(z) = cp(z ; G) which 
satisfy the identity 

(2) ¢ (z) = ¢ [a /z )] = ¢ (z) r = 0, l, 2, .... 

fhe behavior of these functions in the neiz,hborhood of a singularity 
z 

0 
wil l Le described in terms of a uniformizing variable t in the form 

(3) ¢(z)=t'"(a
0

+a
1
t+a

2
t 2 +··· ), 

where m is an integer, and the uniformizing variable is defined with 
reference t0 Cas follows. 
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If z 
0 

is not a fixed point of a substitution of C we put 

(4) t = z - z 0 

(5) t =Z -t 

If z 
0 

is the fixed point of a parabolic substitution 

(6) 
l l 

z,- z 
0 

---+o 
z - z 

0 

we put 

(7) t = exp (±~-l ). 0 z- z 0 

choosing the sign so that t -> 0 as z -> z 
0 

m F, and if z 
0 

= oo is the fixed 
point of a parabolic substitution 

(8) z, = z + 0 

we put 

(9) t = exp (± 2;i z) , 
again choosing the sign so as to make t -> 0 as z -> oo in F. If z 

0 
is a fixed 

point of an elliptic substitution of order l, a nd z; is the other fixed point 
of that substitution we put 

(z-z )! (lO) t = 0 z 0.;, oo, zo'~oo 
z- z, 

0 

(ll) t = z-l z 0 = oo, z~l=oo 

(12) t = (z- z ) 1 
0 z 0 too, , 

z 0 = oo. 

With the foregoing notations and definitions, ¢ (z) = ¢ (z; C) will be 
called an automorphic function of C (or belonging to C) if it satisfies the 
following conditions: 

(i) ¢(z) is analytic and single-valued in F' with the possible ex-
ception of a finite number of points. 

(ii) If ¢ (z) is analytic at z 
0 

in F, then it may be continued analyt­
ically, within D 

0
, to z r = a /z 

0 
), all possible analytic continuations 

(within D 
0

) lead to the same value ¢ (z ), and ¢ (z r) = ¢ (z 
0

). 

(iii) ln the neighborhood of a singularity z 
0

, ¢ (z) may be represented 
in the form (3). 
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(iv) cj;(z) is not a constant. 
It has already been mentioned that our definition of automorphic 

functions (and fundamental regions} is not the most general definition . 
The class of functions defined above leads to a simple formulation and 
general validity of the theorems of sec. 14. 7; Ford (1929, sec. 86) calls 
automorphic functions of the kind discussed here simple auton•orphic 
functions. 

The most characteristic property of automorphic functions is their 
invariance under substitutions of C: this property is expressed by (2). 
More generally, the term automorph ic functinn may be applied when a 
function of one or several variables is invar ia nt under a group of trans­
formations of the variable or variables. Some instances of such general­
izations will occur in sections 14.11, 14.12. 

14.3. The icosahedral group 

In genera l, the group G occurring in the definition of automorphic 
functions is an infinite group (i .e ., consists of an infinite number of 
substitutions). In this section ~e shall discuss automorphic functions of 
a finite group (consisting of a finite number of substitutions). This 
example will show some of the essential principles involved in the 
construction of automorphic functions without the complications inherent 
in the general case. The group in question is the symmetry group of the 
icosahedron (the regular solid consisting of twenty equilateral triangles}. 
The group may be envisaged as the group of rotations of an icosahedron 
into itself and is known as the icosahedral group . It is identical with the 
symmetry group of the dodecahedron (the regular solid consisting of 
twelve regular rentagons) and is sometimes also called the dodeca­
hedral group. Now, in F.uclid's construction, the dodecahedron is derived 
from a cube, each edge of the cube being a diagonal of a face of the 
dodecahedron. Altogether five distinct cubes may be inscribed in such 
a manner in any dodecahedron, any rotation of the dodecahedron effects 
a permutation of these cubes, and thus our group may be identified as a 
group of permutations of five elements wh ich turns out to be the alter­
nating group (consisting of all the even permutations). 

l .et an icosahedron be inscribed in the sphere S
0 

of 14.1 ( 1), and let 
the edges of the icosahedron be projected on 5

0
, the center of the sphere 

being the center of projection. \\e thus obtain a pattern of 20 congruent 
equi laterial spherical triangles covering S

0
• There are 60 rotations of the 

sphere which leave this pattern invariant, for any centroid of a triangle 
may be brought into any of 20 positions, and in each position there will 
he 3 rotations (by 2rr/3) which leave the pattern invariant. 
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If we map th e sphere 5
0 

onto the con,plcx z -plane by a stereographic 
projection 14.1 (2), we obtain a net of 20 curvilinear triangles (in the 
z -plane) bounded by arcs of circles (in the sense of sec. 14.1.1 so that 
some o f the "arcs of eire les" may be segments of straight I ines ), The 
60 rotations of the sphere induce 60 homographic transformations, and 
these form a group Cro, a real ization of the icosahedral group . T a king 
the or igin o f the z-p lane at one of the vertices, and the rea l z-axis as an 
axis of symmetry of the fundamental region, it turns out that C contains 
th e three substitutions 

1 
(l) U(z)= --

(2) 

(3) 

z 

(3Z 

S(z) = cz =T 
(1+c)z+c 3 

T (z) = -
3
,.------­

c z - (l + c) 

c = e 27T ifs 

(c- c4 ) 5-~ z - (c 2 - c 3 ) 5-~ 

- (c 2 - c 3 ) 5-~:::- Cc- c 4 ) 5-~ • 

In the cases of S and T the first of the two forms is the simplest form 
of tl1e substituti on, and the last is the forn1 satisfying 14. l (4) . The 
special substituti ons U, S, Tare ge nerators of C

60
• !\lore precisely, the 

60 substitutions of c60 a re given by 

(4) 

where K, >. = 0, l, 2 , 3, 4. The identity is S 0 in this representation, 
The group C

60 
is discontinuous, and lJ 

0 
is the whole plane . The 

fundamental region F has vertices at the points z
0 

= 0, z 
1
, andz 

1
, where 

() 2l3 I 5 (15 3 " ) ~) 5 z 1 = ( 1i" + 1i" y - f ~ 8 ,;.) ' 

and z 
1

, z 
1 

a re conjugate con.plex, The boundary of F cons ists of the 

segments A 
1

, A 
2 

o f stra ight lines joining z 
0 

to z 
1 

and z 
1

, and the cir­
cular a rc A 

3 
joining z 

1 
and z 

1 
and intersec ting the real axis at 

(6) z 2 = - ! - + v 5 + ( : + ! y5) y, . 

All substitutions of C 
60 

are el lipt ic, U, S, T being of the order 2, 5, 2, 
respectively. The poin ts z 

0
, z 

2
, z 

1 
are fixed points of 5, T, TS, respec­

tively . S maps A 
1 

upon A 
2 

and T maps the part of A 
3 

joining z 1 and z 2 

on to that part joining~ and z 
2

, Therefore the two halves of A 3 count 
as separate arcs, z 

2 
counts as a vertex, and the full set of vertices of F 
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is z 
0

, z 
1

, z 
2

, z 
1

• If parts of the boundary are removed in accordance with 
sec , 14.1.4, then the maps of F under the 60 transformations (4) will 
cover the entire z-plane simply. The network of triangles on S 

0 
or in the 

z -plane is shown in Forsyth (1900, Fig. 104, p. 660 and Fig. 107, P• 667) 
where six of the triangles alternately white and black (shaded) form a 
fundamental region. 

In the present case all automorphic functions are rational functions 
of z and it can be shown (see, for example, Fricke, 1926, vol. 2, chapter 
3) that they may be expressed in terms of the functions 

(7) u (z) = z 20 + 1 - 228(z 15 
- z 5

) + 494 z 10 

(8) v (z) = z 30 + 1 + 522 (z 25
- z 5

)- 10005 (:: 20 + z 10
) 

(9) w (z) = z(z 10 + 11 z 5
- 1) 

as follows. Let k, l, m, n be integers, n 2: 0 [if n = 0 the sum in (10) 
must be replaced by zero, and t!1e product in (ll) by unity]; let fv = ± 1, 
and av and b v any non-zero constants, 1/ = l, ... , n; and assume that 

n 
(10) 'lfJk + 30[ + 12m+ 60 v= 

1 
cv = 0. 

Then 

n E 
l1 (a u 3 + b v 2

) v 
v= 1 v v 

is an automorphic function of C 
60

, and every automorphic function may 
be represented in this form. Since the three functions u, v , w are not 
independent, and satisfy the relation 

(12) u 3 
- v 2 + 123 w 5 = 0, 

the representation (ll) in not unique. 
For a description of the location of the zeros and poles of the auto­

morphic function defined by (ll), and for the application of the theory 
of automorphic functions of C 

60 
to the solution of the ge neric quintic 

equation see Fricke ( 1926, vo], 2, chapters 2 and 3), 
All finite groups of homographic substitutions may be enumerated. 

For the theory of automorphic functions belonging to these groups sec 

Fricke (1926, vol. 2, chapter 2). 
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14.4. Parabolic substitutions 

If all substitutions of a group G, with the exception of the identity, 
are parabolic then it may be shown that all the parabolic substitutions 
of the group have the same fixed point. Without restricting the generality 
of our considerations, we shall assume tha t the common fixed point is at 
infinity. In this case D

0 
will be the finite part of th e plane, i.e., the set 

of all finite complex numbers z (also called the punctured z-plane or 
the plane punctured at infinity). The d iscontinuous group itself will be 
of one of the following two types. Either there is a fixed real or complex 
number (U such that 

(l) o)z) = z+r(U r = 0, ± l, ± 2, ... ; 

or else there are two fixed real or complex numbers (U and (U' such that 
(U/(U 'is not real, and the substitutions of the group are 

(2) a rr, (z) = z + r (U + r ' (U ' r, r ' = 0, ± l, ± 2, .... 

In the case of the group consisting of the substitutions (l) 

(3) ( 
2rriz ) 

t = exp --(<)-

is an automorphic function of G. Any meromorphic function (= single­
valued function which is a nalytic save for poles) oft is an automorphic 
function, and every automorphic function is o f this form. Thus, in this 
case, the automorphic functions of G are meromorphi c periodic functions 
of period (<) , 

If G consists of the s ubstitutions (2), the a utomorphic functions of G 
are meromorphic doubly-periodic (that is, elliptic, see sec. 13.11) func­
tions of z with periods (U, (U ', 

At first it might seem as if one could have groups of parabolic substi­
tutions with three or more periods. However, it can be proved (see sec. 
13.10) that a meromorphic function of a complex variable which has more 
than two independent periods is a constant, so that a group with more 
than two independent translations has no automorphic functions. 

Generalizations. Multiply period functions. Translation groups with 
several independent generators will have aut0morphic functions if instead 
of a fun ction of a single complex variable we consider meromorphic 
functions of p complex variables, p = 2, 3, 4, ••• • Such fun ctions may 
have 2 p (or fewer) periods. These are defined in terms of 2 p 2 constants 

(4) (VJ.l-U 11 = 1, 2 , ••• ' p; a= l, 2, ... , 2p 
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ca lled the periods . The w J-La cannot be chosen arbi trar il y and are subject 
to certain conditions. It can be shown th a t a fter a suitable linear trans­
formation o f the variables and periods 

(5) w =irro /e. , 
J.LV J-LV !'-

ll• 1/ = l, . . . ' p 

where OJ-1.
11 

is th e Kronecker symbo l, the e J-L a re positive integers , and 

(6) Re f f a x x < 0 
J-L= 1 v= 1 J-1.11 J-L v 

for a ]] real xasatis fying 

(7) 
a= 1 

A single-valued analytic fun ction [(u 
1

, ••• , uP) of the p complex 
variables which is regular for a ll finite va lues of u 

1
, ••• , uP save for 

iso la ted po ints which are not essentia l s ingularities, and which cannot 
be expressed as a function of less than p linear combinations of the 
variables, will be call ed a 2p-luply periodic function of u 

1
, •••, uP if for 

any integer n J-La ' p. = l, ... , p, a= l, ... , 2p, and 

(8) ., = 
J-L 

we have 

p. = l, ... ,p 

for al l finite (u
1

, •••, u) at v.hich {is regular, provided that the WJ-Laare 

such that at least for one p. 

2

~ A erJ f. 0 
a= 1 a J-La 

for a ll rea l A1, ••• , A2 except A = ··· = A = 0. 
p 1 2p 

It may be proved that for any given set of periods w J-La satisfying (5), 
(6) there exist 2p-tuply periodic fun c tions. There always exist p such 
functions wh i ch are a lgebraically independent; any p I 1 such functions 
are connected by an algebraic relation (see sec . l3.ll for the case 
p = 1). Every 2r-tuply periodic function may be expressed as a rational 
fun c ti on of s uitabl y chosen theta iunctions aefined as a p-tuple infinite 
series 
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exp ( ~ 
JJ-=1 v= 1 

a m m + 2 
J.LV J.L V 

m u ) 
J.L J.L 

in which the a are real or complex numbers such that the He a form 
J.LV J.LV 

a negative definite symmetric matrix, i.e., aJ.LV = avJ.L and 

(ll) He ( f :fa xx)<O 
v= 1 J.LV J.L v J.L= 1 

for all real x 
1

, , x satisfying 
p 

f x 2 > 0. 
J.L= 1 J.L 

For the theory of multiply periodic functions and its connection with 
algebraic functions of a single variable and with the theory of Abelian 
functions see Baker (1907), Krazer and ~irtinger (1901-1921). 

14 .5. Infinite cyclic group with two fixed points 

Let a be a hyperbolic or loxodromic substitution. If (
1 

and (
2 

a re 
the fixed points of a, this substitution may be represented in the form 

z'-(
1 

z-( 
---'- = pe in¢ t 

z,- '2 z - '2 
or 

z '- (
1 

= p e in¢ (z - (
1

) 

according as (
2 

f, oo or (
2 

= oo, it being assumed that (
1 

,f. oo, Here p > 0, 
p t l. If ¢ is an integer multiple of 2rr, the substitution is hyperbolic; 
otherwise it is loxodromic. 

Consider the group G generated by a. The elements of G arc a\ 
n = 0, ± l, ± 2, ... , The substitution an may be represented as 

(1) 
z,-' z- (, 

-----'-' _ n e in ¢ 

z , - '2 -p z - '2 
or 

(2) z '- (
1 

= p" e in¢(z- (
1

) 



14.5 AUTmtORPI!IC FUNCTIONS 15 

where p, ¢are the quantities introduced above, and n is any (positive or 
negative) integer. 

The group C is discontinuous in the region /) 
0 

\\>hich consists of all 
complex numbers different from (

1 
and (

2 
(the complex plane punctured 

at (
1 

and (
2
). In order to obtain a fundamental region F, let C 

0 
be any 

circle which separates (
1 

and (
2 

(so that any continuous curve joining 
( 1 and (

2 
intersects C 

0
), and let C 

0 
be mapped onto the circle C n by o". 

The sequence of circles C n' n = 0, ± l, ± 2, .•• is invariant under C. No 
two circles of this sequence have a point in common. Any region bounded 
by two adjacent circles, C n and C n+t, (with one of the circles forming 
part of the region and the other not) may he taken as the fundamental 
region F. 

The automorphic functions of C are the elliptic functions of the com­
plex variable 

(3) 
z- (, 

u= log--­
z- ( 2 

u = log(z- (
1

) 

with periods 

(4) w
1 

= logp + icf>, 

(,.;, oo, 

The occurrence of doubly periodic functions as automorphic functions 
of the [;roup C may be explained by the following circumstances. The 

group C seems essentially the same as that identified by 14.4 (l); there 
is no algebraic difference between the two groups, they are isomorphic. 
There is a considerable difference in the regions involved, though. 
The region D 

0 
(plane punctured at =) and the fundamental region F 

(infinite strip) of 14.4(1) are simply connected; the region D 
0 

(plane 
punctured at two points) and the fundamental region F (region between 
tv.o circles without a common point) of this section are doubly connected. 
In a doubly connected region (such as F) a function may be analytic 
everywhere and yet many-valued, thus violating condition (ii) of sec. 
14.2. "e need one periodicity to rr.ake our function single-valued in F, 
and a second, to transplant it, as it were, to the maps of F according to 
14.2(2). 

For an application to a boundary value problem in electrostatics see 
13urns ide ( 1891 1 1892) where the case of 2 n (rather than two) bounding 
circles is investigated. 
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14.6. Elliptic modular functions 

14.6.1. The modular group 

( l) 

Let M be the group of all homographic substitutions 

az + b 
z ' = ---

cz + d 

14.6 

ad- be= l 

with integer a, b, c , d. M is called the modular group (see also sec. 
13.24): it is of infinite order, and all of its substitutions map the upper 
half-plane Im z > 0 onto itself, Let D 

0 
be the upper half-plane, Then M 

is discontinuous in D 
0

• The set of points 

(2) lm z > 0 and either lzl ~ 1, 

or lz I > 1, 0 < Re z < ~ 

may be taken as a fundamental region F, The vertices of F are at the 
points 

(3) z 1 = - ~~ + ~l i y'3, z 2 = i, z 3 = ~~ + ~ i y'3, z 4 = oo. 

The substitution a defined by a = b = d = 1, c = 0, or 

(4) z '= a(z) = z + l 

maps the segment (ray) joining z 
1 

to z 
4 

onto the segment joining z 
3 

to 
z 

4
, and has z 

4 
as its parabolic fixed point, The substitution r defined 

by a = d = 0, b = -1, c = 1, or 

(5) z ' = r(z) =- .!._ 
z 

maps the arc of the upper half of the unit circle between z 
1 

and z 
2 

onto 
the arc joining z 

3 
and z 

2
, and has z 

3 
as a fixed point (the other fixed 

point being in the lower half-plane), 
The group M is generated by a, r. Since r 2 

= I, any substitution of M 
may be written in the form 

where 

l = 1, 2, 3, ... ' n 
1

, n 1 = 0, 1, 2, ... , n 
2

, ••• , n 1_
1 

= l, 2, 3, .... 

The maps of F under these substitutions cover the upper half-plane 

simply. 
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14.6.2. The modular function J (z) 

The absolute invariant, J (z ), of the modu Jar group M arises w the 
theory of elliptic functions (where the variable is usually denoted by r, 
see sec. l3.24).1t is important both in that theory and in its application&; 
and a function nearly related to it is the key to Picard's original proof 
of Picard's theorem. The principal properties of J(z) are as follows: 

(i) The function J(z) is single-valued and analytic in n 
0 

(the upper 
ha If-plane) and 

(6) J(z ') = J (az t- b) = J(z) in D 
cz + d 0 

for all substitutions 14.6(1) of the modular group M. 
(ii) The function w = J(z) maps F [given by 14.6(2)] simply onto 

the (entire) w-plane in such a manner that the boundary ofF is mapped 
onto the real w-ax is from- oo to l, and 

(7) J(- 1'2 + 12iy3)=0, J(i)-1, J(oo)=oo. 

(iii) Uy (i) and (ii), J(z) is an automorphic function of M, and every 
automorphic function of M is a rational function of J(z), 

~e may add that every point on the real z-axis is a singularity of 
J(z), and the real axis is a natural boundary of J(z), 

Expression of J(z) in terms of Eisenstein series. Let w, w' be two 
real or complex numbers, lm (w '/ w) > 0. We regard w and w' as half­
periods and form \\eierstrass' invariants 

(8) g 
2 

(w, w ') = 60 ~ '(m w + n w ')- 4 

g 
3 

(w, w ') = lt10 :£ '(m w + n w ')- 6 

[see 13,12 (13)] where~' indicates summation over all pairs of integers 
(m, n) with the exception of m = n = 0. \' e also set 

(9) t\ (w, w ') = g ~ - 27 g ~ 

[sec 13.13 (7)]. Clearly, g
2

3
/ t\ is a homogeneous function of degree zero 

in wand w 'and hence depends only on 

(10) z = w '/ w 

which w i 1 I be regarded as a complex variable ranging over the upper half­
plane. We have 
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(ll) J(z)=g~/t\ 

[see 13.24 (4)]. 

In 
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(12) E 2(z) = w• g
2

(w, w') = 60 ~'(m + nz)-4 

t'
3

(z)= w 6 g
3

(w, w')= lt\0 ~ '(m + nz)- 6 

l-l.6.2 

\\e collect all those terms in which m and n have a fixed greatest common 
divisor d so that n = sd, m = -td, s 2: 0 and s and t arc coprime. If s = 0, 
t = l. l 'sing the results 

00 

94S 
(13) 

d= 1 

which follow from 1.13 (16), we finally obtain 

4 
(14) E (z)=-rr 4 [1+ ~ (sz-t)-4] 

2 3 (s, t )= 1, s > 0 

' 8 6 t (z)=-TT [1+ ~ (sz-t)-6]. 
3 27 <•. t) = 1,. > 0 

In the last two sums s runs through all posJtJve integers, and for each s, 
t runs through all (positive, negative, and zero) integers coprime to s. 

The series (14) are examples of Eisenstein series. The characteristic 
property of such series is the restriction placed upon the indices of 
summation by number-theoretical conditions. 

The expressions g 
2 

and g 
3 

in (8) are called homogeneous modular 
forms (that is modular forms expressed in terms of the homogeneous vari­
ables w, w ') of dimension -tl. and -6, respectively, and E 

2 
and E 

3 
in 

(14) are called inhomogeneous modular forms (that is modular forms 
expressed in terms of the inhomogeneous variable z). For a definition of 
modular forms see Klein and Fricke (1890, 1892) and sec. 14.8.3. 

If a, b, c, dare integers and ad- be= 1, then s ' = as- ct, t '= dt- bs 
run through a complete set of pairs of coprime integers if s, t run through 
this set, it being understood that only one of the pairs s ~ t' and -s ~ 
-t' appears in the set. From this it follows that for any substitution 

14.6(1)ofM 
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(15) E 
2 
(az +b ) = (cz + d) 4 E (z) 
\cz + d 2 

(
az +b ) E

3 
= (cz+d) 6 E

3
(z), 

cz + d 

and 

(16) 

satisfies (6). 
From ( 14) it is seen that E 

2 
(z) and E 

3 
(z) are single-valued analytic 

functions of z in D 
0 

(the upper half-plane) and that the real axis is a 
locus of singularities of these functions. A more careful discussion 
shows that J(z) has the same properties [see (i) above]. 

Expression of J (z) in terms of theta functions. We put 

(17) q=ei7Tz JqJ<l. 
Since the substitution z '= z + l is in M, we see that J (z) is a periodic 
analytic function, with period 1, of z, as z ranges over the upper half­
plane. Hence J(z) will be an even analytic function of q in the unit 
circle punctured at q = 0, and may be expanded in a series of even powers 
of q. 

The expansion in question may be derived from the formula 

which follows from 13.24 (5), 13.19 (22) and (23) and in which 

(19) 6' = 6'(0) = 2rrq~ 
1 1 

62 =62(0)=2qli n [(l-q2nXl+q2n)2] 
n=1 

00 

6
3

= 6
3

(0) = n [(l-q2n)O+q2n- 1
) 2J 

n= 1 

6~= 64(0) = ii [(l-q 2")(l-q2n- 1
)
2] 

n = 1 
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[see 13. 19 (16)] are the theta functions of zero argument. From ( 18) and 
( 19) we have an expansion of the form 

(20) 1728J(z)=q-2 + ~ anq 2
" 

n= o 
q=ei7T z 

convergen t when 0 < \q\ < 1. Clearly the coefficients an are integers: 
for their numerical values for 0 s; n s; 24 see Zuckerman (1939), Another 
expression which can be obtained from (18) is 

[1 + 21.0 ~ n3q2n/(l-q2")]3 
n= 1 

(21) J(z) = ----------
00 

123 q2 n (1- q 2n)2A 
n= 1 

Connection with hyper geometric series: From pr0perty (i i) of J (z) 
it follows by means of sec. 2.7,2 that the inverse function of J(z) may 
be expressed in terms of hypergeometric functions. See also 13.24 (2) 
and (5), and 13.8 (5) and (6). 

We put 

(22) F(J)= F ( __:_, 
2 1 12 

1 '~; J ) 12 

F*(J) = F ( .2._ 
5 4 

J ). -·-· 
2 1 12 ' 12 ' 3 ' 

where 
2 

F
1 

is Gauss' hypergeometric series defined m 2. l (2), and intro­
duce 

(23) r = F (1) = [ r < ~) J 2 

F*(1) f'(-2..) 
12 

(24) ..\ = (2- y3) y. 

Then, with J = J(z ), F = F(J), F* = F*(J) it may be proved that 

(25) 
. F _ ..\e i 7T/3 J113 F* 

z = e 2 7T t/3 -----c---­
F - ..\e- 7Ti/3 J 1t3 F* 

This equation gives the value of z for any J inside the unit circle. Out­
side the unit circle we have 
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(26) 2rriz =- log J- 3log 12 + 

\J\ > 1, \argO- J)\ < rr 
where 

2 
F

1 
is again Gauss' series and 

00 

(27) C (a, b; 1; u} = I 
n= 1 

(a) n (b) n 
[1/J(a + n)+ t(;(b + n)- 2rf;(n + 1) 

(n! )2 

+ 1/J(a)+ I/J(b)-21/J(1)], 

1/1 being the logarithmic derivative of the gamma function (see Fricke, 
1930). 

For applications of the modular invariant to the theory of numbers see 
sec, 14.6.5. For an application in the theory of functions of a complex 
variable (to the proof of Picard's theorem) see, for instance, lltrwitz and 
Courant (1925). 

14.6.3. Subgroups of the modular group 

We shall now consider certain subgroups of the modular group; these 
will be defined by congruence properties of the integers a, b, c, d in­
volved in the homographic substitution 

az + b 
(28) z '=--­

cz + d 
ad- be=]. 

Let m be a positive integer, and let M"' be the set of all those substi­
tutions (28) of M for which 

(29) either a+ 1, b, c, d + 1 or a-1, b, c, d-1 

are integers divisible by m. It is easy to see that M,. itself JS a group: 
it is called the principal congruence subgroup of level (in German, Stufe) 
m of the modular group M. F:ach M • is discontinuous in the half-plane 
lm z > 0, and a fundamental region of M,. may be constructed by forming 

the union of y • suitably chosen "copies" of the fundamental region F 
of M [defined by (2)], 13y a "copy" of F we mean here a region upon which 
F is mapped by a modular substitution. Jf 

a a 2 ak 
(30) m = p 1 1 p 2 ... p k ' 
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where p 1' ,,, , p k are distinct primes, and a
1

, ••• , ak are positive inte­
gers, then y 

2 
= 6, and 

m > 2. 

We shall further cons ider the cases m = 2, 5, For other M see Fricke 
(1926), Klein and Fricke (1890, 1892). ., 

For m = 2, we have (28) with a, d odd integers, b, c even integers, 
M 

2 
is the A-group (sections 13, 22, 13. 24). The fundamental region F 

2 
of 

M 
2 

may be defined by 

(32) lm z > 0, lz- ~~ > ~. lz + ~1.2 ~. -1 .$ Re z < l. 

The points 

(33) z 1 = -l, z = 0 2 , z 3 = 1, z = 00 
4 

are vertices of F 2 • The boundary of F
2 

consists of the parts in the upper 
half plane of the straight lines Re z = ± 1, and of the c ircles l2z ± ll = l. 
We denote the components of the bou"Jdary by A 

1
, ... , A 

4 
as follows: 

(34) A1: lm z _2 0, Re z = -1 

A 2: lm z ,2 0, lz + ~~ = ~ 

A 3: lm z ,2 0, lz- ~~ = ~ 

A 4: Tm z ,2 0, Re z = l. 

By (32), A 
1 

and A 
2 

belong to F 
2

, and A 
3 

and A 
4 

do not. The A-group is 
generated (in the sense explained in sec, 14.1.4) by the substitutions 

(35) z '= a (z) = z + 2, 
z 

z ' = r(z) = , 
2z + 1 

We have already seen in sec . 13.24 that k 2 = A(z) is an automorphic 

function of M 
2

, This function is single-valued and analytic in the upper 
half-plane, is invariant under substitutions of M 

2
, and maps F 

2 
onto the 

entire w-plane; furthermore, every automorphic function of M
2 

is a rational 
function of k 2 , Since M 

2 
is a subgroup of M, and J (z) is an automorphic 

function of M, it follows that J(z) is also an automorphic function of M 
2 

and hence a rational function of k 2 • The explicit expression is 
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The function A (z) can most easily be defined in terms of theta func­
tions [see 13,20(14)). We have 

(37) 
2 e:(O, q) rr"" A (z) = k = = 16 q 

e:(O, q) 
m= 1 

( 
} + q2• )B 

1 + q 2 .. -1 

~ g<•+ld )
4 

=0 
= 16 

00 2 
+ 2 ~ q• 

•= 1 

where 

(38) q = e iTTz, lql < l. 

Series expansions of A(z) which are of the type of Eisenstein series 
may be derived from the theory of Weierstrass' &O-function. 

The function 

(39) w = A(z) 

maps the region 

(40) Im z :2: 0, 0 .$ Re z .$ 1, lz- ~~ > ~ 

of the z-plane onto the upper half of the w-plane in such a manner that 
the points z = 0, 1, oo correspond, respectively, to w = 1, oo, 0 . As in the 
case of J(z), this means that the inverse function of (39) may be ex­
pressed in terms of the hypergeometric function. Dy 13.19(3) and 13.8(5) 
we have 

where 
2
F, is Gauss' series. 

An independent approach to the theory of A (z) was given by Nehari 
( 194 7) who considered the functional equation 

(42) f(q)= 4[{(q2)]X ll+ [f(q2)]~j-2 

and showed that the conditions 

(43) f(O) = 0, ['(0) > 0, f(q) analytic f0r lql < 1 
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determine a unique solution, f 
0 

(q ), of (42). We have f 
0 

(q) = A (z) = k 2
, 

where q and z are connected by (38), and (42) is essentially Landen's 
transformation (see sec, 13.23). 

We now turn to M 
5

, The fundamental region, F 
5

, of M 
5 

consists of 
y

5 
= 60 "copies", in the upper half-plane, of F. The 60 modular sub­

stitutions which map F on its 60 copies are representatives of the 60 
cosets of A/

5 
in M. [For the notion of cosets of a subgroup see van der 

Waerden (1949).] 
There exists an automorphic function, A (z ), which stands in the same 

relation toM 
5 

and F 
5 

as J(z) toM and F, or A(z) toM 
2 

and F
2

, The 
explicit expression defining A (z) is 

C>O 2 
~ (-lY" qSm +3m 

A (z) = q 2/5 
m= -oo 

(44) 
C>O 2 

~ (-l)m qSm + m 
m=-oo 

Every automorphic function of M 
5 

is a rational function of A(z); the 
absolute invariant J(z) is an automorphic function of every subgroup of M, 
and hence of M 

5
, and must thus be expressible as a rational function of 

of A (z), The actual expressions are 

J [u (A)J3 

(45) J- l = [v (A)f ' 

[u (A)p 
J=------

1728[w(A)J5 

where u, v, w are the polynomials defined m 14.3 (7), (8), (9). The for­
mulas (45) p lay an important role in F . Klein's celebrated solution of the 
quintic equation. 

For all p0sitive integers l, the function [A (z )] l / (
2
!) is an automorphic 

function of some subgroup o f :H. If, and only if, l = 1, 2, or 4, there is a 
principal congruence subgroup (M 

4
, M

8
, and M

16
, respectively) of which 

[A(z)] 1
/(

2 !) is an automorphic function. 

14.6.4. Modular equations 

If [(z) is either J(z) or the corresponding automorphic function of a 
principal congruence subgroup (for instance A (z) in the case of M 2 , and 
A (z) in the case of M 

5
), then,_ for any integer l > l, the functions f (z) 

and f(lz) are connected by an algebraic equation. Such equations are 

called modular equations, 
ln the case of the absolute invariant we have the following situation. 

For any integer l > l, the function J(lz) satisfies an algebraic equation 
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of degree l + 1. The coefficients in this equation are rational functions 
of J (z ), and the coefficients appearing in these rational functions are 
rational numbers. The roots of this equation are 

(
z ) (z + 1) (z + l- 1 ) J(lz) , J l 'J -l- ' ... 'J l • 

We shall give explicitly the modular equation satisfied by J(2 z ) . 
l'sing the abbreviations 

(46) j=123 J(z), j*=12 3 J(2z), 

the equation is 

14.6.5. Applications to number tbeory 

E lliptic modular functions and related functions (Eisenstein series, 
theta functions) play an important role in the theory of numbers. For 
some applications see sections 17.2, 17.3, 17.4 and Hardy (191.0). The 
absolute invariant, J(z ), has the property that J(a) is an integral algebraic 
number whenever a has a positive imaginary part, and is a root of a 
quadratic equation with integer coefficients. The algebraic equations 
with integer coefficients satisfied by certain J(a) are the so-called class 
equations for imaginary quadratic number-fields [see Fricke (1928), 
Fueter (1924, 1927)]: see also Schneider (1936), llecke (1939). 

A new and far-reaching development was originated by Heeke ( 1935, 
1937, 1939, 1940a, l940b): sec also Petersson (1939) and, for certain 
numerical resu Its, Zassenhaus ( 1941). 

For some results which arc relevant for the subject of this section, 
although they appear as special cases of a much more general theory, 
sec Siegel ( 1935). 

14.7. General theory of automorphic functions 

In this section we shall briefly describe a classification of discon­
tinuous groups of homographic substitutions, and mention some of the 
general theorems on automorphic functions of a single variable. All 
results to be mentioned are based on the definitions of the first few 
sections of this chapter: it has already been explained that these defi­
nitions are not the most general ones known in the literature. 
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14.7 .1. Classifications of the groups 

Automorphic functions are often classified according to the groups to 
which they belong. A classification of all discontinuous groups (see 
sec, 14,1,3) of homographic substitutions was given by Poincare, It was 
further developed by Fricke who devoted about one third of the first 
volume of Fricke and Klein (1897) to a detailed classification the res ults 
of which are fully stated on p. 164, 165 of Fricke and Klein (1897, vol. I), 

As in the introductory sections, let G be a group of homographic 
substitutions a r (r = 0, l, 2, 3, ... ) where 

( 1) 
a z + b 

a (z) = r r 

r c z + d 
ad-bc=l. r r r r 

r r 

If there exists a circle C 
0 

which is mapped onto itself by each a r' 

the group G is called a Fuchs ian group. The circle C 
0 

is called a prin­
cipal circle (in German, Hauptkreis) of G, and G is also called a group 
with a principal circle. If G has a principa l circle, a homographic trans­
formation of the z-plane may be used to map C 

0 
on a standard circle . 

Two such standardizations are used. (i) C 
0 

is the unit circle. Necessary 
and sufficient conditions for the unit circle to be mapped onto itself by 
all a are 

r 

r = 0, 1, 2, ... 

where bars denote conjugate complex quantities (see for instance, Cops on 
1935, sec . 8,31). (ii) C 

0 
is the real axis. Necessary and sufficient 

conditions for the real axis to be mapped onto itself by all a r arc 

r = 0, l, 2, .... 

The modular group and its subgroups are examples of discontinuous 
groups for wh ich the real axis is a principal circle . 

In general, G will have limit points (see sec . 14.1.4): let l be their 
number. It can be proved that the only possible values of l are 0, 1, 2, 
and "" • If l = 0, clearly G is a finite group (examples of such groups are 
given in sec. 14.3). If l = 1, it can be shown that G is a group of parabolic 
substitutions, and all substitutions of the group have the same fixed 
point: such groups are discussed in sec, 14,4, If l = 2, we have the case 
investigated in sec. 14.5, and the slightly more general case where G 
is similar to the group generated by the two substitutions 

(4) a(z) = az, r(z) = dz 
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where c is a root of unity, i.e., l" = l for some posit ive integer m, see 
Fricke and Klein (1897). If l = oo , the limit points of C forn1 an infinite 
point set, and any limiting point (i.e., point of accumulation) of this set 
is a lso a limit point (in the sense o f the definit ion of sec . 14.1.4) of G. 

If a principal ci rcle, C 
0

, exists, and every point of C 
0 

is a limit 
point of C, then C

0 
is called a limit circle of G, and G itself is called a 

Fuchsian group of the first kind . If, on the other hand, the limit points 
are nowhere dense on C

0
, then C is called a Fuchs ian group of the second 

kind . In a ll other cases involving an infinity of limit points, C is ca ll ed a 
Kleinian group . If I = oo and no principal circ le exists, it can be proved 
that G must contain loxodromic substituti ons . The modu lar group and its 
subgroups discussed in sec . 14.6:3 are examples of groups for which the 
real axis is the limit circle . 

14.7 .2. General theorems on automorphic functions 

J .et C be an infinite discontinuous group (see sec . 14. I. 3) of homo­
graphic substitutions, let F be a fundamental region (see sec . 14.1.4) 
of C, and let ¢(z), ¢

1
(z}, ... be automorphic functions (in the sense of 

sec . 14.2) of C. ll1e following genera l theorems hold for automorphic 
functions, and correspond to the general theorems of sec. 13.11 on 
elliptic functions l which are automorphic functions of the group 14.4 (2) 
generated by two translations). 

F:very automorphic functions has poles in F . The number o f zerosand 
poles in F is the same. An automorphic function assumes, in F, ever y 
value the same number of times. 

Any t\\o automorphic function of the same group are algebraically 
dependent, that is, for any two automorphic functions ¢

1 
(z) and ¢ 

2
(z) 

of C there exists a polynomial, P (u, v}, in two variables, with constant 
coefficients, so that J> (¢ 

1 
(z ), ¢

2 
(z )} = 0 identically for all values of z 

for which ¢
1 
(z) and ¢

2 
(z) are defined. 

For any given group C it is possible to find two automorphic functions, 
¢

1
(z} and ¢

2
(z),with th e property that any automorphic function of Cis 

a rational fun ction of ¢
1 
(z) and ¢

2
(z) \\ith constant coefficients . The 

expression of elliptic functions in tenns of so(z) and s;]'(z) in sec. 13.14 
is an instance of this theorem. 

If there exists an automorphic function, ¢
0 

(z ), of C which has a single 
simple pole in F, and is otherwise analytic there, then every automorphic 
function of G is a rational function of ¢

0 
(z). For examples of such 

functions see J(z} in sec. 14.6.2, and ,\(::)and A(z) in sec. 14.6.3. It 
can be proved that a necessary and sufficient condition for such a ¢ 0 (z) 
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to exist is the condition th a t the "genus" ofF be zero: for the definition 
of the genus of the fundamental region see sec. 14. 8. 2; also Fricke and 
Klein (1897) or Ford (1929). 

If an automorphic function, ¢
0 

(z ), of the nature described in the 
preceding paragraph, exists, and if z = ry(w) is the inverse function to 
w = ¢

0 
(z) (under the eire umstances described above such an inverse 

function exists since ¢
0 

(z) assumes every value exactly once), then 
17 (w) may be represented as the quotient, y ,Jy 

2
, of two particular solu­

tions of the linear differential equation 

dzy 
(5) --=u(w)y 

dw 2 

in which u is a rational function of w. [In more general cases u will be 
an algebraic function, see Ford (1929, sec. 44).] For a special case where 
(5) is equivalent to the hypergeometric equation see sec. 14.10, In the 
case of J(z ), ,\(z ), A (z ), the differential equations corresponding to (5) 
are special hypergeometric equations. 

Every limit point (in the sense of sec. 14.1.4) is an essential singu­
larity for every automorphic function of G. In particular, in the case of a 
Fuchsian group of the first kind, the limit circle is th e natural boundary 
for all automorphic functions of G; analytic continuation beyond the limit 
circle is impossible. 

14.8. Existence and construction of automorphic functions 

14.8.1. General remarks 

The theory of automorphic functions has two fundamental problems. 
The first of these is the enumeration of all possible fundamental regions 
(or, of all fundamental regions satisfying certain conditions), and the 
construction of the group be longing to each of these fundamental regions; 
and the second problem is the construction of all automorphic functions 
belonging to a given group. 

The problem of finding all groups which possess a fundamental region 
has been solved completely in the case of groups with a limit circle: see 
Fricke and Klein (1897). The solution requires a thorough knowledge of 
non-Euclidean geometry. Even for the more difficult problem of finding a 
unique standard form for the fundamental region of a g iven group, partial 
answers are known in the case of groups with a limit circle which are 
generated by a finite number of substitutions. 
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With regard to the second problem of finding all automorphic functions 
belonging to a given group with a given fundamental region, the general 
theorems of sec. 14, 7,2 show that the basic problems are: to find two 
automorphic functions in terms of which all others can be expressed 
rationally, and to discover algebraic relations between automorphic 
functions belonging to the same group. Two powerful methods for achiev­
ing this will be indicated in sections 14.8.2, 14.8.3. 

In general, it is very difficult to obtain explicit formulas: the theories 
of modular and elliptic functions are rather exceptional. In particular, 
with most groups the coefficients of the substitutions of the groups In­

volved cannot be characterized in a simple and explicit fashion. 

14 .8 .2. Riemann surfaces 

Given G and F, the generators of the group G set up a correspondence 
between pairs of boundary points of the fundamental region F [see sec. 
14.1.4( iii)]. If equivalent boundary points are identified, a Riemann 
surface S is obtained: this Riemann surface may have boundary points, 
corresponding to fixed points of substitutions of C on the boundary of F. 
The genus of this Riemann surface is also the genus of the fundamental 
region F. (See Ford, 1929, P• 238.) 

Single-valued analytic functions on S correspond to automorphic 
functions of G so that the construction of automorp hie functions of a 
given group with a given fundamental region is equivalent to the con­
struction of single-valued analytic functions on a (not necessarily open) 
Riemann surface. For an outline of this method see Hurwitz and Courant 
(1925). The problems of uniformization (see sec. 14.9) have played an 
important role in the development of this approach to the theory of auto­
morphic functions. 

In particular cases the construction may be performed explicitly . The 
simplest examples are the Riemann-Sch¥-arz triangle functions. For these, 
and for theorems on differential equations satisfied by inverse functions 
of automorphic functions see sec. 14.10. 

14.8.3. Automorphic roms. Poincare's theta series 

Poincare, and after him Ritter (1892, 1894) and Fricke (Fricke and 
Klein, 1912) developed the theory of automorphic functions by a method 
resembling Weierstrass' construction of elliptic functions. 

Let G be a discontinuous group of homographic substitutions as in 
sec. 14.2, and let F be a fundamental region of G. 
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Let s be a constant, and for each r = 0, l, 2, ,,, , let v (a,) be a real 
or complex number of absolute value unity [so that v (a ) is a function 

r 
on G to the unit circle of the complex plane], With the notations 'and 
definitions of sec, 14. 2, a function rjJ (z) wi II be called an automorphic 
form of the class IG, -s, vi if it satisfies the following conditions. 

(i) rjJ(z) is analytic and single-valued in F with the possible excep-
tion of a finite number of points, 

(ii) If rjJ (z) is analytic at z 
0 

in F, then it may be continued analyt­

ically, within D 
0

, to z r = a ,(z 
0
), all possible analytic continuations 

(within D 
0

) lead to the same value ifJ(z ,), and 

(l) rjJ (z ) = v (a ) (c z 
0 

+ d ) • ·'· (z ). r r r r '+' o 

(iii) In the neighborhood of a singularity, 1/J(z) may be represented In 
the form 14.2 (3), 

(iv) rjJ(z) is not a constant. 
The function v (a ) is called a multiplier system, and it follows from 

r 
(l) that v is a multiplicative function on G, i.e., 

(2) v (a r a r,) = v (a,) v (a r ,), 

The condition Jv(a )1 = l is a customary assumption. The automorphic 
form satisfying ( 1) is said to be of dimension -s. An automorphic function 
is an automorphic form of dimension zero having v (a,)= l as its multiplier 
system, Automorphic forms belonging to a subgroup of the modular group 
are also called modular forms. 

The construction of automorphic functions may be reduced to that of 
automorphic forms. If rjJ 

1 
(z) and rjJ 

2 
(z) are automorphic forms of class 

IG, -s
1

, v
1
l and IG,-s

2
, v

2
l respectively and if 

r = 0, 1, 2, ••• 

then 
s s 

¢(z)= [r/J1(z)] z [r/Jz(z)) 1 

is either a constant or an automorphic function of G, 
It can be shown that every automorphic form may be represented by a 

Poincare theta series. We shall construct sucit a series under the assump­
tion that z = oo is not a limit point of G. The series is then of the form 

(3) (J(z;G)= ~ [v(a ))- 1 (c z+d )-21 H(z ), 
r=o r r r r 
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where z r' v (a), c r' d r have the meaning ascribed to these symbols in 
sec. 14.2 and in the present section, lis an integer _2: 2, and H(z) is a 
rational function of z which is analytic at all limit points of G. The 
infinite series converges uniformly and absolutely in every closed subset 
of F in which H (z) is analytic, and it may be shown by means of (2) and 
the relation 

a (z 1) = a [a 1 (z )] = a 11 (z) = z 11 
r r r r r r 

that Poincare's theta series (3) represents an automorphic form of the 
class IG, -2l, vi. 

In connection with the construction of automorphic forms in terms of 
theta series a difficulty arises in certain cases, especially if G is a 
group with a limit circle, this difficulty being due to the fact that the 
function represented by the theta series may vanish identically. In the 
case of automorphic functions with poles this difficulty may be over­
come by constructing theta series with a single pole in F; such series 
do certainly not vanish identically in F. On the other hand, it may be 
necessary to construct automorphic forms which are analytic in F and 
vanish in parabolic cusps of F. In this case H (z) is analytic in F and 
it may very well happen that the series (3) vanishes identically. This 
circumstance caused the greatest difficulty which Poincare had to over­
come in his theory of the series (3). 

A new foundation of the theory of automorphic forms and of Poincan!'s 
theta series was laid by Petersson (1940) whose method is based on a 
metrization of automorphic forms. Let G be a Fuchsian group of the first 
kind containing parabolic substitutions. Taking the real axis as the 
limit circle, the coefficients a r' b r' c r' d r of the substitutions may be 
taken to be real. In this situation, Petersson puts z = x + iy and defines 
a ~calar product of two forms as 

(4) (1/J,. 1/1
2

) = J J 1/1
1 

(z) !/J
2

(z ) y•- 2 dx dy 
F 

s > 2, 

the bar, as usual, indicating complex conjugation. Using the invariance 
of hyperbolic measure under the group G, Peters son computes (4) ex­
plicitly if 1/J 

1 
is an automorphic form which is analytic in F and vanishes 

at all parabolic cusps ofF ("Spitzenform"), and 1/1
2 

in a Poincare' theta 
series. The resulting formula is used for a characterization of theta 
series and for the proof of the fundamental theorems in the theory of 
these series. If G is a congruence subgroup of the modular group, the 
theory holds for s = 2, v (a r) = l. For extensions, generalizations, and 
applications of this method see Petersson (1941, 1944, 1949). 
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For the case of a Fuchsian group of the first kind containing hyper­
bolic substitutions only, Dalzell (1932, 1944, 1949a, 1949b) developed 
a new method for Poincare's theta series and related functions, 

In many cases the theory of Poincare's theta series has been supple­
mented by the theory of functions analogous to ~·eierstrass' sigma and 
zeta function (while the theta series are analogous to the so-function). See 
Ford ( 1929), the references given in sec. 14. LO, 2, and also R ittcr ( 1892), 
Staid (1888), Dalzell (1932), 

In the case of a group without limit circle, Poincare's theta series may 
con verge abso lutely for l = l and the multiplier system v (a r) = 1 (sec 
sec, 14. lO. 2). 

14 .9. Uniformization 

Let C be a Fuchsian group of the first kind such that the closure of 
the fundamental region F is contained in the interior of the limit circle 
(if the limit circle is the real axis, we define the upper half-plane to be 
the interior), We assume that all substitutions of C (with the exception 
of the identity, a 

0
) are hyperbolic, We know from sec. 14,7, 2 that any 

two automorphic functions, ¢
1 

(z) and ¢
2 

(z), of C are algebraically 
dependent, i.e., satisfy a relation 

(l) P(¢
1
(z), ¢

2
(z))= 0 

identically in F, P (u, v) being a polynomial. This means that the vari­
ables u, v which are connected by means of the relation 

(2) P (u, v) = 0 

and hence are algebraic functions of each other, may be expressed as 
single-valued functions, 

(3) u= ¢
1
(z), 

of an auxiliary variable z which is then called a uni[o,rmizing variab..le 
for the algebraic relation (2). Alternatively, (2) may be regarded as 
defining an algebraic curve and (3) as a parametric representation, in 
terms of single-valued functions, of t!tat curve . It is an important fact 
tbat every algebraic relation may be uniformized in this manner, and 
that automorphic functions are the most general functionsthat need to 
be used (see a lso sec. 13,2). This result may be described in greater 
detail as follows. 

Let P (u, v) be an irreducible polynomial in two variables u and v 
(i.e., a polynomial which cannot be decomposed into a product of poly­
nomials), and let the variables u and v be connected by the algebraic 



14.10.1 Al TO\IOil PIIIC Fl 'NCTIONS 13 

relation (2) . Then there exist two fun c tions, ¢
1
(z) and ¢

2
(z), of a com­

plex variable z, and a region F* in the z-plane, with the following pro­
perties: For any pair, u , P, of complex numbers satisfying (2), there 
exists a z in F* such that u ~ ¢

1 
(z ), v = ¢

2 
(z ), and apart from a finite 

number of pairs (u, v), this z in F* is uni'luely deternoincd. \!oreover, the 
functions <t'> 1 (z) and ¢

2
(z) may be chosen so that either ¢

1
(z) and 

<t'> 2 (z) are rational functions and F"' is the entire z-p lane, or ¢
1 

(z) and 
¢

2 
(z) arc elliptic function!:> with a common pair of periods and F* is a 

period parallelogram of these functions (only one of the vertices and L\\o 

of the sides of this parallelogram being parts ofF*), or else ¢
1 

(z) and 
¢

2 
(z) arc automorphic functions of a Fuchs ian group of the first kind 

all of whose substitutions {with the exception of a
0

) are hyp<>rbolic, nnd 
F* is a fundamental region of this group . 

For the theory and history of uniformization sec, for instance, llurwitz 
and Courant (1925, Part IJI, Chap. 9) . 

14 .10. Special automorphic functions 

Particular automorphic functions were also descrihed in sections 11.:1 
to l tL6.3. 

14 .10 .1. The Riemann-Schwarz triangle functions 

In certain cases the differential equation 14.7 (5) may be reduced to 
the hypergeometric equation 2. L (l). The resulting automorphic functions 
have a limit circle, They arc called the Hicnmnn-Schwarz triangle func­
tions; see also sec . 2.7.2, Klein and Fricke 0890-1892), Ford (1929 
sec . 114). 

In order to construct a fundamental n·gion for the group of such a 
triangle function, and to obtain the group itself, let c 1' c 2' c 3 be three 
circles, and !etC 

0 
be a circle w!Iich is orthogonal to C 

1
, C 

2
, C 

3
• We may 

take C 
0 

as the real axis \\hen the centers of C,. C 
2

, C 
3 

will lie on the 
real axis (one or several of C ,• i ~ l, 2, 3 n.ay be straight lines perpen­
dicular to the real axis, the centN of such a straight line being the poin t 
at infinity of the real axis). l.ct 1\ uc a trianrlc bounded b} arcs, A 

1
, A 2 , 

A 
3

, of the circles C 
1

, C 
2

, C 
3

: we assume that .1\ is in the upper half­

plane. Let n 
1

, n 
2

, n 
3 

be three positive integers, and let the interior 
angl es of 1\ be a

1
, a

2
, a

3 
where. 

(l) 
TT 

a .=--
' 2n . 

l 

l = l, 2, 3, 
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and it is assumed that 

Zero angles (or infinite integers n} a re admitted, We number the angles 
and vertices in such a manner that a 

1 
is the angle made by A 

2 
and A 

3
, 

etc., V 
1 

is the vertex at which A 
2 

and A 
3 

meet, etc. Let !1.' be the 
triangle obtained by an inversion of !\ on the circle C 

3
• The points V 

1 

and V 
2 

are also vertices of !1. '; let the remaining vertex of A' be V 
4

, 

We then take the closed region /!\ + /').'as the region F* of sec, 14.1. 4. 
Clearly our F* satisfies the condition (i} of sec. 14.1.4, and we shall 
construct a group C so that conditions (ii)-(iv) are also satisfied. 

There is a unique homographic substitution, a 
1

, with real coefficients 
which maps V 

1 
onto itself and V 

3 
onto V 

4
; likewise a similar substi­

tution, a
2

, which maps V 
2 

onto itself and V 
3 

onto V 
4

, Clearly, a 
1 

maps 
A 

2 
onto A; and a 

2 
maps A 1 onto A ;. The arcs A 

1
, A;, A 

2
, A; bound F*, 

and condition (iii) of sec. 14,1.4 is satisfied, The group C generated by 
a 

1 
and a 

2 
clearly satisfies conditions (ii) and (iv ), Let F be the region 

obtained from F* by removing V 
4 

and the interiors of A 1 ~ A;. Then C is a 
Fuchsian group of the first kind whose limit circle is the real axis, and 
F is a fundamental region of C. 

The group C possesses an automorphic function ¢
0 

(z) whose inverse 
function is a Schwarz function (see sec, 2. 7 .2) and may be expressed 
as a quotient of two hypergeometric functions. The function ¢

0
(z) assumes 

every value exactly once in F, and every automorphic function of C is a 
rational function of ¢

0 
(z). Simple examples of such functions are the 

absolute invariant of sec. 14.6.2 or the corresponding automorphic 
functions (in sec. 14.6.3) of subgroups of the modular group. If 

(3) a = 0 
2 ' 

Cis the modular group M, and we may take ¢
0

(z) = J(z); if 

(4) a
1
=a

2
=a

3
=0, 

C is the lambda-group M
2

, and we may take ¢
0 

(z) = k 2 (z) = A.(z ). 
E.T. Whittaker (1899, 1902) has studied another class of automorphic 

functions which has the property that every member of the class is a 
rational function of a single automorphic function. See also Ford (1929, 

sec. 96). 
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14.10.2. Burnside's automorphic functions 

Let C 1-L' C ~ p. = l, .•• , m be 2m circles, and assume that no two of 
these circles have a point in common, and no circle separates any two 
others . These assun•ptions imply that there is at most one straight line 
among these circles, and, If there is a straight line, all other circles lie 
on one side of it: the half-plane bounded by this straight line and con­
taining no circle will be regarded as its interior. 

Let r 
1

, ••• , r,. be m hyperbolic or loxodromic substitutions such that 
r J.L maps the interior of C on to the exterior o f C ;, and let G be the group· 
generated by r

1
, ••• , r.,. The part of the plane exterior to all circles may 

be taken as the fundamental region F . The group G has no principal 
circle . If m > l, G bas an infinity of limit points; if these are removed the 
remaining part of the z-plane is a connected set. 

Automorphic functions of G may be constructed in terms of Poincare 
theta series, and in this case series of dimension -2 converge absolutely. 
The theory of automorphic functions of G has been developed by Burn­
side (1891, 1892) wbo applied bis results to a boundary value problem of 
Laplace's equation . See also Riemann (1876) and, for similar groups and 
their automorphic functions, Schottky (1887). 

14.11. Hilbert's modular groups 

The theory of modular and automorphic functions has been extended 
in several ways to functions of more than one variable. The first results 
are due to Picard ( 1882). In this section we shall briefly indicate an 
approach originated by Hilbert, and in the following section describe 
researches carried out by Siegel. For the general theory of automorphic 
functions of several variables see also Hurwitz ( 1905), Fubini ( 1908, 
Chap. 3), Sugawara (1940a, b), llua (1946). 

Let R be the field of rationals, let K 
1 

be a finite real algebraic ex­
tension of R, K , ••• , K the fields conjugate to K 

1
, and assume that 

II K l 
2 

n I F <o · K I <zl <nl b h a p ' p = , ••. , n are rea • or any a 10 
1 

et a , ••• , a e t e 
conjugates, a (p) in K , similar notations being used for (3, y, o. Let 
z , p = l, ... , n, be n fomplex variables and let S be the region lm z P > 0, 
pp= l, ... , n, in the space of n complex variables (this space having 2n 
real dimensions). Let a< 11, (3 <1l, y< 11, o<1l be any algebraic integers inK 1 
such that 

(l) a< 11 o <11 - y<1l {3<1l = l. 

More generally, unity in (1) may be replaced by any totally positive 
unit of K • We then define a modular transformation a by the equations 

1 
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(2) 
a (p ) z ·t (3 (p ) 

::, = p 
y(p)z +c')(p) 

p 
p 
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p = I, ... , n 

and sec tl1at a maps S onto itself. Tl:e set of all sucl, a forn.s a f.,'TOup C 
w!.ich is called IIi/bert's modular group uf 1\ 1 , 

Bl un1en tl:a I ( l90:l, 1904) proved that r; possesses a fundan ,en tal region 
in S and also that there exist autontorpltic functions of tl.e n con:p lex 

variables Z 1 , ••• , z n belonging to C. If regu larity conditions, analogous 
to the condition;; of sec, 14,2, nrc in:posed , it turns out that any n -+ 1 
automorphic function!:- are connected by an alf.;ebraic relation, and that 
n + 1 automorphic functions may be selected in such a n anner that an) 
nutontorphic function of G is a rational fun c ti o n of th e n + 1 particulnr 
functions, 

:\lnass (1941) investignted !filbert's modular group when /\1 = R (\> 5), 
the field obtained by adjoining y5 to R, nnd conse'luently n = ~. lie 
npplicrl the theory of modular forms of the resulting f,'TOup to problems in 
number theory (quadratic forms). For other investigations of Hilbert's 
n,oculnr group and of its automorphic functions, for the extension to this 
situation of Petersson's theory of Poincnr~'s theta series see 1\~aass 
(l940a, b, 1942, 1948). ~Iaass (l910a, b) also investignted genernlizations 
of Hilbert's n.odular group. 

For nn extension of Blumenthal's results in the direction of Heeke's 
theory of modular forms of one variable see de Bruijn (1943). 

14.12. Siegel's functions 

A theory of modulnr functions of !12n (n + 1) complex variables with 
n = 1, 2, ... , was developed by Siegel (1935, 1936, 1937, 1939) l'.ho took 
the nritlometicnl theory of qundratic forms as the point of departure for tl1e 
theory of\\hat he called modular functions ofthe nth degree, ~1anygcneral 
theorems of this theory redu ce , ''hen n = 1, to kno'' n results on modular 
functions or modular fon.1s ofa s ingle variable; others lead to new results 

even \\hen n= L One outstancl in g feature of Siegel's theory is the utiliza­
tion of syrnplectir geome try (geometry of positive definite matrices in the 
space o f symmetric matrices) inn (n + 1) rea l dimension s, in place o f the 

non-Euclidean (hyperholic)geometry ofthe Poincare hnlf-plane oft,,o real 
dimensions (S iegel 194:3), This leads to a theory of au tomorphic functions 
(Siegel 19·1.2, 1943). :\nother outstanding fenture of this theory is the fre­
quent use of aritiHPctieal n1etl.ods for the proof of results \\hich in the 
cnse of a single variable nre usunlly proved by analytical methods. ~!any 
of the groups of automm-phie functions of a single vnriable have in,portant 
arithmcticnl properties, yet th ere is an essentinl ly geometrical npproach 
to them: in Siegel's theory arithmetical methods are o f central importance 

in the definition of discontinuous groups. 
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In this section we shall give some of the basic definitions and results 
in the simplest case corresponding to the theory of the modular group M 
and its absolute invariant J(z) in the case of a single variable, A review 
of the ramifications of Siegel's theory, and of its numerous important 
results and applications, is far beyond the scope of this section. 

The modular group of degree n, Matrices whose elements are integers 
will be called integral matrices, Unless a statement is made to the con­
trary, capital letters in this section will denote square matrices of n 

rows and columns, The element in the lth row and kth column of the 

matrix A will be denoted by a lk' and we shall write 

(l) A =[_a lk] l, k = 1, ... , n. 

We shall write N for the zero matrix, and I for the unit matrix, of n rows 

and n columns, 

{2) N = [n lk], I = [ilk], n lk = 0, ilk = 0 lk l, k = l, ... , n. 

The transposed of A will be denoted by A' so that a ;k = a kl ; the inverse 
of A is A -I so that AA -I =A -I A =I. 

Let A, B, C, D be four n x n integral matrices, and let 

(3) M = [~ ~] 
be the 2n x 2n matrix partitioned into A, B, C, D as indicated w (3), We 

define a 2n x 2n matrix J as 

(4) J= [~I ~ J. 
\\: e shall assume that the integral matrices A, ... , D have been so chosen 
that 

(5) M 'JM = J. 

The necessary and sufficient conditions for this are 

(6) A B ' = BA ~ CD'= DC' 

(7) AD'- BC ' = I. 

H C and 0 satisfy the second condition (6), i.e., if CD' is a symmetric 

matrix, then C and D are said to form a symmetric pair, Let C 1 , D 1 and 
C 

2 
and C 

2 
be two symmetric pairs of matrices; these are called associate 
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if there is a matrix U such that both U and U- 1 are integral and 

(8) C 
1 

= UC 
2

, D 
1 

= UD 
2

• 

All symmetric pairs of matrices which are associate to a given pair are 
said to form a class. Let C, D be a fixeq symmetric pair of integral ma­
trices,rndletUrangeover the set of all non-singular integral matrices. 
The matrices C and D are called coprime if a necessary condition for 
U- 1C and U- 1D to be integral is that U- 1 itself be integral (this con­
dition is always sufficient). 

All 2n x 2n integral matrices M satisfying (5) form a group. The two 
elements 

of this group form a normal (or invariant) subgroup of order two. The 
quotient group of the group of all M relative to the subgroup (9), i.e., the 
group of all M satisfying (5) if M 

1 
and M 

2 
= -M 

1 
are identified, is cal led 

the modular group of degree n and will be denoted by 11! . The elements of 
m will be called substitutions, and each of these is determined by four 
integral matrices A, B, C, D satisfying (6), (7). The matrices A, 8, C, D 
and -A, -8, -C, -D determine the same substitution. 

Let Z be a (complex) symmetric matrix . We put 

(10) Zzk=Zitl=Xzk+iylk 

and correspondingly 

(11) Z=X+iY 

l, k = 1, ... , n 

where the x lk and y lk are real numbers, and X and Y are real matrices. 
We shall regard the z lk as complex variables and shall restrict them by 
the condition that Y be positive (i.e., the quadratic form whose coeffi­
cients are the elements of Y be positive definite). The matrices Z may be 

envisaged as points of a space in which the z lk' or x lk and y lk' are 
coordinates: this space has ~ n(n + 1) complex dimensions, or n(n + 1) 
real dimensions. That part of this space in which Y is a positive matrix 
forms a subspace which will be called U, and our variable matrix Z will 
range over U ("the positive cone"). 

For any integral matrices A, B, C, D satisfying (6) and (7), i.e., for 
any element of 11!, we define the substitution 

(12) a(Z) = (AZ +B) (CZ + D)-1
• 
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It can be proved that each substitution ( 12) defines a 1- l mapping of J:1 
onto itself, and that the group of these mappings is homomorphic to 111 . It 
can also be shown that ~. considered as a group of mappings of J:1 onto 
itself, possesses a fundamental region 3 which is bounded by a finite 
number of analytic hypersurfaces. For a set of generators of iJJI. see llua 
and Reiner (1949). 

Modular forms and modular functions. Let L be the set of all classes 
of coprime symmetric pairs of matrices. From each class we choose a 
representative pair C, D, and form the generalized Eisenstein series 

(13) 1/J (Z) = L [det(CZ + D)]-zr. 
r L 

It can be shown that for sufficiently large positive integers r, the series 
in ( 13) converges absolutely for every Z in J:1 and defines, in U, an 
analytic function of the ~n (n + 1) complex variables x lk• The function 
1/J r(Z) thus defined is called a modular form belonging to IJR . 

If r, s are sufficiently large integers, the modular forms 1/Jr and 1/J s 

exist, and 

(14} 1/J;I/J~r 

is a modular function of IJR with fundamental region 3. It can be shown 
that there exist ~ n (n + 1) algebraically independent modular functions 
of the form (14), and that any ~n(n + 1)+ 1 such functions are connected 
by an algebraic relation with rational coefficients. 

The modular forms { 13) may also be expanded in theta series. 
Petersson 's ( 1940) theory of Poincare's theta series has been gener­

alized by Maass (1951). In this generalization, the hyperbolic metric 
of Poincari's half-plane is replaced by Siege I 's sympleptic metric of 
the positive cone J:l. 

Two identities. We conclude this brief introduction to Siegel's theory 
by giving two remarkable identities, both for the case n = 2. 

The first of these identities is due to Siegel (1937) and expresses a 
modular form in terms of a theta double series. Let L be the set of all 
classes of coprime symmetric pairs of 2 x 2 matrices, and select a repre­
sentative pair C, D from each class. Let L 

2 
be the subset of all repre­

sentative pair~ for which 

CD'= N (mod 2), 

i.e., the elements of CD' are even integers (if this condition is satisfied 
for one representative of the class it will be satisfied also for any other 
representative}. Put 
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Z = [: :] = X + iY 

where u, v, w are complex variables, X, Y are real matrices and Y is 
positive, and let a, b run through all integers. Siegel's identity states 

(15) ~ [det(CZ+/))r4 =1 L exp[i77(ua 2 +2vab+wb 2 )]! 8 • 
L

2 
a, b 

The second of these identities is due to Witt (1941) and is an identity 

between two modular forms of degree 2. \lith the notation used in (13), 
the identity may be written as 

(16) t/I~(Z)=[r/J 2 (Z)JZ. 

Witt's identity is analogous to the well-known formula 

(l?) ~ (az + b)-8 = [ L (az + b)- 4 ]2 
a, b a, b 

in the theory of Eisenstein series of a single complex variable z, where 
a, b run through all pairs of coprime integers a, b such that a 2: 0 and that 
b = 1 when a = 0. 
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CHAPTER XV 

LAME FUNCTIONS 

15.1. Introduction 

I .ame functions arise in solutions of Laplace's equations 1n certain 
systems of curvilinear coordinates. Separation of variables in the three­
dimensional Laplace equation is discussed fully in 13ocher's (1891) 
hook, and in recent papers hy l .evinson, Bogert, and Hedheffer ( 191.9), 
and ~loon and Spencer (1952 a, b, 1953). For the separation of variables 
in more general differential equations see Eisenhart (1934) v.ltere there 
are also references to earlier writers. 

Strutt's monograph (1932) gives a summary of the theory of Lame 
functions as of 1932, many applications, and an extensive bibliography. 
For further information about these functions sec also Whittaker and 
Watson (1927, Chapter XXIII) and llobson (1931, Chapter XI). 

15.1.1. Coordinates of confocal quadrics 

Let a > b > c > 0 he fixed numbers, and let f) be a variable parameter. 
The equation 

( l) 
X 2 y 2 Z 

--- + --- + ---= l 
a 2 + 8 b 2 +8 c 2 +0 

represents a confocal family of CjUadrics, x, y, z being rectangular Carte­
sian coordinates. The quadric represented by (l) is 

an ellipsoid if - c 2 < f) 
a hyperboloid of one sheet if -b 2 < f) < -c 2 

a hyperboloid of two sheets if -a 2 < fJ < -b 2 

an imaginary quadric if 8 <-a 2 

For f)= -a 2 , -b 2, - c 2 we obtain degenerate quadrics. 

14 
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Since (l) is a cubic efjuation in 0, three quadrics of tl.e confocal 

family pass through each point (x, y, z) for which xyz ~ 0 (this excludes 
the planes of the degenerate fjuadrics), A discussion of the sign of the 
left-hand side of (l) as 0 varies shows that exactly one oftl.e three roots 
lies in each of th<' intervals (-c 2

, oo), (-b 2
, -c 2

), (-a 2
, -b 2

), showing 
that through every point (not in one of the coordinate planes) there passes 
one ellipsoid, nne one-sheeted hyperboloid, and one t'' o-sheeted hyper­
boloid of the confocal family, 

Let A, 11-• v be the three roots of (l) for given non-zero x, y, z, and let 

(2) A > -c 2 '> iJ- > -b2 > v > -a 2
, 

\\e may introduce ,\,11., vas curvilinear coordinates 111 Laplace's e'luation 

(3) 
cJ 2 rr iJ 2 1f a2 tr 

,\If' = -- + -- + -- = 0 
dx 2 ay 2 az 2 

wit i ch transfornJCd to our curvi I in ear coordinates becomes 

1 f(v) a 

where 

r alf 
L_i(v) av 

(5) f(O) = [(a 2 + O)(b 2 + O)(c 2 + O)] ~ . 

1'\o", A, 11-• v depend only on x 2
, y

2
, z 2 and hence are the saiT'e for the 

eigltt points (±x, :t:y, ± ::),In order to have a one-to-one correspondence 

between Cartes ian and curvi I in car coordinates, "e introduce uniformizing 
variables, expressing A, /J-, v, and hence x, y, z, in terms of Jacobian 
elliptic functions of three new variables, a, {3, y. We put 

b 2 2 -c I , 2 
If = 2 2 

a - c 
O < k,k' < ] 

In what follows, lr will be the modulus of tl,e elliptic functions, We then 

set 

(7) A= -(a en a) 2
- (b sn a) 2 

iJ-= -(a cn{3) 2
- (b sn (3) 2 

v =-(a en y) 2
- (b sn y) 2 
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In terms o f our nev. curvilinear coordinates we have 

(8) x = k 2 (a 2 
- c 2)~ sn a sn {3 sn y 

k 2 2 2) y, 
y = - -;;; (a - c en a en {3 en y 

i 2 2 y, 
z =- (a - c ) dn a dn (3 dn y , 

k' 

an..J r aplace's equation (3) becon.es 

(9) 

If we le t a vary between iK 'and K + iK ~ f3 betv.een K and K + 2i K ', 
andy between 0 and 4 K, it can be verified by means of the formulas and 
diagrams given in sec. 13.18 that the inequalities (2) are satisfied, and, 
moreover, that (8) represents a one-to-one corresponde nee be tv. e en the 
Cartesian coordinates x , y , z , and our curv ilinear coordinates o., {3, y 
which will be called ellipsoidal coordinates , or coordinates of confocal 
quadrics . 

The end-poin ts o f the intervals in which a, {3, y vary are of special 
importance. They represent oo and the degenerate quadrics of our systen', 
a nd may be enumerated as follows: 

a = iK' infinity; 

a = K + i K ' degenerate ellipsoid cover ing (tv. ice) the area of the 
focal e llipse; 

(3 = K and {J = K + 2 iK ' l\\0 halves of the degenerate hyperbo loid 
covering (twice) the area "betv.een" the t~\ O branches of t!.e focal hyper­
bola; 

(3 = K + iK 'degenerate hyperboloid covering (t\\ ice) the area in the 
x , y-plane "outside" the focal ell ipse; 

y = 0, K, 2 K, 3 K, I K parts of the degenerate two-sheeted hyper­
boloids of the system which cover (t\\ icc) the area "outside" the focal 
hyperbola, y = 0 andy= 1\ K representing the san:e surface. 
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The degenerate surfaces act as branch-cuts, and the postulate of 
continuity of a function across these branch-cuts has the character of 
boundary conditions. 

We may mention that a corresponds tor in spherical polar coordinates, 
f to 0, and y to ¢ • 

Instead of the "Jacobian" uniforrnizing variables, many authors use 
"Weierstrassian" variables (see, for instance, Whittaker and \'atson, 
1927, sec. 23.31). 

Lap lace's equation (9) has normal solutions 

(10) W = A(a) 8({3) C(y). 

Substituting in (9) we obtain 

AH BH 
(ll) [(sn y) 2

- (sn,8) 2
)- + [(sn a) 2

- (sn y) 2
) 

A B 

and since tl.is IS an identity in a, {3, y, there must be constants h and l 
such that 

A H 

(12)- = l(sn a) 2
- h, 

A 

B H 
- = l (sn ,8) 2

- h 
B ' 

We write l = k 2 n (n + l) and sec that A, B, C satisfy !.and~ ' s equation 

d 2 A(z) 
2 ( 13) 

2 
+ liz - n (n + l) [k s n (z, lr )) I t\ (z) - 0 

dz 

v,ith appropriate variables. 
Suppose that (lO) represents a solution of l aplacc's equation which is 

continuous anci has a continuous gradient on an ellipsoid a = const. 
Since y = 0 and y = 4K represent the same curve on that ellipsoid, it 
follows that 

(lt) C(O)= C(1K), 
ac ac 
- (O) = - (·1 K). 
ay ay 

Since the coefficients in I .arne's equation arc periodic mod 1 K, it fol Jo,\s 
that C(y) must also be periodic n.od 4K. Tf C(y) is any mod 4K periodic 
solution of Lame's equation, so are C(2K- y) and C(y) ± C(2K- y), 
and we may restrict oursleves to periodic solutions \\ luch arc even or 
odd functions of y - K: we shal I express this by saying tl.at our solutions 
ar~ even or odd , .. ith respect to K. 
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The c urves f3 = K and (3 = K + 2i K 'are branch-cut s on th e ell ipsoid; 
the points (K, y), (K, 2 K- y)are identical. T he continuity cond it ions are 

(15) R (K) C(y) = R(K) C(2 K- y) 

cJll oR 
-(K ) C(y) = - -(K) C(2 K - y) . 
ar a(-! 

If C(y) is even wi th respect to K, we have CJR(K )/ df3 = 0 so tloat R(h) 
is also even w itlr respect to K; and if C(y) is odd \\ith rcsrcctto K, \\e 
have R (K) = 0 so that R ((·n i s also odd with respect to K , 1\c have tire 
same s ituation a t f, = K + 2iK ', so that if C (y) is even (oJd) with rcsrcct 
t o K then B ((3) must be even (odd) bo th witlo respect to K and witlo re­
spect t o K + 2i K ',In e ithe r case B ({3) is a periodic function mod ·I i K '. 
r.Joreover, B (8) and C (c9) have the same parity at 0 = K, and sat isfy tLe 
same differential equation: it follows th a t tlo ey a re constant roou lti plcs 
of each o th e r, We are thu s lead to inquire into the existence of doubly 
periodic solutions o f (13). It w ill he seen later (sec, 15,5.2) that such 
solutions exist only if n is an integer, and h has one of a sequence of 
characte ris ti c values, It may be men tioned that an analysis of the solu­
ti ons in spherical pola r, or Cartesian coordinates leads a lso to the con­
c lus ion th a t n mus t be an integer , 

The choice of A (a) depends on th e type of ellipsoidal harmonics 
unde r consideration. For internal harmonics we "\\ish (10) to be regular 
inside an e llipsoid a = const, Now, a = K + iK' is a hranch-cut (the 
focal e llipse), the points (K + i K: {3, y) and (K + i K ', 2 K + 2iK '- (3, y) 
are identical, and as above , we conclude that A (e) and B(c9) must have 
th e same parity at K + iK 'and hence are constant multiples of each other, 
For external harmonics we wish (10) to be regular ou tside of an ellipsoid 
a = cons t., in particular a t infini ty , a = i K ', and A (a) must be that so lu­
tion of the Lame' equation which vanishes a t iK: Lastly, for an ellip­
soidal harmonic regul ar between two e llipsoids of the confocal family, 
we take a linear combina tion o f tl:ese two solu tions, 

15.1.2. Coordinates or confocal cones 

We introd uce coord ina tes r, {i , y wh ich are connected with Cartesian 
coordinates x , y, z and spherica l polars r, e, ¢by means of th e relations 

(16) X = r sin 8 COSrp = /cr s n {3 sn )' 

k 
y = r sine s in ¢ = i-;;; r en (3 en y 

l 
z = r cos e = ~ r dn f3 dn y . 
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As in sec. 15. L 1, {1 varies betv.cen K and K + 2iK: y varies between 0 
and 4 K, and r > 0. Tl.e coordinate surfaces are the concentric spheres 
r = const. and the con focal cones 

x2 :;2 22 
(17) --+---+--~ 0 

a 2 +0 b 2 ~0 C
2 +0 

"here 0 is 11 or ~ · as 3 ivcn in (7), and k is detern•in"d Ly (6). These 
coord inates a rc knov.n as srht-m-conal coord inat('S: see l!obson 1892 
and 1931 Cl,aptcr \L 

Laplace's efjuation in these coordinates is 

nom.al solutions arc of the fom1 

(19) 'f' =R (r)R((-3 )C(y) 

and lead to tl•c differential equation 

(20) 2_ :!__ ~ 2~) - n (n + 1 ), 
R dr \. dr 

the equations for Rand C being the same as in (1 2), wit!: I= k 2 n(n -t 1). 
If (19) is to represent a function continuous and possessing a con­

tinuous gradi e nt on a sphere r = const., tl.e same considera tions as in 
sec. 15. 1.1 lead to the conclusion that R (()) = C (0) must be a doubly 
pe ri od ic solution o f I .ame's equation, and hence that n is an integer, and 
lz one of the char~ctcristic values. Alternatively, (16) sets up a relation­
sl,ip bctv.een spl,crical polar, and spl,ero-conal coordinates, tl1is leads 
to a re lationshi I' between spl,erica I and e I I ipsoi da I surface l:arn .oni cs, 
and to the conclusion tl:a t n is an inte ger, aud h ],as exactly 2n + l 
ci.aractcristic values. 

Ti.c situation is entirely different if (19) is to re present a function 

rcgu lar ins ide a cone (1 = const., "here '' c take {1 between K and K -+ i K : 
If (19) is to be regular inside the entire half-cone r; = const., \\e n·ust 
haven = - 1. + ip \d:ere r is rea l and arbitrary, if (19) is regu lar inside 
the cone betv.een the spheres r = r 

1 
anci r = r 2 and van ishes on these 

spl.eres, v.e must haven =-~~+ ip wherep is a root of the transcendental 
CfjtJation sin [p l o~(r/r2)] = o. In either case n is complex and nc 11 - -

1
'2 · 

Since y = 0 and y = 1 K arc the same surface , C (y) n:ust be P"r iodic 
mod 4 K, and h must have one of an infin ite sequence of characteris ti c 
values. Continuity across (l = K makes R (0) and C (0) have the same 
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parity at K and hence constant multiples of each other, but the functions 
involved here arc no longer doubly periodic. 

15.1.3. Coordinates of confocal cyclides of revolution 

ln cylindrical coordinates p, ¢ ,z, 1 a place's equation becomes 

1 a~ a1r) 1 a2
1l" a2 rr (21)-- p- + 2 --2 + --2 = o. 

p ap ap p a¢ az 

We now introduce new coordinates, u, v in the meridian plane by putting 
z = z(u, v), p = p(u, v). \l'angerin (1875) has determined the most general 
systems of orthogonal curvilinear coordinates u, v in which Laplace's 
equation is separable, i.e. possesses normal solutions of the form 

(22) W = w(u, v) U(u) V(v) ~(¢) 

where w (u, v) is a fixed function, and U, V, <ll are solutions of ordinary 
differential equations. Wangerin's discussion was repeated by Snow ( 1952), 
and also by R. Lagrange (1939, 1944). We shall give a brief indication 
of this discussion, and then a more detailed account of the systems of 
curvilinear coordinates obtained by Wangerin, and of the boundary value 
problems which they suggest. 

First one proves the following result. If u, v are orthogonal coordi­
nates, and Laplace's equation has solutions of the form (22), then 
w = p -~, and the coordinates u, v may be taken in such a manner that 
the mapping of the z, p-plane in the u, v-plane is conformal. \'e accord­
ingly put 

(23) z+ip=f(u+iv) 

where r is an analytic function; and v.e also put 

(24) W = p-Y, 1]J(u, v) e±im</> = p-~ U(u) V(v) e±im ¢ 

in Laplace's equation (21). The partial differential equation satisfied by 
1.11 is 

where 

lf'(u + iv)l 2 lf'l 2 

(26) F (u v) = ....:.:..___ __ ___:_----:- - -
2

-

' [lmf(u + ivW p 
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and \\C \\ill have solutions of the fun•J { ' (u) V(v) ifF is of the form 
F (u, l') = F 

1 
(u) + F 

2 
(v ), the ordinary differential eCJuations satisfied by 

l and I being 

d2 [ 
--

2
- + [h - (m 2 

-
1o) F 

1 
(u) l L = 0 

du 

d 2 v 
--

2
-- [It + (m 2

-
1o) F

2
(v)l V = 0, dv · · 

It is then proved:F (u, v) = F 
1 
(u) + F 

2 
(v) if and only iff satisfies the 

ordinary differential eCJuation 

111 \\hich a 0 , ••• , a
4 

are real constants. Thus, f is either an elementary 
function or an e lliptic function. ~.lorcover, tloe form of the differential 

CCJuation for f docs not change iff is replaced by (A[+ /1)/(Cf +/))''here 
A, 8, C, {)are real constants and A f)- RC f 0, and we may use such a 

transformation to reduce the eCJuation to normal form. 
We shall assume that I' 

4 
has four distinct zeros \\hen the reduction 

to normal forn o can be effected by the process described in sec. 13.5. 
Three cases arise according as all zeros are rea I, all zeros are complex, 
or two real and two complex zeros occur. The standard forms off in the 
three cases are 

sn (u + iv, k ), i sn (u + it•, k ), c n (u + i v , k ). 

\~e shall now discuss each of th esc three cases separately. A bar 
will denote complex conjugation, and tl·e followin g abbreviations will 
be used: 

(27) s = sn (u + iv, k )1 s 
1 

= s n (u, k ), 

c = en (u I iv, k ), c 1 = cn(u, k), 

d = dn(u+iv,k), d ~ 
1 

dn (u, k ), 

j['(u + iv)j 2 

F(u, v) =-,------~ 
[Im f(u -1 iv )1 2 

s
2 

= sn(iv,k), s
2
' = sn (v, k ') 

c2 =cn(iv ,k), c
2
' = cn(v, k') 

d
2 
~ dn (iv, k), d

2
' = dn (v, k ') 

n = +m - ·~~ 

The aim of the follo,,ing discussion IS to show that In each case 

F (u, v) appears in the form 

[a sn (bu + c, a/ b )]2 + la 
1 

sn (b 
1 

v + c 
1

, a ,lb 
1 
)]

2 
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so that (25) becomes 

a2\jl a2\jl 
--

2 
+ --

2 
- n(n + l) l[a sn(bu + c, a/ b)f au av 

+ la
1 

sn(b
1
v + c ,. a,lb

1
)]

2 1 I.JI = 0. 

For normal solutions, IJI = l (u) V (v), and U and V satisfy equations 
which can easily be reduced to l ame 's equation, th e variables in the 
latter being bu + c and b 

1 
v + c 1 respectively. \\e then investigate the 

boundary conditions which must be imposed upon U and V. 
The coordinates u, v used in this discussion will be those which 

arise most naturally from the general theory. They are not necessarily 
the most suitable ones to use in a g iven problem, and it will be seen in 
sec. 15.8 how the transformation theory of elliptic functions can be used 
to change over to new, and more suitable coordinates. 

Case I. Four real fo ci on the axis 

\\ e put 

As+ B 
(2R) z + ip = ' 

Cs + D 
A, B,C,D real, AD-BCf,O 

and find by a straightforward 
and Table 7 in sec. 13.18 

tl cd-;d­

computation using 13. 17 ( 16), 13.23 ( 13), 

(29) F(u v) = - ----., 
' (s - 5)2 

{ r 1- k ]}
2 

= - (l - k) sn ~ (l + k) u, l:/: 

+ { 1- k) sn [ (l + k )(u - i K ), -~: ~ J } 2 

For the further discussion we tak e A = /) = 0, B = C = 0 in (28). 
The mapping z + ip = sn (u + iv) was described in sec. 13.25. We see 
from the cliagram g iven there that tl.e half-plane p > 0 is mapped on a 
rectangle in the (u, v)-plane w ith corners at (± K, 0) and (± K , iK '). 
Thus - K :; u ~ K and 0:; v ~ K: The curves u = const. and v = const. 
in th e z, p-plane are confocal bicircular fJUartics whose feci are at 
z ~ ± l, ± lr-', p = 0. Note that F becomes infinite for u = ± K or for 
v = 0, K' so that the end-points of the intervals of u and v correspond 
to singular points of the ordinary differential equations for U and L 
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Fora potential which is regular inside (or outside) a surface u = const., 
p - X V (v) must remain finite at both end-points v = 0, K ', and we sha I I 
see later tl1at this detem1ines certain characteristic values of h as \\ell 
as the solution V (v) to be used. For a potential re gular outside [inside] 
a surface u = c < 0, or inside [outside] a surface u = c > 0, L (K )[C(- K)] 
must be finite, and this determines the choice of ['. Sin.ilar statements 
hold for potentials regular inside or outside a surface v = const. 

Case II. No real foci on the axis 

II ere 

(30) 
Ais + B 

z + ip = • 
Cis+ D 

A, B, C, D real, 

A -d d- 2 d 2 k , 4 2 
•tC C C I I S 2 (31) F (u, v) = 

2 
---- -,----=----

(s + s) - 2 c 2 d 2 
S I 2 2 

t lfl-BCoiO 

{ [ 
1- k ]}

2 

= - (1 - k) sn i (l + 1.: )(u - K), l + 1.: 

+ { (l-k)sn [ (l+k)u, ~:~ ]j 
For the further discussion we again take A = f) = 1, 8 = C = O. The 

mapping of the quarter-plane z < 0, p > 0 on the rectangle with corners 
at (0, 0), (K, 0), (K, K '), (0, K ') in the u, v-plane is described by the 
diagram in sec. 13.25. To complete the mapping \\e reflect in the (z, p)­
plane on z = 0, and in the u, v-plane either on v = 0 or on u = K. The 
curves u = const., v = const. in the z, p-plane are confocal bicircular 
rruartics \\ith real foci at::= 0, p = 1, k - 1

• 

For a potential regular inside or outside a surface u = const., we map 
the half-plane p > 0 on the rectangle\\ ith vertices (0, ± K '), (K, ± K ')in 
the u, v-plane. v = K' and v = - K 'are both 1Pnps of z = 0, p > k -I. By 

the same argun.ent as in sec. 15.1.1 it is seen that V (v) must be a 
periodic solut ion of the appropriate differential equation, the period 
being 2 K: This condition determines characteristic values of h, and 
the corresponding characteristic functions V (v). For a potential regular 
inside u = const, the continuity condition across u = K (i,e, z = 0, 
1 < p < /,·- 1

) demand that U at K and Vat 0 have the same parity; for a 
potential regular outside u = const,, U must ren.ain finite at u = O. This 
case has been discussed in detail by Poole (1929, 1930) who used a 
slightly difrerent mapping. 
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For u potential re g ular inside or outside a surface v = const., "'e rnap 
tire lralf-plane p > 0 on the rectangle \\'itlr vertices (0, 0~(2 K, 0) ,(2 K, K '), 
(0, K '). llere p-'1, L. (11) rrrust remain finite at lrotlr 11 = 0 and 11 = ~ K, and 
this conrlition determines characteristic values of h, and characteristic 
functions l (11). V(v) is then determined by its purity at 0 (for rr potential 
reg ular inside v = con st.) or at K '(for a potential regular outside I' = 
con st.). 

Case Ill. Tll"o real jcJf'i or1 tl•e axis 

!!ere 

Ac + B 
(32) z + ip = ' 

Cc + D 
A, R, C, /)real, A/J-8Cf,O 

= (k - ik ') sn (k + ik ') (u + K ), .- - ~ - , { [ ~ ·A, ] }2 

lc + dt 

{ [ 
k- ik, ]}

2 

- (/,· - ik ') sn i (k + ilc ') (v - i K ), . , 
k + tic 

[n this case the modulus of the elliptic functions appearing in Lame's 
equation is not areal fraction but a complex numLer of modulus l, a nd the 
transformation theory of elliptic functions (see TaLie ll in sec. 13.22) 
must be used to reduce all functions to a real modulus between 0 and l. 
Ke take A = D = l, R = C = 0, The curves u = cnnst., v = const. in th e 
z , p -plane are confocal bicircular quartics whose foci are at the points 
z = ± l, p = 0 and z = 0, p = k '/k . Further details of the r11appin g \\ill b e 
seen from the diagram in sec. 13.25. 

For a potential re gular inside or outside a surface u = const., "e map 
the hal f-pl anc p > 0 on the rectang le with vertices (0, -2 K '), (K, - 2 K '), 
(K, 0), (0, 0) in the u, v-plane. The condition that p - y. V(v) remain finite 

both at v = 0 and a t v = - 2 K 'deternaines characteristic values o f It and 
characteristic functions V (v). For a potential regular inside u = const. 
we have a branch-cut at z = 0, p < k '/k, or u = K, and continuity across 
this branch-cut determines the parity of U a t K to be the same as tire 
parity of V a t -K: For a potential re gular outside of u = const., p - Y, {; 

is determined by the condition that it remain finite at u = 0. 
For a potential regular inside or outside a surface v = const. we map 

the half-plane p > 0 on the rectangle with vertices (0, -K '), (2K, -K '), 
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(2 K, 0), (0, 0) in the u, v-plane. p - X U (u) must remain finite both at 
u = 0 and at u = 2K, and this condition determines characteristic values 
of h and characteristic functions U (u), For a potential regular inside 
v = const., p -~ V (v) must be finite at v = 0, and for a potential regular 
outside v = const, the parity of Vat -K 'must be the same as the parity 
of U at K. 

15 .2 . Lame's equation 

In the preceding sections it was shown that the solution of a number 
of boundary value problems depends on the differential equation 

d 2 A 
(1) --

2
- + lh -n(n + l)[k sn(z, kW! A = 0 

dz 

which we shall call the 1 acobian form of Lame's equation, or briefly 
Lame's equation. This form of the equation was used by Hermite, E.T. 
Whittaker, lnce, and other authors and is preferable to other forms (to 
be given below) from the point of view of numerical computations, 

In (1), k is mostly between 0 and 1, but we have encountered one 
case in sec, 15.1.3 where k is complex and Jlcl = l. z is a complex 
variable, but in most boundary value problems z varies along one of the 
lines Re z = NK, Im z = NK ~ N integer, h is a parameter, characteristic 
values of which are determined either by a periodicity condition, or by a 
"finiteness condition". n is sometimes an integer, sometimes half of a n 
odd integer (as in sec, 15.1.3), and sometimes (as in one problem in 
15.1.2) a complex number whose real part is-~, 

We have encountered several types of solutions. First there are solu­
tions with a given parity at one of the quarter-period points MK + iNK' 
(M, N integers), or solutions which are to remain finite at one of the 
poles 2MK +i(2N + l)K' (M, N integers) of sn z , Such solutions exist, 
and are determined up to a constant factor, for any given values of h, n, /c. 
Then there are the solutions with a prescribed period (which is also a 
period of sn z), We shall see later that for given n, k there is aninfinite 
sequence of characteristic values of h for which such solutions exist. 
In sections 15 .1.1 and 15.1.2 we found occasion to use solutions with 
two prescribed periods. It will be seen later that such solutions exist 
only when 2n is an integer. Lastly, in sec, 15,1.3 we were lead to solu­
tions which are to remain finite at two poles. We shall see later that for 
given n, k there is an infinite sequence of characteristic values of h for 
which such functions exist. 
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Beside the Jacobian form (1) of Lame's equation there are other 
important forms of this equation. If we put 

(2) . , ( ) ~ z = tK + u e 
1 

- e 
3 

, 

and use 13. 16 (4) in conjunction with Table 7 in sec. 13 .18, we obtain 
the Weierstrassian form of Lame's equation 

d2 A 
(3} -

2
-+ [H- n (n + l) &0 (u})A = 0 

du 

which was used by Halphen and other French mathematicians, and is 
extensively used in modern theoretical work. 

A trigonometric form may be obtained by the substitution 

(4) snz=cos(, ( = Xrr-amz 

which leads to 

(5) 2
d 2 A 2 dA 

[l - (k cos() ) --
2 

+ k cos (sin ( --
d( d( 

+ [h- n(n + l}(k cos () 2)A = 0. 

This form was used by G.H. Darwin and lnce. 
Several algebraic forms are also available. With 

(6) (sn z) 2 
= x 

we obtain from (1) 

d
2 

A l G l l ) dA (7) --+- -+--+ --
dx 2 2 X X - l X - k - 2 dx 

and with 

(8) &0 (u) = p 

we obtain from (3) 

hk- 2 -n(n + l)x 
+ A = 0, 

4x(x-l)(x-k 2
) 

(9) --+- --+--+-- --+---------A = O. 
d

2
A l(l l l)dA H-n(n + l)p 

dp 2 2 p- e
1 

p-e
2 

p-e
3 

dp 4(p-e
1
)(p-e

2
)(p-e

3
) 
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Other algebraic forms rr.ay be obtained by rational transformations of 
these. Algebraic forms were used by Stieltjes, F. Klein, llocher, and 
others. 

The algebraic forms of Lame's equation are of the Fuchsian type, 
having four regular s ingularities. There are three finite regular singu lar­
ities) [at 0, l, k -z for (7), at e 

1 
, e

2
, e

3 
for (9)] with indices 0, ~.and a 

regular singularity at infinity with indices -~n, ~n +~ .For the theory 
of Fuchsian equations see for instance lnce (1927, P• 370fT.) or Poole 
(1936, P• 74fT.) 

There are general theories covering the other forms too. Forthe theory 
of differential equations with doubly periodic coefficients see Ince 
(1927, p. 375fT.) or Poole (1936, P• 170fT.); for equations with simply 
periodic coefficients see Ince (1927, P• 381fT.) or Poole (1936, P• 178ff.). 

Unless the contrary is stated, we shall regard h, k, n as given (real or 
complex) constants, and the variables as complex variables. 

15.3. Heun 's equation 

It can be shown that any Fuchsian equation of the second order with 
four singularities can be reduced to the form 

(l) 
f ) dw a{3x - q 

+ ----- --- + ~~--~----~ 
x-a dx x(x-l)(x-a) 

where 

(2) a + {3 - y - o - f + l = 0, 

llere x = 0, l, a, oo are the singularities of (l), the indices at these 
singularities depend on a, ... , f, and th e constant q is the so-called 
accessory parameter whose presence is due to the fact that a Fuchsian 
equation of the second order with four (or more) singularities is not com­
pletely determined by the position of the singularities and the indices. 
(See Ince, 1927, P• 370fT.; Poole, 1936, p. 77fT.) The reduction is effected 
by a linear fractional transformation of the independent variable and a 
suitable transformation of the dependent variable according to (4) and 
(5). Equation (l) is known as Heun 's equation (Heun, 1889, Whittaker 

and Watson, 1927, P• 576 IT.). 
Heun 's equation may be characterized by a ?-symbol (see sec. 2. 6.1, 

or Ince, 1927, P• 372), 
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(3) p { ~ 
1-y 

l 

0 

l- 0 
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a oo 

0 a 

l- ( (3 

15.3 

but it should be noted that the P-syn:bol docs not characterize the equa­
tion completely, and in any transformation of the equation, the trans­

formation of the accessory parameter must be ascertained by explicit 
computation. 

For the four-column P-symbol we have the linear 

(4) (:=: )'(:=~ )" (:=: y p {::, ~:, ~: 
c d 

y' + T 0 1 -p-a-T = P {a' : p (3' b+ a 
a 

11 + P (3 11 + a Y 
11 + T 0

11 
- P - a - T 

(5) p {: 1 ; 1 : 1 Od1 x} = p {Ma(~) 
a" (3" y" 0 11 a" 

1f (b) 

(3' 

(3" 

where 

(6) a' +a" +f3' +(3" +y +y" , o' +0 11 =2 

Ax+ 8 
M(x)=--, AD-BCf,.O. 

Cx + D 

M(c) 

y' 

y" 

trans formations 

~~ x} 
o" 

} 
1! (d) } 
0 1 M (x) 

o" 

If two o f the exponent-differences are equal to 1
2, we have a quadratic 

transformation. For instance, if 

(7) 0 = E = X, y = a + (3 
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in (1), (3) we have 

(8) 

-a 

1 

0 

{ 
., 

= P 0 

1-y 

1 

a 

0 
l 
• 2 

-1 

a 

f3 

0 

1-y 

where in the last ?-symbol 

LAME FUNCTIONS 

1 +a~ 
(9) A = 1- a:.;' 

(x - 1) ~ + (x - a) ~ 
X= A ~ ~ 

(x - 1) - (x - a) 

~ ~} 
x-1 

I 
2 
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If three of the exponent-differences are equal to 1
2 (as in the case of 

the algebraic forms of Lame's equation) then there are three distinct 
quadratic transformations, and each can be followed by a second quad­
ratic transformation thus leading to biquadratic transformations. 

We now turn to the analytical representations of solutions of (l). 

Let a., ••• , a 
4 

be the singularities of the four-column ?-symbol, 
a; and a~ the exponents at a., and 'L(a; + a';)= 2. In analogy with 
Kummer's 24 series for the three-column ?-symbol (sec. 2.9), we have 
192 series of the form 

x- a. 
1 

x- a 1 )

p+ .. 

where i, j, k, l is a permutation of l, 2, 3, 4; p is a; or a;'; a is a; or 
a"; and r is a~ or a~. Actually only 96 of th e 192 series are distinct. 
ll1ese series were studied by lleun (1889), Snow (1952, Chapter VII), and 
others. \\hen quadratic transformations exist [as in the case of equation 
(8)], they lead to f urtLer power series ex pans ions. 

Alternatively, solutions of (l) can be expanded in series of hypergeo­
metric functions. Such expansions have been studied by Svartholm (1939) 
and Erde1yi (1942, 1944). A typical expansion may be indicated as 
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{0 a 00 x} ( 11) p 0 0 0 a 

1- y 1 -0 1 - ( {3 

{ ~y 
1 00 } 2: A p 0 A+m 

Ill= 0 1- o 11 - m 

wh e re 

(12 ) A + J1 =y+o -1 =a+{-3 - (. 

It turns out Wrdc ly i, 1944) th a t th e re a re esse nt ia lly t\vO poss ib i l ities 
for choos ing A a nd 11• Series o f type I (F:rd e ly i, 1942) have A= a, /1=/3 - (, 
conve rge outs ide of a n e llipse \\ ith foci a t 0, 1 and pass ing thro ugh a , 
a nd re present th a t bra nch o f (3) whi c h be lo ngs t o the exrone nt a a t oo , 

There a re three di s tinc t expans ions of this type for each bra nch o f (3). 
Series o f type II (Svarth o lm 1939) have 11 =0 , y - 1, o- ], or y + o- 2. 
Th ey are s e ries o f J acobi po lynomi a ls , do no t conve rge in genera l; bu t 
they d o conve rge in th e exceptiona l case of lleun functions (see belov. ) 
v. h e n th e accessory paramete r has one o f its cha racte ris ti c va lues. 

In a ll th e above- me ntioned expa ns ions th e coeffi c ien ts X r sati s fy 
three-te rm recurre nce re la tio ns 

r = 1, 2, ... 

\\ h e re a r' (3r, y rare knov n cxrress ions 111 r and th e parameters, y r -f, 0, 
a nd 

{3 r ->{3, y r-> y as 

If l 
1 

and t
2 

a re th e root s o f the quadra t ic Cfj uati on 

( 15) at-{3 t +yt 2 = 0 

a nd Jt
1
J < Jt 2 J, t hen lin• \ /X r-t ex is ts and is in genera l e'lua l to t 2 : 

if th e parante te rs of th e problem sat is fy a certa in cond ition , 

lim'X/X r_ 1 = l 1 
ns r -+ ("() 

(P e rron 1929, sec, 57). The recurre nce re la ti on may be \Hi tten as 
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X -a 
r r -- - r = 1, 2, . . . 

Xr-1 f3r+ Yr+1 Xr+,/Xr 

and by repeated application we are lead to the infinite continued fraction 

a 
r 

(L6) q r = - -----------------

f3 -
r 

{3 r +2 - --------------

{3 r +3 -

It can be shown that this continued fraction is divergent when \t 
1

\ = \t 
2

\ 

and t 1 -f, t 2 , it is convergent when \t
1

\ < \t
2

\ or t
1 

= t
2

, and qr-+ t
1 

as 

If \t 1 \ < \t
2

\ and the parameters satisfy the equation {3
0 

= q
1 

y,. then 
X /X r- 1 -> t 1 as r -> oo, and the X r may be computed by means of the q r: 

if \t 1 \ < \t 2 \ and {30 -f, q1 y1 , then X/X,.- 1 -+ t 2 ; and if \t 1 \ = \t 2 \, t 1 -f, t
2

, 

lim X /X r- 1 does not exist. 
In the application to Heun's equation (and hence also to Lame's equa­

tion), {3
0 

and q r depend on the accessory parameter (q or h, as the case 
may be). In general, {3

0 
f, q 1 Yp X/Xr_

1
-+ t

2
,the domain of convergence 

of the power series and of series of type I of hypergeometric functions 
is restricted, and includes only one of the four singularities of the 
equation: series of type II of hypergeometric functions do not exist in 
this case. If the accessory parameter has one of a sequence of charac­

teristic values, then {3 0 = q 1 y t' X /X r- 1 -> t t' the series converge in a 
more extensive region which includes at least two singularities, the 
corresponding characteristic solutions behave in a prescribed manner at 
two singularities, and will be called Heun (or Lame) fun ctions . In this 
case the series of type II of hypergeometric functions also converge and 
represent a l!eun (or Lame) function. 

Theorems on the existence and distribution of characteristic values 
of the accessory parameter follow from the general (singular) Sturm­
Liouville theory. 

In general, f3 
0 

= q 
1 

y 
1 

will be a transcendental equation for the 
accessory parameter, but an exceptional case arises when aR = 0 for 
some positive integer R. When r S R, qr is a finite continued fraction, 
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/3 0 = q 
1 

y 1 is an algebraic equation for the accessory parameter, if 
{3

0 
= q

1 
y 1 then XR = 0 and from (13) also XR+ 1 = XR+z = ... = 0, In this 

case the series expansions terminate and we have Heun (or Lame} poly­
nomials or algebraic 1/eun (or Lame) functions. Alternatively, when 
a R = 0, we may put X 

0 
= X 

1 
= .. • = X R-

1 
= 0, determine the accessory 

parameters from the equation {3 R = y R+ 1 q R+ 1 (which is a transcendental 
equation) and obtain transcendental Ileun (or Lame) functions. 

15A. Solutions of the general Lam~ equation 

We shall now apply the results of the preceding section to Lame's 

equation, and put 

(1) s=snz, c=cnz, d=dnz, 

Throughout this section, n and h are arbitrary. 
From 15.2 (7), 

(2) i\=P{~ ~ k~z 
~ ~2 12 

and various transformations of this follow from 15,3 (4) , (5), (8); in partic­
ular from 15,3(8), 

(l +k)
2 

} Ad{-:, l 00 

l-k 
l +k d + kc 

(3) 0 0 - 12 n 

I l-k d-kc 
I ' I ~ Y2n+12 /2/L + / 2 • 2 

Further quadratic transformations of (2) lead to 

fl l k- 1 -k-1 ;} (4) 
i\ = p ~2 0 -~n - ~12 n 

I !12n + 1 ~ ?'~n + ~ / 2 

r -k' ilc -ilc 

:} (5) i\ = P 0 0 -~n I - / ::::n 

12 ~ )tfn + ~ Yin+ !-'2 
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r· -ilc, -L :} (6) A= p ~c 0 -~n -~ n 
lL ~ ~ n + ~2 ~~ n + ~ ' 2 

From (2), (4), (5), (6) and the results of sec, 15,3, a large variety of 
expansions of solutions of Lame's efJuation follow, An unpublished list 
by F:rdelyi gives 30 variables which may Lc used in series like 15.3 (10), 
with four cifferent factors for each variable. Taking account of tJ,e fact 
that p may be either 0 or 1

'2 with tl,e first 18 of these variables, there arc 
altogether 192 distinct series. For some of the simplest power series, 
and the recurrence relations which their coefficients satisfy see lnce, 
1910a, and the literature quoted there, For expansions in Legendre func­
tions see Erdelyi, l942a. Expansions in exponential or trigonometric 
functions follow from 15,2(5), and other trigonometric fonns of Lame's 
equation, by the theory of differential equations with periodic coefficients 
Once, 1927, P• 381 IT., Poole, 1936, P• 182fT,), Such expansions have been 
discussed by lnce (1910b) and Erdelyi (l942a). 

15.5. Lame functions 

We shall now assume that lc, n are given, 0 < lc < 1 and n (n + l) is real 
so that either n is real or n = - 11;! + ip where p is real. We shall study 
periodic solutions of Lame's equation, and shall show that such solutions 
exist for certain (characteristic) values of h: they will be called periodic 
Lame functions, or briefly, Lame functions, 

15.5.1. Lame functions of real periods 

Since sn 2 z has the primitive real period 2K, the primitive real period 
of any Lame' function of real period must be of the form P = 'lp K v.here 
p = 1, 2, .... Now, sn 2 z is an even function of z - K and when 1\ (z) is a 
periodic solution of Lame's equation then so are the functions 1\ (2 K - z ), 
1\ (z ) ± !\ (2K- z), and l'.'e n1ay restrict ourselves to the investigation of 
Lan,<f functions which are even or odd functions of z - K. A Lame func­
tion of real period will be denoted by Ecn (z , /c 2

) if it is an even function 
of z - K, and by F:sn (z, lr 2

) if it is an odd function of z- K. !\lore specif­
ically, we shall write Ec'" (z, /c 2

) and Esm(z , k 2
) for functions of period 

P = 2p K which have exa~tly pm zeros in nO .$ z < 2p K (or any half-open 
real interval of length P). The characteristic values of h belonging to 
Ec m andEs" will be denoted by am (/c 2

) and bm (lr 2
) respectively. This 

n n n n 
notation was introduced by [nee (1940a) and n,odified by Erdelyi (l941a), 
There being no generally accepted nom1alization we leave a constant 
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factor undetermine d in Ec~ (z) and Es ~ (z }, For this reason, we suppress 
constant factors in relations such as <:H) below. 

Solutions of periods 2 K and 4 K. In either of these cases Ec (- K + t) = 
Ec (3K + t) on account of periodicity, and this is equal to Ec (-K- t) on 
account of parity, so that Ec (z) is an even functi on of both z - K and 
z + K. We thus have the boundary conditions 

(l) A '(-K) =A '(K) = 0 for A = Ec (z) 

Conversely, if a solution A(z) of 15.2(1) satisfies (l), then it is an even 
function of both z - K and z + K, and it must have period 4 K. Similarly, 

(2) A(- K) = A (K) = 0 for A = Es (z) 

On account ofthe symmetry relations at ± K, it is sufficient to investigate 
Lame functions of periods 2 K and 4K in the interval,(- K, K). We sha II 
show that this interval may be reduced to (0, K). 

If£ (z) is either Ec (z) orEs (z), then E (z) and E (-z) satisfy the same 
differential equation and, by (l) and (2), the same boundary condi tions, 
and must be constant multiples of each other. Thus, E (z) is either an 
even, or an odd function of z , and we have the followin g four cases 
(m = 0, l, 2, ... ): 

(3) A(O)=A(K)=O, A = Es 2" + 2 (z ), 
n 

period 2K 

(4) A'(O) = A (K) = 0, A = Es 2"+ 1 (z), 
n 

period 4 K 

(5) A (0) = A'(K) = 0, A = Ec 2m + 1 (z ), 
n 

period 4 K 

(6) A'(O) = A'(K)= 0, A = F.c2m(z}, 
n 

period 2 K 

with th e appropriate symmetry relations. 
Our functions may also be determined as solutions of a boundary value 

problem on th e interva l (0, 2 K), 

(7} A(O) = A(2K) = 0 

(8} A'(O) = A'(2K) = 0 

for 

for 

A = Es 2" (z ) or Ec 2" + 1 (z) 
n n 

A = F.:s 2
" +1 (z) or Ec 2

"' (z), 
n n 

The existence of exactly one solution of each of the problems (3) to 
(6) for each m = 0, l, 2, ,.. now follows from the Sturm-Liouville theory 
(see, for instance, ln ce , 1927, sec , 10,61), Since the charac teristic 
numbers of a Sturm-Liouville problem form an increasing sequence, we 
have from (l), (2), (7), and (8) 
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(9) ao<a1 < a2 < •••, a•-+oo as m-->oo 
n n n n 

( 10) 61 < 62 < ... 
n n ' 

b. --> 00 as m--> oo 
n 

(ll) a1 < b2 < a3 < b4 < ... 
n n n n 

(12) ao<61 < a2 < 63 < .... 
n n n n 

Thus, the relative position of the characteristic values is fairly well 
established, except that no statement can be made about the relative 
position of a~ and b~ • ]n ee (l940a, b) computed characteristic va lues 
for integer values of 2n, but it should be noted that his notation differs 
slightly from the one adopted here: a 28 + 1 and b 2

" +1 shou ld be inter-
n n 

changed in order to convert lnce's notation to ours. 
For the construction of Lame functions, lnce (l940a) first used power 

series. Later (l940b) he discovered the expansions in trigonometric 
series which are more rapidly convergent, especially when k is near 1. 

The expansions in trigonometric series a re based on 15.2 (5) and on 
the similar differential equation satisfied by A(z)/ dn z. For each Lame 
function of period 2 K or 4 K we get two expansions which are li sted below. 
The abbreviations 

(13) (=~2-amz, H = 2h-k 2 n(n+l) 

are used throughout, and m is a non-negative integer. 
Trigonometric series for Lame functions of period 2 K, 4K: 

(15) Ec 28 + 1 (z) = 
n I: A 2r+ 1 cos[(2r + l) ( ]= dnz ~ C

2
r+ 1 cos[(2r + l)(] 

r =O r = O 

(16) Es 2
" (z) = 

n 
I: 8 2r sin (2r ( ) = dn z 

r = 1 
I: 

r = 1 

07) Es 2a + 1 (z) = 
n 

00 

~ B
2
r+ 1 sin[(2r + l) ( ] = dnz 

r= 0 
I: D

2
r+

1 
sin [(2r + l)(l 

r = O 

The recurrence formulas for the coefficients in (14) to (17) are (r = 1, 
2, 3, ... ): 

(18) -HA
0 

+ (n -l)(n + 2)k 2 A
2 

= 0 

X (n-2r+2)(n+2r-l)k 2A -[H-tl.r 2(2-fc 2)]A 2 2r-2 r 

+J..:i(n-2r-l)(n + 2r+2)k 2 A + = 0 
2r 2 
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(19) -I/C
0

+n(n+l)k 2 C
2

=0 

X (n -2 r + l) (n + 2 r) e C 2r _ 
2 

- [If- t1. r 2 
( 2- k 2 )] C 

2
r 

+ X (n - 2 r )(n + 2 r + l) k 2 C 2r + 2 = 0 

(20) - [H- 2 +e-X n (n + l )k 2 ] A 
1 

+ X (n- 2) (n + 3) e A 
3 

= o 

X(n-2r + l)(n+2r)lc 2 A 2r_ 1-[//-(2r + l) 2 (2-k 2
)) A 

2
r+

1 

+ h (n- 2 r- 2 )(n + 2 r + 3) k 2 A 2r + 3 = 0 

(21) - [II - 2 + k 2 
- }1 n (n + l) !c 2

] c 
1 

+ X (n- 1) (n + 2) e c 
3 

= o 

X(n - 2r)(n+2r + l)k 2 C 2r_
1

- [/!- (2r + lV (2-k 2
)] C 

2
r+

1 

+ X (n - 2 r - l )(n + 2 r + 2) k 2 C 
2
r + 

3 
= 0 

(22) -(II- H + 4k 2
) B 

2 
+ X(n-3)(n + ~) e B 

4 
= 0 

X (n - 2 r) (n + 2 r + l) k 2 B 2r - [H - ( 2 r + 2) 2 
( 2-e)] B 

2
r + 

2 

+ X (n - 2 r - 3 )(n + 2 r + !J.) k 2 B 2r H = 0 

( 23) - (II - ~ + 4 k 2
) D 

2 
+ X (n - 2 )(n + 3) lc 2 D 

4 
= 0 

X (n - 2 r - l )(n + 2 r + 2) e D 
2 

- [II - ( 2 r + 2) 2 
( 2 - k 2

)] D + 
r Zr 2 

+ X (n - 2 r - 2) (n + 2 r + J) 1c 2 n + = o 
2r 4 

(24) - [//- 2 + k 2 + 1'2n(n + l)k 2
] 8

1 
+ 1 ~(n- 2)(n + 3) k 2 B 

3 
= 0 

X(n-2r + l)(n + 2r) k 2 B 
2
r_

1
- [//- (2 r + 1)2 (2-e)] B 

2
r+

1 

+ X(n-2r -2)(n + 2r + 3) k 2 /1
2
r+

3 
= 0 

(25) -[//- 2+k 2 +Xn(n+l)/r 2]D
1

1 X(n- l)(n +2)k 2 D
3

= 0 

X (n- 2 r) (n + 2r + l) k 2 D Zr _
1 

- [If - (2r + 1) 2 (2 - k 2 )] D 
2
r + 

1 

+ X(n-2r- l)(n + 2r + 2) k 2 D
2
r+ J = 0. 

15.5.1 
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After division by 4r 2
, each of the eight recurrence relations is of the 

form 15,3(13)wit\Xr = A 2~, A
2
r+ 1 , ••• , D

2
r+

1 
respectively. In all eight 

cases a = y = ~ k , f3 = k - 2, a nd th e roots of the quadratic equation 
15,3 (15) are 

(26) t = --(l ±k')2 

1,2 k 

For periodic Lame functions X JX r -
1 

tends to the sma ller root, and the 
converge nce o f (14) to (17) for real (is comparable with that of a geo­
metric progression with ratio (l- k ')/(] + k '). 

For the characteristic values of h, the continued fraction 15.3 (16) 
g ives an equation in each case: these equations were given by !nee 
( 1940 b), In general, these equations arc transcendental equations, and 
the method of numerical solution is explained in !nee (1932, P• 359), If, 
however, n is an integer, some of the continued fractions tenninate, and 
we obta in (for n = 0, l, 2, ... ) a ltogether 2n + 1 I .ame fun ctions which 
are represented by terminating trigonometric series, and are therefore 
polynomials in s, c, d : these Lame functions are known as Lame poly­
nomials. Note that even in this case there exists an infinite sequence o f 
transcendental Lame functions Once, l940a), 

Lame functions o f real period may also be represented by series of 
Legendre fun c tions (see Erde1yi, 1948 and the literature quoted there). 
We obtain finit e expansions in th e case of Lame polynomials, and infinite 
series for transcendental Lame functions. The coefficients in these 
series are s imple multiples of the coefficients in the trigonometric expan­
sions. The expansions in Legendre functions arc most useful in the con­
structi on of L ame functions of the second kind (see below), 

!nee (l940b) has discussed the coexistence question . !lis results can 
be summarized as follows. If n is not an integer, th ere can never be two 
distinct periodic solutions belonging to the same charac teristic value 
of h. If n is an integer and we have a Lame po lynomial, then the second 
solution is never periodic, On the other hand, if n is an integer and we 
have a transcendental Lame function then an even and an odd solution 
always belong to the same characteristic value of h. Thus, (9) to (12) 
may be supplemented by 

(27) a~ f, b~ for a ll m = 0, l, 2, •.. , if n is not·an integer 

or if n is an integer and m = 0, 1, ••• , In + 1'zl - !'2; 

if m and n are integers and m > In+ ~~- ~~-
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lnce (l940a) also investigated the asymptotic behavior of the charac­
teristic values when n is large and found that for large real n 

(28) 

a 2"+ 1
- b 2"+ 2

- (4m+ 3)k[n(n + l)]X 
n n 

Solutions of other real periods. Solutions of primitive period 8K may 
be represented in terms of Fourier series such as 

cos 
~ A (2r- 1 ~ ) S 

sin 

which lead to recurre nce relations for the coefficients, and an equation 
involving a continued fraction for the determination of the characteristic 
values of h. When 2n is an odd integer, the continued fractions terminate 
and we have an algebraic equation for h. The Lame functions of period 
8K which correspond to the roots of this algebraic equation are algebraic 
functions of s, c, d and are known as algebraic Lame functions. (For 
algebraic Lame functions see Lambe 1951,1952 and the literature quoted 
there,) For both algebraic and transcendental Lame functions a• +x = 

m +X " b n form = 0, l, 2, ••. and all n. 
Solutions of primitive period 2p K may be represented in terms of 

Fourier series such as 

cos 
~A 

r sin 

which lead to the appropriate recurrence relations etc, Except when 
p = 1, 2, or 4, the equation determining h is always a transcendental 
equation, and the Fourier series never terminate. 

Functions of the second kind. Let h have one of its characteristic 
values, a• orb". Then one solution of Lame's equation is a (periodic) _ n n 
Lamefunction,E(z), say. Except when 2n is an integer and m> In+ XJ-X, 
Lame's equation has only one periodic solution, and it is necessary to 
construct a Lame function of the second kind. For many purposes a suit­
able function of the second kind will be that solution of Lame's equation 
whichbelongstotheexponent~~n+h at oo in 15,4(2), We take Re n:?. - X. 

Various constructions ol Lame functions of the second kind are avail­
able. Equation 15,4 (2) suggests an expansion in descending powers of 
s, and the theory of lleun 's equation provides severa I alternative power 
series expansions. Also, if E (z) is the (periodic) Lame' function of the 
first kind, 
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z 
E (z) ~ K, [E (u)r 2 du 

will re present the L ame function o f the second kind. This represen ta tion 
is often used in the older literature (see, for instance , Whittaker and 
Watson 1927 , sec, 23 , 7l). 

If the Lame function of t lo e first kind has been represented by a series 
ofl.egendre functionsofthefirst kind in which the vari able is proporti ona l 
to s , c , or d , then th e correspondin g l ,ame fun c ti on of the second kind 
may be obta in ed s imp ly by replacing each Legendre function o f the first 
kind by the corresponding Legendre fun ction of the second kind, This 
solution is of especial importance \\hen 2n and 2m are integers and 
0 :5 m :5 \n + ~~ - ~2. In this case the Lam~ function of the firs t kind is a 
Lame polynomial (if 2n is even) or an algebraic Lame fun ction (i f 2n is 
odd), in e ither case it is represented by a terminating series of T ,egendre 
functions of the first kind, and Ute corresponding Lame fun ction of the 
second kind will be represented by a finite comb ination of Legendre 
functions of the second kind. Tl.is representati on is most useful for con­
s tructing external ellipsoidal harmonics (see sec , 15.1.1). 

15.5.2. Lame functions of imaginary periods. Transformation formulas 

Since sn 2 z has the primitive imaginary period 2i K ~ the prim itive 
period of any Lame function o f imaginary period must be of the form 
2ip K 'where p = l, 2, •... The existence and properties of such functions 
could be established in a manner ana logous to that of the preceding 
section by setting up certain Sturm-Liouvi ll e prob lems, e.g., for the 
interval (K, K + iK '). Instead of this , we shall deduce all the requ isite 
information from the results of the preceding section by means of th e 
imaginary trans formation of T ame's equation. 

We put 

(29) z ' = i(z - K - i K '), h ' = n (n + 1 ) - h 

in 15.2(1) and use Table 7 in sec . 13.18 and Table ll 111 sec, 13.22 to 
obtain 

2 [ dn (iz ', k) J 2 

[k sn (z , k)] = 
en (iz ~ k) 

[dn(z', k')] 2 = 1-[k'sn(z~ k')Y 

and hence 

d 2 A 
(30) --

2 
+ lh '- n (n + l)[k 'sn (z ', k ')] 2 I A= 0. 

dz' 
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C ]early, every solution of (30) satisfies 15,2 (l) and vice versa , Moreover, 
solutions of (30) which as functions of z 'have a real period will have an 
imaginary period when considered as functions of z. From the results of 
sec, 15, 5.1 we obtain the following information, 

It is sufficient to consider Lame functions of imaginary period 2ip K: 
p = l, 2, ... , which are even or odd functions of z - K = - i(z '- K '). 

Even functions will he denoted by Ec ~· (z, k 2
), and odd functions by 

Es 'n" (z, k 2
) if they have exactly pm zeros when z = K +it and t ranges 

over 0 S t < 2p K' (or any half-open interval of length 2p K '). The char­
acteristic values of h '= n (n + 1)- h belonging to Ec '" and Es '" will 
he denoted by a~" (k 2

) and b~" (k 2
) respectively. n n 

If 0 < k < 1 and n(n + l) is real, we have for each m = 0, 1, 2, ••• 
exactly one Ec ~· and for each m = 1, 2, ••• one Es ~·.These functions 
have the period 2i K 'if m is even, and 4i K 'if m is odd. They, and the 
characteristic values of h 'belonging to them, can he expressed as 

Two distinct solution~ of periods 2i K' or 4i K' belong to the same 
characteristic value of h' (or h) if and only if n is an integer and the 
functions in question are transcendental Lame' functions of imag inary 
periods (i,e,, m > In+~~-~). 

Information about the relative position and asymptotic behavior o f the 
characteristic values may be obtained frow. (9)-(12), (27), (28) by means 
of (32). 

Lame polynomials, being polynomials ins, c , and d, have both a real 
and an imaginary period. An analysis of the zeros leads to the followin g 
i<.len tities 

(33) 

(34) 

b ,. (k 2) + b , n- • + 1 (k 2) = b " (/r 2) + b n- • + 1 (k , 2) = n (n + l) 
n n n n 
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which are valid provided n is an integer, m = 0, 1, ••. , In+ Xi- X, and 
the Lame' functions have been nonnalized suitably (Erdelyi, 1941 a), In 
particular, fork 2 = k ' 2 

= X, 

(35) a" (X)+ a"-" (X) = b" (~) + b"-"' +I(~) = n (n + 1) 
n n n n 

n = 0, 1, 2, .. . 

Similar relations hold for algebraic Lame' functions (Erde1yi, 1941 b), 

(37) 

(38) 

(39) 

provided n - lz is an integer, m = 0, ... , In - ~~ and the Lame functions 
have been nonnalized suitably. Note that corresponding even and odd 
algebraic Lame functions be long to the same characteristic values, and 
hence a = b for these functions. From (39) we also have 

m = 0, 1, 2, ••• 

We can now discuss the coexistence question for solutions of periods 
2K, 4K, 2iK ~ 4iK' (see Erdelyi, 194la)" We already know that two 
solutions of real periods coexist (belong to the same characteristic value) if 
and only if n is an integer, and the functions in question are transcen­
dental Lame functions of the same real period" Likewise, two solutions 
of imaginary period coexist ifand only if n is an integer and the functions 
in question are transcendental Lame functions of the same imaginary 
period. Moreover, in the case of Lame polynomials, a Lame function of 
real period, and a Lame' function of imaginary period coincide" Lame 
polynomials are doubly-periodic Lame functions, and it can be shown 
that they are the only doubly-periodic solutions of periods 4 K, 4i K 'of 
Lame's equation. An analysis of the information aboutthe relative position 
of the characteristic values also shows that two distinct Lame functions 
one of which has a real period 2 K or 4 K, and another an imaginary period 
2i K' or 4i K ' can never belong to the same value of h, 
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Summing up, if En (z) is a Lame' function of period 2K, 4K, 2i K ',or 
1iK: and n is not an integer, then En(z) has only a real, or on ly an 
imaginary period, and it is the only periodic sol uti on of Lame's equa tion . 
On the other hand, if n is an inte ger, then En (z) is either a Lame' poly­
nomia l and doubly-per iodic (in which case the corresponding Lame' fun c­
tion of the second kind is not periodic), or e lse En (z) is a transcendenta l 
simply-periodic Lame' function and coexists with another Lame' functi on 
of the same period. 

15.5.3. Integral equations for Lame' functions 

Integral equations for Lame functions have been discovered by \\hittaker 
(l915a,b), and have been investigated by lnce (1922, l940a,b), Erde'lyi 
( 1943) and others. The corresponding integral equations for Heun functions 
have been investigated by Lambe and Ward (1934) and Erde1yi (l942b). 

Let N(f3, y) satisfy the partial differential equation 

a2 N a2 N 
(41) --

2
- n (n + 1 )[k sn ({3, k)] 2 N = --

2
- n (n + 1 )(k sn (y, k )] 2 N 

a f3 ar 

and let 1\ (y) be a solution of Lame's equation 

d21\ 
(42) --2 + lh - n (n + 1 )[k sn (y, lc WI /1. = 0. 

dy 

We then have, by integration by parts, 

{ 
d
2 2} Jb (43) df3 2 + h- n(n + 1)[k sn(f3, k)] a N({3, y) 1\(y)dy 

( a2

N ) ay 2 + lh- n(n + 1)[k sn (y, k)f l N 1\(y) dy 

[
aN(f3, v) di\Jb 

= ' 1\(y)-N({),y)-
ay dy a 

Jb (d2 1\ ) 
+a N(f3,y) dy

2
+lh-n(n+1)[/csn[(y,k)]l/\ dy, 

and it follows that Jb N(f3, y) 1\(y)dy is a solution of Lame"s equation 
a 

provided that the "integrated parts", [ ••• ]~,vanish. 
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Now, let h = a~ orb:, and let A(y) = E; (y) be a solution of period 
2K or 4K corresponding to h: assume also that N({3, y) is a solution of 
{41) which is a periodic function of both {3 and y mod 4K. Then our 
argument shows U1at 

J_22KKN ({3, y) E: (y) dy 

is a solution of Lame's equation, is periodic mod 4K, and belongs to tl.e 
same characteristic value as E~(y). If n is not an integer, or else if n is 
an integer and m _$ n so that En'" (y) is a Lame polynomial, E ~ (y) is the 
only periodic solution of (42), and we obtain an integral equation forE~, 

(44) f 2 K N({3, y) £• (y) dy = A• E'" ({3) _ 2 K n n n 

n = 0, l, 2, ••• , m = 0, l, ... , n 
or n not an integer, m = 0, l, 2, ••• , 

If n is a non-negative integer and m > n, the Lame equation has two 
distinct periodic solutions, and the integral will be a linear combination 
of Ec ~ ({3) and Es: ({n. In this case we obtain integral equations for two 
distinct periodic solutions but these· need not be F.:c • and Es •. However, 
integral equations for Ec" (Es") may be obtained by taking" N ({3, y) an 
even [odd] function of {3 -"K. n 

The construction of suitable kernels N ({3, y) is facilitated by the 
remark that upon the introduction of new independent variables e, ¢ 
according to 

(45) sinfJ cos¢ = k sn {3 sn y 
k 

sine sin ¢ = i k' en {3 en y 

l 
cos f) = - dn {3 dn y k, , 

it is seen fron. 15.1 (16)and 15.1 (18) that the partial differential equation 
(41) becomes the partial differential equation of spherical surface har­
monics, so that N({3, y) is any solution of the latter equation expressed 
in sphero-conal coordinates. If n is an integer, and N ({3, y) is a (regular) 
spherical surface harmonic, and hence (according to sec. 15.1,2) also a 
(regular)ellipsoidal surface harmonic, all characteristic functions belong­
ing to non-zero A: of N are Lame polynomials, 
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We now list a few simple kernels together with their characteristic 
functions (determined by consideration of the parity of the kernel as a 
function of {3 and of {3- K), 

(46) N = P (cos 8) = P c~ dn {3 dn y) n n k, 

(47) 

(48) 

(49) 

N = p I (cos c9) cos A. = k sn {3 sn y p , c~ dn {3 dn y) 
n 't' n k' 

N = P: (cos 8) sin¢ = i kk' en f3 en y P ~ ( /, dn {3 dn y) 

e 
N = P~(cos c9) sin(2¢) = 2i--;;;- sn {3 sn yen (3 en y 

x P ~ ( kl, dn (3 dn y) 

(Ec 2") 
n 

(Es 2m) 
n 

If n is an integer, the characteristic functions of the kernels (46) to 
(49) are Lame' polynomials : kernels appropriate for transcendental Lame 
functions involve Q n• It may also be mentioned that further simple kernels 
involving Legendre functions of k sn (3 sn y or i (k/ k ') en (3 en yare also 
known. 

15.5 .4. Degenerate cases 

If k = 0, Lame's equation becomes 

ri 2 A 
(50) --

2 
+ h A = 0, 

dz 

we have K = ~ rr, and the solutions of (50) satisfying (3) to (6) are 

(51) Ec" (z, O) = cos [m (z- ~ rr)] 
n 

Es ~ (z, 0) = sin [m(z- ~ rr)]. 

They both belong to the characteristic value 

(52) a" (O) = b'" (0) = m 2 

n n 

If k = l, we see from 13,18(4) that Lame's equation becomes 

d 2 A 
(53) --

2 
+ [h- n (n + l)(tanh z ) 2

] A= 0 
dz 
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and K = oo, K ' = )1rr. In this case lnce (1940a) has shown that 

a 2
" + 1 (1) = b 2

" +2 (1) = (4m + 3)n- (2m+ 1) 2 

n n 

(55) Ec 2 '" (z, 1) = F:s 2" + 1 (z, 1) = P "- 2
" (tanh z) 

n n n 

Ec 2"+ 1
( z, 1) = Es 2"+ 2 (z, 1) = P"- 2

"-
1 (tanh z), 

n n n 

Finally, let n --> oo and simultaneously k .... 0 in such a manner that 

(56) n (n + 1)k 2 
.... -4 e 

In this case sn(z, 0)= sm z, and, from 15,2(4), ( = ~~ - z.Equation 
15.2 (5) becomes 

d 2 A 
(57) --

2 
+ [h + 4 O(cos () 2

] A= 0 
d( 

which is a form of Mathieu's equation. Lame functions of real periods 
become Mathieu functions: the imaginary period K' = oo in this case. 

15.6. Lamt?Wangerin functions 

We have seen in sec. 15.1.3 that some of the potential problems 
formulated in the systems of coordinates introduced by Wangerin lead to 
postulating solutions which are finite attwosingularitiesofLame'sequa­
tion. We shall now show that such solutions are possible only for certain 
characteristic values of h: and we shall call the ensuing characteristic 
solutions finite Lame functions or Lame-Wangerin functions in order to 
distinguish them from the (periodic) Lame functions discussed in the 
preceding sections, Comparatively little is known about Lame-Wangerin 
functions, and most of the material to be presented here is taken from a 
note (1948a) and unpublished work by Erdelyi. 

A Lame~Wangerin function is a solution of Lame's equation 15.2 (l) 
and has the property that (sn z) ~ A (z) is hounded in a region which con­
tains at least two poles of sn z, !\'lore specifically, we shall denote by 
F .. (z, e) a Lame-Wangerin function for which (sn z)~ F" (z, k

2
) is 

n n 
hounded, and has exactly m zeros on the open interval (i K: 2 K + i K '); 
it then follows that (sn z )~ F;: (z, k 2 ) is also bounded in a region which 
includes this interval, indeed in an infinite strip which contains the line 
z = iK'+ 2Kt, -oo < t < oo. The characteristic value of h which belongs 
to F,. will he denoted by c" (k 2

). 
n n 
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We sl.all assume tha t k a nd n are give n a nd are such that for real t 

n(n + l)[k K sn(iK'+ 2 Kt, k 2 )]Z 

is real, so that L ame 's differen ri a l equation 15.2 (l ), when expressed in 
terms of t as the independent vari a ble, is a differential equati on '1\ ith 
r eal coeffi c ients. Without loss of genera lity we sha ll take Re n 2:- 1

2 • 

Our assumptions a re always satisfied when 0 < k < l and n (n + l) is 
real, but it i s seen from 15.1 (33) that the case of complex k also occurs . 
From 13.23 (13 ) and Table ll in sec. 13 .22 it is easy to verify that the 

functions involved in 15 .1 (33) sati s fy our rea lity condition. 
If F (z) is a Lame'-Wangerin function , so are the functions 

F(2 K +2i K'- z) a nd F(z)±F(2K+2iK'-z), 

and we may restri c t ourselves to th e investigation of Lame-Wangerin 
functions which are even or odd functi ons of z - K- i K ~IfF'" (z , k 2 ) is 
such a fun ction, it wi II be a n even or odd fun c tion of z - K - i K 'accord­
ing as m is even or odd. Thus we a rrive at th e fo ll owing boundary con­
ditions 

(1) (sn z)X A(z) bounded a t z = i K' 

A '(K + i K ') = 0 for A = F 2'" (z) n 

(2) (sn z)X A (z) bounded a t z = i K' 

A (K + i K ') = 0 for A = F2m +1 (z) 
n 

Since z = i K' is a s ing ul a r po int of Lame's equation , th e ex is t ence 
a nd prope rties of Larm!-Wa ngerin fun ctions must be deduced from the 
singular Sturm-Lio uvill e theory. Ilowever, the nature of th e s ingularity 
a t z = i K' a nd of th e boundary condition there e nables us to use the 
simples t kind o f s ingu Ja r Sturn ,-Liouvill e theory, re taining practically 
a ll th e feature s o f the regular theory. It follo'I\S from the work of ~1cCrea 
and Newing (1933) tl,at for each m = 0, l, ... there is exac tl y on e Lame­
Wangerin fun c tion , an d th a t th e characteristi c values of K 2 h be longing 
to these fun c tions fornt a n increasing unbounded sequence, 

(3) K 2 c m -> oo as 
n 

m->oo 

If Re n > -Ji2 or n = - Yz , no two L ame-Wangerin functions belong t o the 
same characteristic value, and we have a s tri ctly increasing sequence, 

(4) 
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If 0 < k < l, so th a t K IS real, the c: themselves a rc real, and we have 

(5) c m ) oo 
n 

0 < k < 1, 

For the constru c ti on of Lame-Wangerin fun c ti ons, the ?-symbols given 
in sec. l 5 .4 s uggest a varie ty o f expansions of th e form l5 . 3 (lO). We 
s ha ll g ive here the series in descendin g powers o f s w hich are convergent 
when 0 < k < l. 

Any LarPe-\\angerin fun cti on belongs at s = oo t o th e exponent ~2n ~ ~2 
in l 5 .4(2), a nd l5. 3( l0) suggests power series in s-2 multiplied by 
s _"_ 1

_
2 p- 2 CT c 2 P d 2 CT wh ere panda have the values 0 or ! '2• C learl y, a = O 

for F 2.. and a = ~2 for F 2.. + 1 • We thus obtain the p ower series 
n n 

(6) 

(7) 

F 2• (z) = }; A s - n- 2 r -1 = c ~ 
n r = 0 r r = 0 

F 2
" +1 (z) = d 

n 

00 

~ 
r = 0 

A s -n- 2r-Z = cd 
r 

}; 
r = 0 

The recurrence re la tions for th e coe ffi cients are (r = 1, 2, 3, ••• ) : 

(8) [h- (n + 1) 2 (l +e)] A 
0 

+ 2(2n + 3) k 2 A 
1 

= 0 

(n + 2r- 1)(n + 2 r ) A ~ [h- (n + 2r + 1 ) 2 
(] + k 2

)] A 
r-1 r 

+ 2 (r + 1 )(2 /! + 2r + 3 ) k 2 A r + 
1 

= 0 

(9) [h-(n + 2) 2 -(n + 1) 2 k 2 ]B
0

+ 2 (2n+3)k 2 8
1

= 0 

(n + 2r) (n + 2r + l) B , -
1 
~ [h - (n + 2r + :2) 2 

- (n + 2 r + 1)
2 

k 2
] 8 r 

+ 2 (r + l) ( 2 n + 2 r + 3) k 2 B r + 
1 

= 0 

( l 0) [h - (n + 1) 2 
- (n + 2) 2 k 21 C 

0 
+ 2 ( 2 n + 3) k 2 C 

1 
= 0 

(n + 2r) (n + 2 r + 1) C r _
1 

+ [lz - (n + 2 r ~ l ) 2 
- (n + 2r + 2) 2 k 2 ] C r 

+ 2(r + 1)(2n + 2r + 3)k 2 
cr+1 = 0 
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(n + 2r + ])(n + 2r + 2)[) ,- 1 + [ft- (n + 2r I 2) 2 (l +e)][) r 

+ 2(r + l)(2n + 2r + 3)k 2 D r+ 1 = 0. 

After division by 4r 2
, each of these recurrence relations is of the 

form 15.3 (13), In all four cases a = l, f3 = -(l + k 2
), }' = k 2 and the 

roots of the Cfuadratic equation 15.3 (15) are 1 
1 

= l, t 
2 

= k - 2
" For general 

values of lz, the ratio of two successive coefficients approaches k - 2
, and 

the series (6), (7) do not conver;.,e at z = K + i K 'where s - 2 = k 2
, If h has 

one of its characteristic values, th e ratio of two successive coefficients 
approaches 1, anrl the series converge in the region is I > l \\hich includes 
the en tire line lm z = K: 

The series (6), (7) are unsuitable when lkl = 1, i.e. in Case liT of 
sec. 15.1.3, In this case analogous series in descending powers of c 
may be used with advantage. 

Series which are more suitahle for nun1erical computation may be 
derived from the ?-symbols 15,4(1), (5), (6), At z = iK: c/s = -i, I.ame­
\langerin functions belong to the exponent ~2n + 1

2 at c/s = -i in 15,4(6), 
and 15,3 ( 10) suggests series in powers of (c + is )/(c - is) = (c + is) 2 

multiplied by 

(C+~S) ~n +~ cc-~k's) p (C+ i/~'s) CT • C - [S C - [S C - [S 
\\h ere p and a have the values 0 or 1

2 • Clearly, p = a = 0 for even m, 

p =a= ~2 for odd m. 1\loreover, if \\ e introduce (as in 15.5(13), we have 

(12) sn z =cos(, en z = sin (, c ±is = ± ie + i ~ 
We thus obtain the alternative expansions 

( 13) F 2'" (z) = ~ A ex p [- (n + 2 r + 1) ( i] 
n r = 0 r 

(l4) F 2
"' + 1 (z) = dn z 

n 
~ 

r = o 
B r cxp [- (n + 2r + 2) ( i ] 

whose coefficients satisfy the recurrence relations 

(2r- l)(n + r)e A,-, + [11- (n + 1 + 2r) 2 (2- e)] ,f, 

+ (r + ])(2n + 2r + 3) k 2 A r+ 1 = 0 
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(16) [H- (n + 2) 2 (2- e)]B 
0 

+ (2n + 3) e B 
1 

= 0 

(2r + 1)(n + r + 1)k 2 Br_
1 

+ [//- (n + 2r + 2) 2 (2- e)] Rr 

+ (r + 1)(2n + 2r+ 3)k 2 Br+ 1 = 0 

wl.ere If = 2h- n(n + l)k 2 and r = 1, 2, 3, 

79 

After division by 2 r 
2
, these recurrence relations are of the form 15.3 ( 13) 

with a = y = k 2
, {3 = - 2 (2 - k 2 ), and the roots of the quadratic equation 

15.3 (15) are 

1-k' 1 +k ' 
t = --- t = ---

1 1 +k ', 2 1-k' 

If He k' > 0, we It ave \t 1 \ < \t 
2

\. Let us consider the convergence of the 
series (13), (14) when 0 < k, k ' < l. When z = i K '+ u, 0 :5 u :5 K, it can 
be seen from Table 7 in sec, 13.18 that 

ik sn u 
c+ is=----

1 + dn u 

and consequently \c + is\ 2
;;; (1 - k ')/(l + k '). If h has one of its char­

acteristic values, the ratio of two successive coefficients of (13) or (14) 
approaches t 

1 
= (1 - lc ')/(l + k ') so that the convergence of (13) or (14) 

on the line Im z = K' is at least as good as that of a geometric progression 
with ratio [(1-/c ')/(1 + k ')] 2

., Note that 

. r k sn u 
e-' "'= -i(c + is) =----

1 + dn u 

is real on the line lm z = K '. 
Other po,~e r series e xpansions, anrl series of exponential functions, 

and also expansions in terms of Legendre functions may be obtained in 
the manner indicated in sections 15,3 and 15.4. 

Integral equations for I arre-Wangerin functions can be obtained very 
much in the same manner as for periodic T.a_me functions .. As in sec. 
15,5 .3, let N((i, y ) satisfy the partial differential equation 15,5(41) and 
consider the integral 
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The computation indicated in 15.5 (1.3) sho~s that this integral satisfies 
l .ame''s equation with h = c: provided that the nucleus is so chosen that 

d Fm (y} 
N(O, y) d; . 0, 

iJN((3, y) 
--- pm (y) -> 0 

dy n 

as y -• i K 'or )' • 2 K + i K '. If, moreover, .V ({3, y) belongs to the exponent 
12n + 1 ~ at {3 = iK'and at(~= ~K 1 iK~ uniformly for a]] y in the range 
of integration, th e n the above integral is a constant multiple of the r .amc­
\\'angerin function, and "'e have the integral equation 

The construction of suitable kernels N ({3, y) is based upon the remark 
that the change of variables L5.5 (45) transforms 15.5 (4L) into the partial 
differential equation of spherical surface harmonics. It should be noted 
(see the diagrams in sec. L3.25) that on the interval (i K: 2 K + i K '), s 
is positive, c is negative inoag inary , and d is real, so that in 15.5 (45) 

( 18) cos 0 real, sin 0 cos ¢ > 0, i sin ()sin ¢ > 0. 

Now, for every sufficiently regular function [, and every constant a, 

f(x cos a-+ y sin a- iz) 

is a solution of Laplace's equation (in Cartesian coordinates x, y, z}, 
and we may take f(u) = u -n-l, thus seeing that 

(19) (sin() cos ¢ cos a+ sin 0 sin ¢ sina-i cos 0)-n-l 

= (k sn f3 sn }'cos a + it, en {i en y sin a-/, dn (3 dn y) -n-l 

is a surface harmonic, provided a has been so chosen tl1at the expression 

in the parantheses does not vanish as f3 and y range over (i K: 2 K + i K '). 
\loreover, N, aN/a y-+ 0 as (i or y approach one of the end-points of the 
interval so that (L9) represents suitable nuclei . \';c choose , in particular, 
a = ± 1ur, and obtain the integral equations 

\\c can also construct integral equations for even or odd Lame-Wa nge rin 

functions only, over the interval (i K: K + i K '). The appropriate kernels 
arc the sum or difference of the l\\ O kernels in (20). 
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15.7. Ellipsoidal and sphero-conal harwonics 

l'e shall nO\\ briefly discuss the application of our results to the con­
struction of e IIi psoi dal and spl. cro-conal harmonics. 

I et us introduce ellil'soidal coordinates a, (3, y in place of rectangular 
coordinates x, y , z . Tl:c trans formation formulas arc 15,1 (8), and the 
ranges of a, (1, yare described in the lines follov.in g 15.1 (9). \le shall 
call 8 ((!) C (y) an ellipsoidal surface harmonic if 8 and C satisfy I ame's 
equation, and nc is continuous and has a continuous gradient, on all 
ellipsoids a= const, \~e shall call A (a) R ((1) C(y) nn internal ellip­
soidal harmonic if A, 15, C satisfy Lame's equation and ABC is continu­
ous and has continuous derivatives inside an ellipsoid a= const., and v.e 
shall call A (a) B ({1) C (y) an external ellipsoidal harmonic if similar 
conditions prevail outside an ellipsoid, a nd A (i K ') = 0. 

We have seen in sec, 15. 1.1 that for an ellipsoidal surface ham10nic 
we n,ust have 8 (0) = C(O), and that this functi o n must be a doubly­
periodic Lame function v.ith periods 4K and tJ.i K: By sec. 15,5,2, the 
only Lame functions which have periods 4K and 4iK' are T.ame poly­
nomials, and for these n must be an integer v.hich we may take non­
negative, and m ~ n. Thus we arrive at the 2n + 1 ellipsoidal surface 
harmonics of degree n, 

( l) Sc~(f-3, y)= F:c:<m l•=c:(y) 

Ss" ((-3, y) = F:s m (f-3) F:s" (y) 
n n n 

n = 0, 1, 2, 

n = 1, 2, 3, 

... ' TIL= 0, 1, 'n 

... ' m = 1, 2, 'n 

In terms of the variables 0, ¢of 15.5 (45) th ese functions are spherical 
surface harmonics , and the number, 2n -1 1, of linearly independent sur­
face harmonics could have been es tablished by this connection, 

Ellipsoidal surface harmonics form an orthogonal system, i ,e. 

(2) 

= J J Ss" ((3, y) Ss~(/-3, y) [(sn /-3) 2
- (sn yrJ df-3 dy = 0 

E' n 

except v.hen n = v and m = fl• and 

(3) J J Sc: ((3, y) Ss~ (f-3, y) [(sn {3) 2
- (sn y) 2

] d(3 dy = 0. 

c 
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liere 2 indicates the surface of the ellipsoid where {3 ranges from K to 
K + 2i K: and y from 0 to 4K. Equation (3) follows from the different 
parity of Sc and Ss at y = K. To prove (2) for n f. v, we recall that 

( a2 a2) 
-

2 
- -

2
- S = n (n + 1)[(k sn {3) 2

- (k sn y) 2
] S 

a{3 ay n n 

where S n is Sc: ((3, y) or Ss: ((3, y), and hence 

= [n (n- 1)- v(v- 1)] k 2 [(sn (3) 2
- (sn y ) 2

] S S • 
n 11 

Integrating over 2 we have 

[n(n-1)-.,_·(v-1)]j j[(snf3) 2 -(sny) 2 ]S S d()dy = O, 2 n !I 

and hence (2) for n f v, For n = v and m f. J1 we remark that Ec: and Ec~ 
(and likewise Es" and EsJ.L) are two characteristic functions of the same 
Sturm-Liouvill e p~oblem lS.5(l) [or 15.5(2)], and that by 15.5(9) [and 
15.5 ( 10)] they belong to different characteristic values. Equation (2) 
for n = v, m f. f.L then follows from the orthogonal property of Sturm­
Liouville fun ctions. 

The orthogonal property of ellipsoidal surface harmonics enables us 
to determine the coefficients in the expansion in a series of ellipsoidal 
surface harmonics of an arb itrary function given on E'. The validity of 
the expansion can be deduced by means of the connection between ellip­
soidal and spherical surface harmonics. 

For internal ellipsoidal harmonics, we have seen in sec. 15 .1.1 that 
A (e) = B (e) = C(e) so that internal ellipsoidal harmonics are of one o f 
the forms 

(4) He~ (a, {3, y) = Ec: (a) Ec: ((3) EC: (y) 

n = 0, 1, 2, ... ' m = 0, 1, 2, ... , n 

lls"(a, (3, y) = Es~(a) Es~({3) Es: (y) 

Tl = l, 2, 3, ... ' m = 1, 2, ... , n 

The Lami polynomials occurring here may be ""Titten in the form s P co- dr 
times a polynomial of degree 1

2 (n - p - u- r) in s 2
, and conse quently 
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l1c: and lis: are polynomials of degree n in the Cartesian coordinates 
x, y, z (harmonic polynomials). 

E.T. Whittaker (~hittaker and Watson, 1927, sec, 23,62) found elegant 
integral representations of internal ellipsoidal harmonics. 

4K 
(5) J

0 
Pn(w)Ec:(r)dr = Allc:(a,{3,y) 

where 

k ' x sn r + y en T- iz dn r 
(6) w = ----k~'~(a~2-_--c~2~)~~------------

k2 
= k 

2 
sn a sn f3 sn y sn T- k , 2 en a en f3 en y en r 

1 
+ -- dn a dn f3 dn y dn r k '2 

isthe sphericaldistanceoftwo points on the unit sphere whose Cartesian 
coordinates are 

(7) (k sn a sn {3, i :, en a en {3, kl' dna dn {3) 

and 

(8) 0snysnr,i :, cnycnr,kl' dnydnr). 

To prove (5), we remark that P n (w) is a sol u Lion of l .apl ace's equation, 
and so are the integrals on the left-hand sides of (5). ~loreover, these 
integrals are polynomials in sn a, sn {3, sn y, en a, ... , dn y. Lastly, 
P n (w), as a function of the point (8), is a spherical surface harmonic of 
degree n, and by 15.5(44) the integrals must be multiplies of F.c:(y), 
Es~(y). Since a, {3, y occur symmetrically in w, (5) follows., 

External ellipsoidal harmonics differ from (4) in that Ec" (a), Es" (a) 
are replaced by the corresponding Lame functions of the sec~nd kind {~ee 
the end of sec, 15.5,1), Such harmonics may also be represented by the 
integrals 

4K J Q (w) Ec .. ( r) d r, 
0 n n J4 K Q (w) Esm(r) dr 

0 n n 

where Q n is the Legendre function of the second kind and w is given by 
(6). 
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In sphero-conal coordinates 15.1 (l6) we have the surface harmonics 
(l) which, if (3 andy are sphero-conal coordinates, are spherical surface 
harmonics. Internal and external sphero-conal harmonics are, respectively, 
of the form 

(in tern a ]) 

-n-1 S m(Q ) r-n-1 Ssnm((3, y) r cn,,,y, (external) 

whe re n is a non-negative integer and m < n. 

15 .8. Harmonics associated with cyclides of revolution 

In order to sho\\ the application of Lamc-"angerin functions to the 
construction of harmonic functions associated with con focal systems of 
cyclidcs of revolution, we sha ll discuss in greater detail Case I of sec. 
15.1.3, that is to say, the case of a confocal system of cyclides of revo­
lution with four (real) foci on tl•e axis of rotation. In particular, we shall 
construct harmonic functions regular inside one of the surfaces u = const. 
> 0. 

The reduction of the differeutial equation for f to normal fonn suggests 
in this case the introduction of curvil in car coordinates u, v by means of 
the trans formation 

( 1) z + i p = s = s n (u + i v, k) 

and 15.1 (29) shows that the separation of variables leads to the ordinary 
differential equations 

(2) [ 
l -/c ( l - k )] } --sn iO+k)u,-- ll = O 
l+k 1+/c 

d
2 

v { [ 1-k ( 1-k )]} --
2 

+ 0+/c) 2 h-(m 2 -~.,) --sn (l+k)(v-iK), -- V = 0 
dv l+k ] +k 

It has been shown in sec. 15.1.:3 that tl!e boundary conditions arc tl,at 
p-'1, V should remain finite both at v = 0 and v = K' (where the second 
equation (2) has singularities), and that p -'!, U should rcn:ain finite at 
u = K (\\here the first equation has a singularity). 

Now, equations (2) are of the forn• of I .ame's equation, and the re­
quisite solutions n!ay be obtained by means of sec. 15,6. This procedure 
is satisfactory when k is near l (\\hen two of the foci of the confocal 
system are near to each other); for small er values of k it is of advantage 
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todeal with Lame's e1uation with modu lus k, rather than(l-lr)/(l+k) as 
in (2), This can be achieved by using curvilinear coordinates u, v ~'hich 

arc different from those introduced by (l), 
By a combinat ion of transformation 11 of ' I able l L, sec, 13,22 '' ith 

Landen's transformation 13.23 ( 13) it is seen that 

sn(u, k) = -i sc(iu, k') = -
C)" 
"-ol 

1 1 k c n ( ~. i.-) + d n ( u , k) 

where 

1L = i (l I k) u, 
0 1-k 

k = --, 
1 + k 

and this suggests the introduction o f curvil in ear coordinates, u, v by 
means of the cquat_ion 

(3) z + i p 

where 

iak 's 
= - --= ta 

c + d 

d-e 
-- = [(u + iv) 
k, s 

(4) s = sn(u -1 iv, k), c = cn(u -1 iv, 1.:), d = dn(u + iv, k), 

and the foci 

[
1- k J :.s 

z = ±a l:k , 

o f th e confocal system determine a > 0, and k, 0 < k < l. From now on u 
and v will be the curvilinear coordinates introduced by (3), and the 
abbreviations l5.l (27) will be used. 

By means of the formulas of sec, 13.17 we obtain the real form of the 
transformation (3), 

ak 's 
1 (5) 

iak 's 
2 

z = ' 
c 1d 2 -1 c 2 d 1 

p = ' 
c 1d 2 + c 2 d 1 

and a lso 

(6) F(u,v) 
if'(u + iv)l

2 

p2 

2 
-k 2 s~ = [ksn(u ti K: k)] 2 -[ksn(iv,k)]2

• 

s1 
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The ordinary differential equations for U and V Lecome 

d 2 U 
(7) --

2 
+lh-(m 2 -~)[ksn(u+iK:kWlU = 0 

du 

(8) 
d 2 v 2 2 

--
2
-+ lh- (m - ~) [k sn(iv, k)] l V = 0. 

dv 

15.8 

The transformation (3) maps the rectangle with vertices ±i K: 2K ±iK' 
In the u , v-plane on the half-plane p > 0. In the diagram on page 87, 
corresponding points arc denoted by the sante leuer. The line v = v 

0 
> 0 

is mapped on a part of a bicircular quartic whose foci, a and e, are the 
points z = -a [(1- k)/(1 + k)]X, z =-a [(l + k)/(1- lr)]\ p = 0, and we 
shall construct harmonic functions which are regular inside this hi­
ci rcu lar quartic. The condition that p -~ UV remain bounded on the axis 
of rotation inside v = v

0 
entails the conditions that [sn (u + i K: k)]~ U (u) 

remain bounded on the interval (0, 2 K), and [sn (iv, k )] ~ V (v) remain 
bounded on the interval (v 

0
, K '). 

Now, the di fferential equation (7) is Lame's equation with n = m - "2 

and z = u + i K '. So lutions for which (sn z)~ U (u) is bounded at z = i K' 
and z = 2 K + iK'exist if and only if h = c:_ ~ (k 2), and the only such 
solution is 

U(u)=F;_~(u+iK:k 2 ) r = 0,1,2, ... , 

In equation (8) we now have h c: -~ (k 2
) so that one solution of this 

equation is 

V(v) = F:_~ (iv, k 2
) . 

~loreover, this so lution has the property that[sn(iv, k)]~ V(v) is bounded 
a t v = K: and is determined (up to a constant factor) by this property. 
Then equation 15,1 (24)shows that the only norn.al solutions of Laplace's 
equation In the curv ilinear coordinates introduced by (3) are of the form 

(9) 

X F r (i v k 2 ) e t im ¢ 
Ill-~ ' 

m = 0, l, 2, ... , r = 0, l, 2, ... 
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u= O 
, 2K+iK' 

iK 
B a 

v = v 
0 

E 3 
0 v = 0 

c f) 

-iK' 
2 K - iK' 

z = 0 

'---'---+-------+'------'--t-------t-- p = 0 
3 Q c 

The mapping (5) 
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Oth e r potential problems in coordinates of con focal cyclides o f revo­
lution may be handled in a s imilar manner, In view o f a certain lack of 
c larity in the litera ture o f this s ubject it deserves mention that none o f 
the boundary value problems mentioned in sec, 15.1.3 , in fact no known 
boundary value problem in the coordina tes introduced by "angerin, l eads 
to a lgebra i c I .ame fun c tions (altho ugh s uch fun c tions ex ist for certain 
values o f h since n + 1

· 2 is an integer), "ith th e exception of the harmonics 
o f a fl a t ring "hich were discussed by Poole (1929, 1930) and shown by 
him to depend on periodic Lame fun ctions, a ll th e oth e r boundary value 
problems o f sec, 15.1.3 involve finite Lame fun ctions (i,e, L ame­

" a ngerin functi ons). 
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CHAPTER XVI 

MATHIEU FUNCTIONS, SPHEROIDAL AND ELLIPSOIDAL 

WAVE FUNCTIONS 

16.1. Introduction 

The functions to be discussed in this chapter arise when the wave 
equation ilW + K

2 W = 0 is solved by separation of variables in certain 
systems of curvilinear coordinates. For the general problem of separation 
of variables in the wave equation and in related partial differential equa­
tions see the literature quoted in sec. 15 .1. 

For Mathieu functions there is a standard work, by McLachlan (1947), 
which contains many applications and a bibliography. A book on the 
theory and applications of Mathieu functions and spheroidal wave func­
tions, by Meixner and Schafke, is in preparation. A monograph by Strutt 
(1932) summarizes the theory of all the functions discussed in this chap­
ter, indicates their applications, and gives an extensive list of references. 
A supplement to this list was also published by Strutt (1935). For 
Mathieu functions see also Whittaker and Watson (1927, Chapter XIX),. 

In the present chapter we shall give a brief description of the principal 
properties of the functions concerned, and references to the newer litera­
ture. For a more detailed presentation of these functions, and for the 
older literature, see the works mentioned above. In the sections on 
~1athieu functions we shall follow 'lcLachlan's book, and in the sections 
on spheroidal wave functions, ~leixner's papers. Very little is known 
about ellipsoidal wave functions, and what there is, is summarized in 
StrutL 's monograph. 

16.1.1. Coordinates of the elliptic cylinder 

\\e introduce curvilinear coordinates u, v an place of the Cartesian 
coordinates x, y by means of the equations 

(1) x = c coshu cosv, y=csinhusinv 
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where c is a positive constant. In the x,y-plane, the curves u = const. 
form a confocal family of ellipses, and the curves v = const., a confocal 
family of hyperbolas, the foci of the confocal system being the points 
( ±c, O).Each curve v = const.is one quarter of a hyperbola, and we obtain 
the whole x,y-plane if we take the ranges of u and v as 0 s; u < ""• 0 s; v < 2 rr. 
v = 0 and v = 2rr are the same curve (that portion of the x-axis from x = c 

to x= +oo). The curve u = 0 is a degenerate ellipse (the segment -c~x~c 
covered twice) which acts as a branch-cut, the points u = 0, v = v

1 
and 

u = 0, v = 2rr- v
1 

being identical . In the x,y,z-space we have correspond­
ingly confocal families of elliptic and hyperbolic cylinders. 

(2) 

In the coordinates introduced by (l ), 

2c - 2 

t-.W + K 
2 w = -------­

cosh (2u)- cos (2v) 

a2 lf' 
+--+K 2 1f1=0· a z 2 ' 

and if there are normal solutions of the form 

(3) W=U(u)V(v)Z(z), 

the functions U, V, Z must satisfy the ordinary differential equations 

(4) 

(5) 

(6) 

d 2 U 
--- [h- 2e cosh (2u)]U = 0 
du 2 

d 2 V 
--

2 
+ [h - 2 e cos (2 v )J v = o 

dv 

d 2 z 
--

2 
+ L2 Z = 0. 

dz 

llere h, e, and L arc separation constants, h is arbitrary while 

(7) K
2 =l 2 +4c- 2 0. 

Equation (5) is known as Mathieu's equation; (4) may be reduced to 
Mathieu's equation by an imaginary change of variable, and is known as 
the modified Mathieu equation. 

For a wave function W which is continuous, and has a continuous 
dcrivafive, on an elliptic cylintler u = u

0
, we must have V(2rr) = V(O), 

V '(2>7) = V '(0). Since 2rr is a period of the coefficients of (5), it follows 
that.. V(v) must be a periodic function of v with period 2rr. It will be seen 
l<atcr that for a given e there is an infinite sequence of characteristic 
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values of h fo1 which such periodic solutions exist: they are called 
Mathieu functio •• s. If V (v) is a mod 2rr periodic solution of (5), so are 
V(-v) and V(vl ± V(-v) so that we may restrict ourselves to the con­
sideration of Mathieu functions which are even or odd functions of v. 

Suppose nov1 that W is continuous, and has a continuous gradient, 
inside the ellipt.ic cylinder u = u

0
• Since u=O, v= v

1 
and u=O, v= 2rr-v 

1 

represent the Sbme point on th e opposite sides of the branch-cut, we must 
have 

for 0 .s; v
1 

< 2rr. If V(v) is an even Mathieu function then V(2rr -v
1

) 

= V (-v 
1

) = V (v 
1 
), the first of these conditions is always satisfied, and 

the second den,ands that U '(0) = 0. From (4) it then follows that U (u) is 
an even function of u, so that U(u) = V(iu) up to a constant factor. 
Similarly, if V (v) is an odd function of v, then U (u) must be an odd func­
tion of u, and again U (u) = V (iu). The solution of (4) thus determined is 
called a modified Mathieu function of the first kind. 

For a wave function W which is continuous, and has a continuous gra­
dient, outside an elliptic cylinder u = u

0
, usually the behavior at infinity 

is prescribed (for instance, bySommerfeld's radiationcondition).Now,for 
large values of u, 

p = (x 2 + y 2)~ = c [(cosh u cos v) 2 + (sinh u sin v) 2 ] ~ 

is approximately ~ceu, and those solutions of {4) which behave asym­
ptotically like exp (~i K ce u) or exp (- ~i K ce u) are called modified Mathieu 
functions of the third kind. 

16.1.2. Prolate spheroidal coordinates 

We now introduce prolate spheroidal coordinates u, v, ¢by the equations 

(8) x=csinhusinvcos¢, y=csinhusinvsin¢, 

z = c coshu cosv 

where c is a positive constant. The surfaces u = const. fonn a confocal 
system of pr'>late spheroids, and the surfaces v = const., a confocal 
system of two-sheeted hyperboloids, the foci of the confocal system being 
the points x = y = 0, z = ± c. The respective ranges of u, v, ¢are: 
0 .s; u < oo, 0 .s; v .s; rr, 0 .s; ¢ < 2rr. The surfaces ¢ = const. are meridian 
planes, ¢ = 0 and ¢ = 2rr being the same. u = 0 is a degenerate ellipsoid 
which reduct> .. to the segment x = y = 0, -c .s; z .s; c, and v = 0 and v = rr 
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are the two halves of the degenerate hyperboloid of the sys tem reducing 
respectively to x = y = 0, z 2 c and x = y = 0, z::; - c . Thus, the e ntire 
axis of revolution is a singu lar line of the coordinate system. 

In the coordinates introduced by (8), 

(9) 
c - 2 

~JT'+K21f'= 2 2 
(coshu) -(cosv) 

a2W aw 
+-- + ctnh u-av 2 au 

aw ) 1 + cln v- + 2 av (csinhusinv) 

a2 w 
--2 + K

2 W = 0, 
a¢ 

and if there are normal solutions of the form 

(10) W = U(u) V(v) e±il•cP, 

the functions U, V must satisfy the ordinary differential equations 

d 2 U dU 2 2 
(11) --

2 
+ctnhu---[h-(Kcsinhu) +(mcschu) ]U = O 

du du 

d 2 V dV 2 2 
(12) --2 + ctn v -- + [h + (Kc sinv) - (m cscv) ] V = 0 

dv dv 

where h is again a separation constant. Equation (12) will be called the 
trigonometric form of the equation of spheroidal wave functions: (11) may 
be reduced to (12) by an imaginary change of the variable. 

Fora wave function W which is continuous inside or outside a spheroid 
u = u

0
, W must be a periodic function of¢ with period 2rr, and hence m 

in (lO) must be an integer. Also, If/ must be bounded on e llipsoids u = 
const., that is to say, V (v} must be a solution of (12) which is bounded 
for 0 ~ v::; rr. As in the case of Legendre's equation 3.1(2) to which (12) 
reduces when K = 0, such solutions exis t only for certain character isti c 
values of h: the bounded solutions of (12) are called spheroidal wave 
functions. If W is to be continuous inside a spheroid u = u

0 
then it must 

be bounded on the degenerate spheroid u = 0; this determines the choice 
of U and shows that U (u) is a constant multiple of V (iv), that is to say 
U (u) is a modified spheroidal wave function of the first kind. On the 
other hand, if W is a wave function regular outside a spheroid u = u

0 
then 

usually its behavior at infinity is prescribed to be asymptotically that o f 
r- 1 exp(±iKr)where 

r = (x 2 + y 2 + z 2}~ = c [(sinh u sin v) 2 +(cosh u cos v) 2 ]~ 
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is approximately ~~ ce u when u is large. The solutions of (ll) determined 
by their behavior at infinity are modified spheroidal wave functions of 
the third kind. The solutions of {11), with h having one of its charac­
teristic values, should more precisely be called modified wave functions 
of the prolate spheroid. 

16.1.3. Oblate spheroidal coordinates 

Oblate spheroidal coordinates u, v, ¢are introduced by the equations 

(13) x = c coshu sinv cos¢, y = c coshu sinv sin¢, 

z = c sinh u cos v 

where c is a positive constant. The surfaces u = const. form a confocal 
family of oblate spheroids, the surfaces v = const., a confocal family of 
one-sheeted hyperboloids, and the surfaces¢= const.aremeridian planes. 
The focal circle of the confocal system is the circle x 2 + y 2 = c 2

, z = 0. 
The respective ranges of u, v, ¢are: 0 ~ u < oo, 0 ~ v ~ rr, 0 ~ ¢ < 2rr, 
¢ = 0 and ¢ = 2 rr being the same meridian plane. u = 0 is a degenerate 
ellipsoid which covers the area inside the focal c ire le twice. v = 0 and 
v = rr are two halves of a degenerate hyperboloid reducing respectively 
to the positive and negative z-axis, and v = ~ TT is a degenerate hyper­
boloid which lies in the plane z = 0 and covers the area outside the 
focal circle twice. Thus, the entire x,y-plane is a singular surface of 
the coordinate system. 

In the coordinates introduced by (13), 

-2 
2 c 

(14) t.W + K w = 2 2 
(coshu) -(sinv) 

aw) 1 + ctn v -- + 2 av (c cosh u sin v) 

and if there are normal solutions of the form 

(15) W= (;(u) V(v)e±i•<P, 

the functions U and V must satisfy the ordinary differential eq uations 

d 2 U dU 2 2 
(16) --+tanh u-- [h- (Kc cosh u) - (m sech u) ]U = 0 

du 2 du 
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d 2 V dV 
(17) + ctn v--+ [h- (Kc s in v) 2 - (m cscv) 2]V = 0 

dv 2 dv 

where h is again a separat ion constant. Equation (17) is the differential 
eq uation of sphero idal wave functions with K 

2 c 2 replaced by - K 
2 c 2

; 

(16) may be reduced to (17) by the substitution u = i (v- 1 ~ rr). 
As in sec.16.1.2,rn must be an integer, V must be a spheroidal wave 

function, and h must have one of its characteristic values. The solutions 
of (16) may be called modified wave functions of the oblate spheroid, and 
it should be noted that the modification appropriate to oblate spheroius, 
u = iv - X rri, differs from that appropriate to prolate spheroids, u = iv. 
Since V (rr- v ), V (v) ± V (rr- v) are also spheroidal wave functions, we 
may take V(v) to be an even or odd function of v- ~77. For a wave func­
tion which is regular inside a spheroid u = u

0
, a consideration similar 

to that given in sec. 16.1.1 shows that continuity across the degenerate 
spheroid of the coordinate system (where the points u = 0, v = v 

1 
and 

u = 0, v = rr- v 
1 

coincide) demands that U (u) be an even or odd function 
of u according as V(v) is an even or odd function of v - ~. that is to 
say, that U(u) = V(iv- ~rri): we call these solutions of (16) modified 
spheroidal wave functions of the first kind. Wave functions for the exterior 
of an oblate spheroid are determined in terms of their behavior at u = oo, 
and the fun ct ions U involved are modified spheroidal wave functions of 
the third kind. 

16.1.4. Ellipsoidal coordinates 

\\e define ellipsoidal coordinates a, {3, y by 15.1 (8) where a> b > c 
> 0, and k is given by 15.1 (6). For the description of the coordinate 
surfaces and for the ranges of a, {3, y see sec. 15 .1.1. It is seen from 
15.1(9) that in e llipso idal coord inates a, {3, y the partial differential 
equation /'\ W + K 

2 If = 0 is 

2 2 a2 w a2 If' 
(18) [(sn y) - (sn {3) ] -

2
- + [(sn a) 2

- (sn y)
2

] --
2

-
aa a{3 

2 2 a2 w 2 2 2 2 2 +[(sn{3) -(sna) ]-
2
-+(a -b )k K [(sna) 

ay 

- (sn {3) 2
] [(sn {3) 2

- (sn y) 2
] [(sn y) 2

- (sn a) 2 ]W = 0, 
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and i£ there are normal solutions of the form 

(19) W =A (a) B ((-3) C (y), 

then the functions A ,8, C must satisfy the ordinary differential equations 

d
2

B 2 2 2 2 2 4 
(21) --

2 
+ [h -l (sn (3) +(a - b ) k K (sn {3) ] 8 = 0 

df3 

d
2

C 2 2 2 2 2 4 · 
(22) --

2 
+ [h- l (sn y) + (a - b ) lc K (sn y) I C = 0, 

dy 

where hand l are separation constants. These three equations are of the 
same form, they differ only in the ranges of their independent variables. 
The common form is known as the equation of ellipsoidal wave functions 
or Lame's wave equation. Solutions of these equations which satisfy 
appropriate boundary conditions are known as ellipsoidal wave functions 
or Lame wave functions. \\hen K = 0, the equations reduce to Lame's 
equation (Chapter XV) and Lame wave functions reduce to Lame functions. 

If W is continuous and has continuous derivatives inside or outside 
an ellipsoid u = u

0
, the boundary conditions to be imposed upon B and C 

are those obtained in sec. 15.] .l. These boundary conditions determine 
characteristic values of h and l, and also the corresponding Lame wave 
functions of the first kind. Fora wave function regular inside an ellipsoid 

u = u 0 , the boundary condition for A is also the same as in sec. 15.1.1 
so that A is a Lame wave function of the first kind. For a wave function 
regular outside an ellipsoid the asymptotic behavior at infinity, i.e., near 
a = i K 'is given, and A can be expressed as a I ,a me wave function of the 
third kind. 

MATHIEU FUNCTIONS 

16.2. The general Mathieu equation and its solutions 

1\e shall adopt 

d 2u 
(l) --

2 
+[h-2ecos(2z)lu = 0 

dz 

as the standard forn1 of Mathieu's equation. This is the form used by 
]nee (1932 and other papers) and several other authors. There is no 
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generally accepted standard form. Whittaker and Watson (1927, Chapter 
XIX)put h=a, 0 =-Bq, Stratton et al. (1941) have h = b- ~~c 2 , 4 0= c 2

, 

Jahnke-Emde (1938) put h = 4a, 0 = Bq, and in the tables prepared by 
the National Bureau of Standards (1951) h = b- ~ s, 0 = ~ s. 

lnce (1923) also studied th e equation 

d 2 u 
--2 + [h - 2 0 cos ( 2 z) - v (v - l) (esc z) 2 ] u = 0 
dz 

which he called the associated Mathieu equation. Since the substitution 
u = (sin z)~ v carries this equation into 

d 
2 

v dv ~ (v - ~) 2 J 
--

2 
+ctnz-+ h-~-20cos(2z)-

2 
v=O 

dz dz (sinz) 

which is the differential equation of spheroidal wave functions, the 
associated Mathieu equation will not be discussed here. 

In this section we shall consider both h and 0 as given (real or 
complex) constants. Equation (l) is then referred to as the general 
Mathieu equation to distinguish it from the equation of Mathieu functions 
in which only 0 is prescribed while h has one of its characteristic 
values. For the sake of brevity, we shall call (l) Mathieu's equation. 

With 

(2) x =(s in z) 2 

we obtain 

(3) 
d 2 u du 

4x(l- x)--
2 

+ 2(1- 2x)- + (h- 20+ 40x) u = 0 
dx dx 

and we shall call this equation the algebraic Mathieu equation. This 
algebraic form and related equations were used in the investigations of 
Lindemann, Stieltjes, and others. The algebraic Mathieu equation has 
two regular singular points, at x = 0 and x = l, both with exponents 0 
and ~. and one irregular singular point at infinity. Because of this 
irregular singularity, (3) is comparatively untractable, although it can 
be used to derive certain series expansions of the solutions, both 
series in powers of x or l- x, and series of hypergeometric functions. 
The equation is a limiting case of lleun's equation (sec. 15.3). 

Mathieu's equation (l) is a diffe rential equation with periodic coeffi­
cients. From the general theory of such equations On ce 1927, p. 381fT., 
Poole 1936, p. 178fT.) it follows that (l) has a solution of the form 

(4) eiL•P(z} 
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where P (z) is a periodic function with period 11, and {! is a constant, 
called the characteristic exponent, which depends on h and 8(Floquet's 
theorem). Clearly 

(5) e-J.I.zP(-z) 

is also a solution of (l). In general (4) and (5) are linearly independent 
and form a fundamental system of solutions of (l). The only exception 
arises when iJJ. is an integer: this is the case of periodic ~lathieu func­
tions which will be discussed in sections 16.4 to 16.8. 

Solutions of the form (4) and (5) are sometimes called solutions of 
the first kind. Other significant solutions of Mathieu's equation are 
those which vanish when z .... i oo or z .... -i oo: such solutions are called 
solutions of the third kind. 

There are several methods for the determination of !1· We shall out­
line some of these, and refer the reader to Blanch (1946) and to Chap­
ters IV and V of McLachlan's book for further details and for a descrip­
tion of numerical methods. 

Poincare bases the determination of 11 on the two solutions, u 
1 

and 
u

2
, of (1) defined by the initial conditions 

(6) u
1
(0)=l, u;(O)=O; u

2 
(0) = 0, u;(o) = l. 

These two solutions are linearly independent, their Wronskian is unity, 
and u 

1 
[u 

2
] is an even [odd] function of z. U P (O) I= 0 we have 

eJ.Lz P(z)+ e-J.Lz P(-z) 
u (z) - ---------

1 - '2. p (O) ' 

and if P '(0) + 11 P (O) I= 0 we have 

eJ.Lz P (z)- e -J.Lz P (-z) 

u 2 (z) = 2[?'(0)+ JJ.P(O)] 

At least one of these two expressions is meaningful. We now differen­
tiate u

2
, and put z = 11 in both u 1 and u;: since P (± 11) = P(O), P '(±11) 

= P '(0), we obtain 

( 7) cosh ({171) = u 1 (11) = u; (rr) 
It is evident from (7) that {! is determined up to its sign and an integral 
multiple of 2i. (7) can be used for the determination of {! if u 

1 
(rr) or 

u;(rr) can be evaluated with sufficient accuracy. (See also sec. 16.3.) 
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llill expands the solution (4) in the form 

(8) ~ C e(J.L+2ni)z 
n -oo 

Substitution in (l) leads to the recurrence relations 

for the coefficients c n " \'e write (9) in the form 

(10) cn+yn(p.)(cn_1+cn+1)=0 

where 

(11) Y n = Y n (p.) = 0/[(2n- p.i) 2 - h] 

The (infinite) determinant of the system (lO) is 

(12) 

l )' -2 (p.) 0 0 

y -1 (p.) l y -1 (p.) 0 

0 y 0 (p.) l y 0 (p.) 

0 0 y 1 (p.) 1 

0 0 0 y 2 (p.) 

0 

0 

0 

y 1 (p.) 

l 

16.2 

n=O, ±1, +2 , .•• 

n=0,±1,±2, ..• 

= t\ (p.) 

and fl. is determined by the equation A (p.) = 0. The infinite determinant 
(12) is clearly absolutely convergent, and it represents a meromorphic 
function of P.· This function has simple poles at p. = ±i(hl-f + 2n), 
n = 0, ± 1, ±2, .•• , Since y n (fl. -1 2ki) = y n+k (p.), lc integer, and y n (- p.) 
= y -n (p.), we see that /\ (p.) is an even periodic function of period 2 i. 
Thus, 

c 
(13) /\(p.)- . I 

cosh (p.rr)- cos (rrh :;,) 

is an even periodic meromorphic function of p.. If C is determined so 
that (13) has no pole at p. = ih Y. , then (13) will have no pole whatsoever, 
and hence will be a constant. Since f"..(p.)-+ l as p.-+ oo, the value of 
this constant is unity. To determine C, we put fl.= 0 and obtain 
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(14) 
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[1- ~(O)] [1-cos(h~rr)] 
~ (fl) = 1- I 

cosh (fl7T) - cos (h ~ rr) 

cosh (wr)- 1 + ~ (0) [1- cos (h ~ rr)] 

cosh (flrr)- cos (h ~ rr) 

Since fl is determined by the equation 1'1 (fl) = 0, we have 

(15) cosh (flrr) = 1 + 2~(0) [sin (~h~ rr)J2. 
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For further work on infinite determinants ansmg 1n connection with 
Mathieu's equation and similar differential equations see Magnus (1953). 

U h and (J are both real, it is seen from (7) or (15) that cosh (flTT) is 
also real. If -1 < cosh(fl7T) < 1, then fl is imaginary, pi is not an integer, 
and (4)and (5)show that every solution of Mathieu's equation is bounded 
on the real z-ax is. Stable regions are those regions of the h, ~plane in 
which -1 <cosh (flrr) < l. If cosh (fl7T) > 1, then fl may be taken as real 
(and non-zero), if cosh (flTT) < -1, then fl- i may be taken as real (and 
non-zero): in either case it can be seen from (4) and (5) that Mathieu's 
equation has no solution bounded on the real axis. Those regions of the 
h,fJ-plane in which cosh (fl7T) > 1 or cosh (fLTT) < -1 are called unstable 
regions. Stable and unstable regions are separated by curves along 
which cosh (flTT) = ± 1, one solution of Mathieu's equation is bounded 
(and periodic), and the general solution is unbounded: for this excep­
tional case see sections 16.4 to 16.8. For stability charts showing 
stable and unstable regions of the h,~plane see Strutt (1932, p. 24), 
McLachlan (1947, p. 40, 41), and p. xliv, xlv of the NilS tables. For 
computation of stability charts see also 13lanch (1946), Schafke (1950). 

Most numerical methods for the solution of Mathieu's equation with 
moderate values of A and (J are based on the recurrence relation (9) or 
on some variant of it. From (9), 

c (J 
_n_= ---------,,.-------
en_ I h- (2n- iu) 2

- ()c / c r n+1 n 

- fJ(2n- ifl)- 2 

and repeated application of this, as in sec. 15.3, leads to a convergent 
infinite continued fraction, Rn' say, so that 

c 
(16) _n_ = R (fl)• 

C n 
n-1 
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On the other hand, from (9) we also have 

c -8(2n- ip.}- 2 

-"- = --------::--....;_ ____ "7""" ___ _ 

cn +1 1-h(2n-ip.) 2 +(;1(2n-ip.) 2 cn_/cn 

and repeated application of this leads to 

where L n (p.) is again an infinite continued frac tion. The equation for 
the determination of p. is 

(18) L 
0 

(p.) R 1 (p.} = 1, 

and in the course of computing p. from (18) all ratios (16) and (17) are 
automatically obtained so that 

(19) c n = C 0 R 1 (p.) R 2 (p.) ••• R n (p.) n = 1, 2, 3, .•• 

(20) c_n = c
0

L_ 1 (p.) L_ 2 (p.) ••• L_n(p.) 

From (16) and (17) 

(21) 
n 2 c n 2 c e 

lim n lim n =------
n-+ oo c n-1 n-+-oo c n+1 4 

n = 1, 2, 3, .•• 

so that the series (8) converges absolutely and uniformly in any region 
in which e ±iz is bounded, for instance in any horizontal strip of the 
complex z-plane. 

In a stable region p. = i p, p is real, so are all the c n provided c 
0 

is 
taken as real, and from (8) we have two linearly independent real so lu­
tions 

(22) l: cncos[(p+2n)z], 
-oo -oo 

l: c n sin [(p + 2n)z l. 

In an unstable region either p. or p.- i is real, in either case (8) is a 
real solution, and two linearly independent real solutions are given by 

-oo 

~ c e (J.L+2ni)z 
n ' 

£ 
- oo 

-(JJ.+2nilz c e • 
n 

(23) 

While (8) is the best expansion when z is real, other ex pans ions 
lead to more rapidly convergent series for complex values of z, and 
they are also suitable for representing solutions of the third kind. 
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Erdelyi (1~2) puts 

[ 
. cos(z- {3)]v/z , 

(24) ¢ (z)= e'7T J l2[0cos(z-{3)cos(z+{3)] l{ l 
v cos (z + {3) v 

where (3 is an arbitrary fixed real or complex number. By a straight­
forward computation using the recurrence relations and differentiation 
formulas for 13esse I functions 

d2¢ 
(25) dzz v- 20¢vcos(2z) =-Ocpv-z- vz¢v-O¢v+z 

and it follows that 

is a formal solution of Mathieu's equation provided the coefficients c n 

satisfy (9), i.e. are the same as the c n of (8). From the asymptotic 
formulas for Bessel functions we have 

-4 

n-+ oo 
lim (27) lim 

n-+-oo O[cos (z -/3W 

and (21) and (27) show that (26) is convergent, and represents a solu­
tion, when \cos (z - {3)1 > l. The region of convergence consists of two 
disjoint parts, one entirely in the half-plane lm (z - {3) > 0, and the 
other in the half-plane 1m (z - (3) < 0. From (24), ¢v = [cos (z - {3)]v 
times an entire function of z. As z changes to z + 2rr in the half-plane 
lm (z - {3) > 0, cos (z - {3) encircles the origin in the negative sense, 
and it follows that, in its region of convergence in the half-plane 
lm (z - {3) > 0, (26) represents the solution of the first kind (5) . By a 
similar consideration, in the region of convergence in the half-plane 
lm (z - {3) < 0, (26) represents (4). 

Particular forms of (26) are obtained for (3 = 0 and fJ = rr/2. They are, 
respectively, 

(28) el{7TJ.L I: (-1)" c J
2 

. (20 l{ cosz) 
n n-tJ.L 

(29) 
00 l{ 
I. c J . (20 isinz). 

_
00 

n 2n-1j.J. 

As (3 -+ i oo, (8) appears as a limiting form of (26). 
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We now replace Jv by II ~1 ~ j = l, 2 in (24) and call the resulting 
functions .;,~>. Since Bessel functions of the first and third kinds 
satisfy the same recurrence relations and obey the same differentiation 
formulas, 

(30) ~ c .p<i> 
n 2n- i JJ.. 

will be a formal solution of Mathieu's equation, the c n being the same 
as in (8). An investigation of the convergence of (30) by the ratio test 
shows that convergence obtains if lcos(z - /3)1 > 1 and lcos(z + /3)1 > l. 
There is always a region of convergence in the half-plane lm z > lim /31, 
and another region of convergence in lm z < - lim /31· In both these 
regions, (30) represents solutions of the third kind as can be seen by 
investigating the asymptotic behavior of (30) as z -> ioo (see Meixner 
1949a). U lim /31 is sufficiently large, more precisely if sinh lim /31 > 1, 
there is a third region of convergence which includes the entire real z­
axis and is situated in the strip lim zl < lim /31· In this region of con­
vergence (30) represents a solution of the first kind, (4) or (5) according 
as lm {3 is positive or negative. 

Expansions of solutions of Mathieu's equation in series of products 
of 13essel functions were introduced by Sieger (1908) and Dougall 
(1916). In this case we put 

(31) ¢v,A.{z) = e iv7T Jv+f....(e'l. e iz) J)8'1. e -iz) 

and obtain, by a straightforward computation, 

(32) d
2

¢~)... -28¢ r...cos(2z)=-8¢ _ 1 r...-(2v+A) 2 ¢ , -8¢ +
1

' d z 11, 11 • 11, f\. 11 , 1\. 

This relation shows that 

is a formal solution of Mathieu's equation, the coeffici e nts being those 
determined by (9). Since 

n
2 

¢n+ 1,-iJ.L 8 c/Jn,-i).L -2 iz (34) lim =-4, lim = -e 
n-> oo ¢ n, -iJ..L n-~>-oo 

¢n+1,-iJ..L 
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it follows from (21) that (33) is convergent in the entire z-plane. Since 
(33) is of the form e!l-• times an entire function of z, it represents the 
sol ution of the first kind (4). 

There is a considerab le number of se ries of products of Bessel func­
tions, for instance 

(35) j = 1, 2 

Further series are modifications and combinations of (33) and (35). See 
a lso sections 16.5 a nd 16.6. 

16.3. Approximations, integral relations, and integral equations for 
solutions of the general Mathieu e~J.~ation 

Approximations for small 101 . When 0=0, the two (degenerate) solu­
tions of the first kind of Mathieu's equation 16.2 (1) are exp (± ih Xz) 
so that IL = ihX in this case . For small values of 101 the determinant in 
16.2 (15) may be evaluated as 

(l) t-.(0)= l+ rrOz X ctn ( rrhX ) +0(04) 
(1- h) h 2 

so that equation 16.2(15) becomes 

(2) 
X rrOz X 4 

cosh(/Lrr) =cos (h rr)+ X s in (h rr)+O(O) 
(1-h)h 

andcanbeusedforthe computation of IL· Alternatively, u
1 

as determined 
by 16.2 (l) and 16.2 (6) may be expanded in powers of 0, 

u 1 (z) = I: 0 n f n (z) 
n= 0 

where 

f
0

(z)=cos(h X z), 

fn(z) = 2h -X J;,z cos (2t) sin [h X (z- t)] [n_
1 

(t) dt 

n = l, 2, ... 
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and then 16.2 (7) may be used for the computation of the characteristic 
exponent ll· Once /l is known, the coefficients of the ex pans ion 16.2 (8) 
may be computed from the continued fraction, or else P (z) of 16.2 (4) 
may be expanded in powers of 8, and the terms of this expansion ma y be 
Jetermined recurrently from 16.2 (1). 

For another method of approximation for small 181 see \Vhittaker and 
\\atson (1927 sec. 19. 7) or Strutt (1932, p. 26). 

Asymptotic forms for large lhl, I 81. We shall assume that h and 8 are 
both real. 

If h > 2181, we use Liouville's transformation 

(3) (= Jz [h- 28 COS (2t)]~ dt, 
0 

Tf = [h- 28 cos (2z)]!< u 

to turn l\1athieu's equation 16.2(1) into 

d2 
(4) d (Tf2 + [l + r (()].,., = 0 

where 

4 8 2
- 2h 8 sin (2z) + 8 2 [sin (2z )]2 

r (() = 3 
[h- 28 cos (2z)] 

(5) 

If his large, then r(( ) is small in comparison with unity,that solution of 
(4) which corresponds to u 

1 
is approximately a constant multiple of 

cos(, and 16.2(7) becomes 

(6) cosh(!Lrr)= cos lf
71

[h- 28 cos(2t)]~ dtl + O(h-~ ) 
0 

h ... oo, 2l8l;:;h-E, c > O. 
If h < - 2181 , we use a slightly different transformation 

(= Jz [-h + 28 cos(2t)] ~ dt, Tf = [-h + 28 cos(2z)]!< u 
0 

and obtain again (6). Actually, (6) is valid for arbitrary complex values 
of h, provided 2181 .$ lh I - E, E > 0. 

When hand 8 are real, and -20 < h < 28, then r(() as given by (5) 
is no longer bounded, and for those values o f z near to ~cos- 1 [h/(20)] 
certainly not negligible. Also, the integral occurrin g in (6)is neither real 
nor imaginary. Strutt (1932, p. 28) states that in this case 

(7) cosh(/lrr)= cos iRe j
71

[h- 28 cos(2t)]~ dt! 
0 

x cosh lim f
0

71 

[h- 28 cos (2t)] ~ dtl + 0 (h -~ ) h ... 00 
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A detailed investigation of the solutions of Mathieu's equation 16.2 (1) 
for large real h, (), and complex z, was given by Langer (1934). 

Asymptotic forms for large Is in z I· The point x = oo is an irregular 
singularity of the algebraic form 16.2 (3) of Mathieu's equation. There 
are formal series of the form 

satisfying 16.2 (3); these are called subnormal solutions (Ince 1927, 
sec. 17 .53). Although these series diverge, it follows from the general 
theory of linear differential equations that they represent certain solutions 
of 16.2 (3) asymptotically as x .... oo. 

Heversing the transformation 16.2 (2) we see that there are formal 
series 

(8) exp( ± 28X sinz)~a (sinz)-X-n 
n 

which satisfy Mathieu's equation 16.2(1), and that there are certain solu­
tions of ~1athieu's equation (solutions of the third kind) which are asym­
ptotically represented by one or the other of the series (8) as lm z -+ ± oo. 

Any solution of Mathieu's equation is represented by a linear combination 
of the two series (8) but the constants involved in that linear combination 
may be different for different vertical strirs of the z-plane. See alsn 
Dougall (1916) and Whittaker and \\atson (1927, sec. 19.8). 

For asymptotic expansions of the solutions of the first kind in de­
scending powers of e iz rather than sin z see Erdelyi (1936, 1938). The 
asymptotic behavior of the solutions of Mathieu's equation as lm z-+ ± oo 

may also be determined by means of the series of 13essel functions re­
presenting the various solutions. The requisite general theorems were 
proved by Meixner (1949a). 

Integral relations and integral equations. Let N(z, ()be a nucleus 
satisfying the partial differential equation 

(9) 
a2 N a2 N 
--

2 
- 2 8 cos (2 z) N = --

2 
- 2 8 cos.(2 () N, az a( 

and let 

(lO) g(z) = Jb N (z, (){(() d (. 
a 
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Then 

dz i b 
(ll) ~+ [h- 20 cos(2z)]g = 

dz 
a 

{
azN } 
aC+[h-26leos(2()]N fd( 

= [ aN f-Ndf]b +j b 
at; d( a a 

{
d

2

f } N d (z + [h-26lcos(2 £;)]f d ( 

by repeated integrations by parts. If th e nucleus {\ and the I imils of 
integration, a and b, are chosen so that 

[
aN df J ~ = b 

02) - r- N- = o 
at; d( ~=a ' 

then 01) shows that g (z) will be a solution of Mathieu's equation pro­
vided that f(z) is a solution of that equation. 

The case cosh (wr) = ± l is that of periodic ~lathieu functions and 
will be discussed later (see sections 16.4, 16.8). In this section we 
assume that cosh (J177) f, ± 1 so that the two solutions of the first kind 

(13) u
0

(z) =eJ.L• P(z), u
0
(-z)=e-J.L• P(-z) 

are linearly independent. We know from (8) that 

04) u
0

(z)= c
1 

(sinz)-:.{ exp(20:.{ sinz) [l + 0(\sinz\- 1
)] 

+ c
2

(sinz)- X exp(-20X sin z) [1 + 0(\sin z\- 1
)] 

as z _, ± i oo where the constants c 
1 

and c 
2 

may change as we move from 
one vertical strip lo another one. 

In (lO) we shall choose f((} = u
0 

(()and 

(IS) N(z, ()=exp[26l:.{(s in z sin (sin f3+i cos z cos (cos{3)] 

where (3 is a fixed real or comp lex number: 05) satisfies (9). The asym­
ptotic behavior of the expression in the square brackets in 02) can now 
be investigated by means of (14) and (15) when lm ( _, ± oo . Set 

(16) argl6lX [cos(z- {3) + 1]1 = a
1

, argl6ly, [cos(z- {3)- 1]1 = a
2 

argl6lX [cos (z + {3) + 1]1 = a
3

, argiO:.{ [cos (z + fJ)- 1]1 = a
4

• 
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lt turns out that 

aA' du
0 -- u - N-- --. 0 as 

a( o d' lm ( .... oo, 

provided that p = He (satisfies 

(17) sin(p-a
1
) < 0, sin(p-a

2
) < 0, 

and that 

aN du
0 -u -N-- -+0 as lm ;- -+-oc 

a( o d( "' 

provided that p ' = He (satisfies 

( 18) sin (p '+ a ) > 0, sin (p '+ a 4 ) > 0. 

The two inequalities (17) are consistent if Im(z- (3) f 0, and the two 
inequalities (18) are consistent if Im (z + (3) f 0. If p is any solution of 
(17) then alsop+ 2nrr is a solution where n is integer, and similarly for 
p ',This investigation shows that the paths of integration which may be 
used in (10) are very similar to those occurring in Sommerfeld's integral 
representations of Bessel functions (see sec. 7 .3.5). 

Let p satisfy (17) and consider 

g (z) = J p + 2 7T + ioo N (z' (} u o (() d (' 
p + ioo 

the path of integration being like C
3 

of sec.7.3.5. Then(12) is satisfied, 
and g(z) is a solution of ~1athieu's equation and hence of the form 

(19) g(z)=C
1 

u
0

(z)+C
2

u
0

(-z) 

As z changes into z + 2rr in the half-plane lm (z- {3) < 0, a
1 

and a
2

, and 
hence alsop, are increased by 2rr. 

2 Jp+ 4 7T + ioo 
(20) g(z+2rr)=C

1
e J.J.7Tu

0
(z) + C

2
e- 2

J.J.7T u
0
(-z) = . 

p +2 7T + 100 

In the last integral replace (by ( + 2rr, obtaining 

(21) g (z + 2rr) = JP+ZTT+ ioo N(z, () u
0
(( + 2rr) d (= e 2 J.J.7T g(z) 

p+ ioo 

From the comparison of (20) and (21) it follows that C 
2 

= 0. llence the 
s ingular integral equation 

lm (z - {3) < 0 



110 SPECIAL FUNCTIONS 16.3 

is satisfied by the solution of the first kind. The close relation to Sommer­
feld's integral representation 7.3 (23) of 13essel functions of the first 
kind is seen if (3 = 0 is taken in (22) when that equation becomes 

(23) u
0

(z) = const. Jp+zn+ ioo exp(2i 8~ cos z cos() u
0
(() d( 

p + 100 

lm z < 0 

These integral equations can also be used to elucidate the connection 
between the various exransions of solutions of the first kind given in 
sec. 16.2. If 16.2(8) is substituted for u

0 
under the integral sign in (23), 

and then 7.3 (23) is used, 16.2 (28) is obtained, and 16.2 (26)is similarly 
obtained from (22). Thus the interesting fact that all expansions of sec. 
16.2 have the same coefficients is a direct consequence of the integral 
equations satisfied by u

0 
(z). 

Instead of a path of the type C 
3 

of sec. 7.3.5 we may use paths of the 
type C 

1 
or C 

2
• Let p, p 'satisfy (17) and (18), and consider 

(24) g (z) = J ~+.ioo N (z, () u 
0 
(() d( 

p -,oo 
Im (z ± (3) fo 0 

First let us assume that z is confined to the strip lim z I < lim f31· As z 
increases by 2 77 in this strip, either both p and p' increase by 2 77 or both 
p and p 'decrease by 211 according as Im (3 is positive or negative. Thus 

(25) JP+ioo N(z, ()u
0
(()d( = .\u

0
(±z) 

p '- ioo 
lim zl < lim (31 

is another singular integral equation satisfied by u
0 

(z), and leads to 
expansions of the form 16.2(30) for solutions of the first kind in the strip 
lim zl < lim (31 (see also sec. 16.2). On the other hand, if Im z > lim (31, 
or lm z < - I [m (31, then either p increases by 211 and p 'decreases by 2 77, 
or vice versa, as z increases by 277. In this case the path of integration 
in (24) changes its shape as well as its position, and the integral no 
longer represents a solution of the first kind. From the behavior of/\' as 
lm z -+ oo it follows that 

lmz > llmf31 

vanishes exponentially as lm z-+ oo, and hence is a solution of the third 
kind. Integral relations of this kind between solutions of the first kind 
and those of the third kind lead to expansions like 16.2 (30) for solutions 
of the third kind. 

There are also singular integral equations for solutions of the third 
kind, and integral relations which express a solution of the first kind as 
an integral involving u 

3
• 
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16.4. Periodic Mathieu functions 

If if-Lis an integer, then the solution of the first kind, 16.2(4), is a 
periodic function: 7T is a period of this function if if-L is an even integer, 
and 7T is a half-period (i.e., the solution changes its sign when z is in­
creased by rr) if i11 is an odd integer so that the period in the latter case 
is 2rr. Unless otherwise specified, periodic will always mean period 7T or 
half-period rr. Periodic solutions are required in many applications of 
Mathieu's equation, and sections 16.4-16.8 wi II be devoted to periodic 
Mathieu functions, and to the corresponding solutions of the second and 
third kinds. 

Those curves in the real h, 8-plane along which if-L is an integer are 
called characteristic curves; they diviJe the h, 8-plane into stable and 
unstable regions (see sec. 16.2). Given e, those values of h for which 
periodic solutions exist are called characteristic values, and the periodic 
solutions are called Mathieu functions or Mathieu functions of the first 
kind. No generally accepted definition or notation of Mathieu functions 
exists. We shall adopt lnce 's notation (1932) which is also used by 
McLachlan (1947) and by many other authors. It should be noted however 
(i) that many older authors use a normalization which is different from 
that proposed by Goldstein, adopted by lnce and McLachlan and followed 
here; and (ii) that Stratton et al. {1941) and the NUS tables (1951) use a 
different notation and a different normalization. On p. xxxviii of the 
NBS tables there is a detailed comparison of three notations. 

Throughout our discussion we take e to be real so that the character­
istic values of h, and the characteristic functions, are real. The case of 
complex parameters has been discussed by Strutt (1935, 1948). 

If u (z) is a Mathieu function, then so are the functions 

u(-z), u(z) ±z(-z), 

and we may restrict ourselves to Mathieu functions which are even or odd 
functions of z. An even Mathieu function with n zeros in the interval 
0 s z < rr, or in any half-open interval of length rr on the real axis, will 
be denoted by ce (z, 8), an odd l\lathieu function by se (z, 8). The 
corresponding 'ehar~cteristic values of h will be denoted bny an(()) and 
b (())respectively. Often we shall write ce (z), se (z), a , b , omitting 8. n n n n n 

Mathieu functions are the characteristic functions of the Sturm-
Liouville problems involving the differential equation 

d 2 u 
(l) --2 + [h - 2 ()cos (2 z )] u = 0 

dz 
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and the boundary conditions 

(2) u(0)=u(77)=0 for sen(z, e) 

du du 
(3) -(0) = -(77) = 0 

dz dz 
for ce n (z, 0) 

From the general Sturm-Liouville theory (see for instance Ince 1927, 
Chapter X) it follows that for each n = 1, 2, ... there is a characteristic 
function sc n (z, 0) determined up to a constant factor, and that for each 
n = 0, l, 2, ... there is a ce (z, 0) determined up to a constant factor. 
We complete the definition of Mathieu functions by choosing the arbitrary 
constant factor so that 

(4) ce n(O, 8) > 0, f 2
7T [ce (z, e)Jl dz = 1T 

0 n 

d se 
--" (0 e)> 0, 

dz ' 
J2

7T [se (z, 8)] 2 dz = 77 
0 n 

If e (z) is eithe1 ce n (z) or sen (z), then e (z) and e (77- z) satisfy the 
same differential equation and the same boundary conditions, and must 
be constant multiples of each other so that e (z) is either an even or an 
odd function of ~ 77 - z, and we have the following four cases: 

(5) u(O)=u(;)=o, e = se 2,+2 (z), period 77 

(6) u(O)=- - = 0, du ( 77) 
dz 2 

e = se 211 +I (z), period 277 

(7) -(O)=u - =0, du (77) 
dz 2 

e = ce 2 .. +I (z), period 277 

(8) -(0) = - - =0, du du (77) 
dz dz 2 

e = ce 2• (z), period 77 

For each m = 0, l, 2, ... there is exactly one characteristic function o f 

each of these four boundary value problems, and m is the number of zeros 
in the interval 0 < z < !~ 77. 
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From (5) to (8) we a !so have 

(9) u (- ~ ) = u ( ; ) = 0 

(10) !!:':__ c- !!__) = ~ c~) = 0 

for ce 2.,+ 1 (z) and se 2.,+/z) 

dz 2 dz 2 
for ce 

2
,. (z) 

and finally, 

du du 
(ll) u(-77)= u(77), -(-77)=-(77) for all ~1athieu functions. 

dz dz 

If we use the comparison theorems for characteristic values of Sturm­

Liouville problems we obtain: an< an+ 1 from (3), bn < bn+ 1 from (2), 
a 2.,+ 1 < b 2,.+2 < a2.o1+ 3 from (9), and a 2., < 6 2,.+ 1 < a 2.,+2 from (10). Thus 
we know the relative positions of the characteristic values except lor 
the relative positions of a and b . lnce has proved that a f. b if 
e <: 0, and from the numeric;! table; a > b when e < 0. Thus" we h~ve 

n n 

(12) a
0

<a
1

< b
1

<b2 <a2 <a 3 <b3 < · .. 

a o < b 1 < a 1 < b2 <a 2 < b3 <a 3 < ... 

as n-+oo . 

e>o 

For further investigation, estimates, and asymptotic forms of the 
characteristic values see Strutt (1943). 

The symmetry relations given in Table 1 follow from the above bound­

ary conditions. 

TABLE 1. SYMMETRY RELATIONS FOR MATHIEU FUNCTIONS 

e (z) e {-z) e (77-z) e (77+ z) 

ce2m ce2m ce2m ce2m 

ce2m +1 ce2,. +1 - ce2., +1 - ce2m+1 

se2,. +1 -se2., +1 se2m + 1 - se2,. +1 

se 2m +2 - se2m +2 - se2,. +2 se 2m +2 
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Mathieu's equation (1) is invariant under the transformation 8 = -8~ 
z = X rr- z '. It then follows from (5) to (8) and (4) that 

(13) az.,(- 8) = az... (8), b2m +z(-8)= bz .. +z(()), a2m+1 (-8) = b2a+1 (8), 

se 2.,+ 2(z, -8)= (-1)" se 2., +zC'2rr- z, 0) 

ce 2.,+ 1(z,-0)=(-l)" se 2.,+ 1(%!rr-z, 0) 

Since Mathieu fun ctions are characteristic functions of certain Sturrr­
Liouville problems, they have the following orthogonal properties. 

~TT ~TT 
(15) f

0 
ce Zk (z) ce 2,. (z) dz = j

0 
ce Zk+l (z) ce 2,+ 1 (z) dz 

~TT ~TT 
= ~ se Zk+ l (z) se Zm+l (z) dz = f

0 
se2k+/z)se2.,+2(z)dz = 0 

k, m = 0, 1, 2, ... ' k-f.m 

l, n = 0, l, 2, •.• , l ~ n 

(17) J 277
ce (z)se 1 +1(z)dz=0 

0 n 
l, n = 0, 1, 2, ... 

If iJ1 is a rational fraction then 16.2 (4) and 16.2 (5) are periodic 
solutions of ~lathieu's equation, the period being a multiple of rr. Such 
solutions are sometimes called Mathieu functions of fractional order (see 
McLachlan 1947, Chapter IV). Orthogonal properties of such solutions 
have been obtained by Schafke (1953). 

Integral equations for ~lathieu functions may be obtained from the work 
of the preceding section. If f is any periodic Mathieu function, b =a + 2 rr, 
N is a solution of 16.3 (9) which is periodic in (, then 16.3 (12) is 
satisfied, and 16.3 (10) is a solution of Mathieu's equation. If N is also 
a periodic function of z then 16.3 (10) is a periodic solution of (1) and 
hence the multiple of a Mathieu function. As a nucleus we may use 
16.3 (15) with an arbitrary {3, or special values of (3, combinations of 
nuclei 16.3 (15), partial derivatives of these nuclei with respect to (3, 
and the like. The interval can be reduced by utilizing the symmetry 
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properties oB1athieu functions. In Table 2 we list the intervals and nuclei 
for the principal integral equations of the fo,·m 

(18) Jb N(z, () e (() d(= ,\e(z) 
a 

for ~lathieu functions. Other nuclei may be obtaineJ by gtv tng special 
values to f3 (when f3 = 0 or f3 = TT/2, it may be necessary first to divide 
by sin {3 or cos {i), or by integrating with respec t to f3 . !\uclei involving 
Hessel functions (F:rdelyi l942a, ~lcLachlan 1947, Chapter X) may be 
obtained in this manner. 

TABLE 2. INTEGRAL EQUATIONS FOR MATHIEU FUNCTIONS 

a b N(z , () c (z) 

0 TT exp (2i oY. cos z cos' cos {3) cosh(2 eY. sin z s in ' s in {3) ce (z) 
n 

0 TT exp(2i o'~ cos z cos' cos{3) sinh(2 o'~ sin z sin' sin {3) sen+1(z) 

0 li, TT cos(2 o'~ cos z cos' cos {-3) cosh(2 ey, sin z s in ' s in m cez... (z) 

0 ~217 sin(2 eY. cos z cos' cos f3> cosh(2 eY. sin z sin' sin {3) ce 2a+ 1 (z) 

0 Y.TT cos(2 eY. cos z cos' cos {3) sinh(2 eY. sin z sin' s in {1) sez...+• (z) 

0 Y.TT sin(2 e'l. cos z cos' cos /3) sinh (2 eY. sin z sin' sin {3) sez...+2(z) 

16.5. Expansions of Mathieu functions and functions of the second kind 

From the periodicity of ~1athieu fun c tions, and their symmetry prop­
erties I isted in T a ble 1, it follows that these functi ons may be expanded 
in Fourier series as fo llows 

(l) ce 2 (z, 0) = ~ A 2 cos (2 rz) 
• r = 0 r 

00 

A 2r +1 cos [(2r + l)z] (2) ce 2,. + 
1 
(z, e) = :L 

r= 0 

00 

8 2r +1 sin [(2r + l)z] (3) se 2,.+ 1 (z, 0) = :L 
r= 0 

se 2,.+2(z, 0) = 
00 

8 2r +2 sin [(2r + 2)z]. (4) :L 
r = o 
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These are the fonns to which 16.2(8) reduces when iJ.L is an integer. If 
necessary, the order of the ~lathieu function, and the value of (), may be 
indicated by writing A~(()) for A 

2
,, etc. 

Substitution of tbe expansions (l) to (4) in Mathieu's equation 16.4 (l) 
leads to the following recurrence relations for the determination of 

A 2r' "· ' 8 2r + 2 ' 

(5) lzA 
0 

- ()A 
2 

= 0 

(lz - t1.) A 
2 

- () ( 2 A 
0 

+ A 4 ) = 0 

(lz- l\.r
2
)A 2r- ()(A 2r -2 +A 2r +2) =·0 h = a 

2
., (()~ r = 2, 3, ... 

(6) (h - {}-1)A
1
-{}A

3
=0 

[h- (2r + 1)2] A 2r +1- ()(A 2r -1 +A 2r +3) = 0 

h = a 2.,+ 1 (()), r = 1, 2, ... 

(7) (h+{}-1)8
1
-{}8

3
=0 

[h- (2r + 1)
2

] 82r +1- ()(82r -1 + 82r +3) = O 

h = b 2.+ 1 (()), r = 1, 2, ... 

(8) (h-4)82-{}84 = 0 

[h- (2r + 2)2] 82r +2- ()(B2r + B 2r +4) = 0 

h = b 
211 

+ 
2 

( ()), r = 1, 2, ... 

As in the case of 15.3(13), each of the recurrence relations leads to 
an expression of the ratio of two successive coefficients as an infinite 
continued fraction involving h, and substitution into the first equation of 
each of the systems (5) to (8) leads to a transcendental equation for h 
which may be used for determining the characteristic·values. In the case 
of (5), for instance, the transcendental equation for h 1s 

h =-------------------------
h () 2/61!. 

1---------------
4 

h () 2/576 
1-- - --------

16 
h 

1---
36 



16.5 MATHIEU FUNCTIONS ETC. 117 

Once h has been detennined, the ratios of successive coefficients are 
known. For the detennination of the coefficients themselves, (5) to (8) 
must be supplemented by the relations 

00 

2 [A 0 ]2 + 
00 

[A 2r]2 = 1 (9) ~ A 2r> 0, ~ 
r= o r= 0 

00 00 

[A 2r +I ]2 = 1 (10) ~ A 2r +1 > 0, ~ 
r= 0 r= o 

(11) 
00 

~ 
r= o 

(2r + 1)B2r +1 > 0, l: 
r= o 

00 

(12) ~ (2r + 2) B 2r +2 > 0, 
r= o 

which follow from 16.4(4). For more detailed descriptions ofthe numerical 
computations see lnce (1932), Blanch (1946), and McLachlan (1947). For 
a list of numerical tables see Bickley (1945) and also the list of refer­
ences in the NBS tables (1951). 

From the infinite continued fractions 

(13) lim lim 
r-+ oo r-+ oo 

lim 
0 

r-+ oo 4 

so that the series (l) to (4) converge in the entire complex z-plane. 
Expansions of Mathieu functions in series of Bessel functions may be 

obtained from 16.2(26), (28), (29) by putting ip. = 0, 1 and taking account 
of the symmetry of Mathieu functions, or else from the integral equations 
listed in Table 2 by substituting the Fourier expansions (l) to (4) under 
the integral sign. The following expansions follow from the integral 
equations when the limiting fonn s f3 = 0, f3 = X rr of the nuclei are used. 

ce (X rr, 0) oo 
'14) cez. (z, 0) = -~Za;...z.--- ~ 

A 
0 

(0) r= o 

ce2• (0, 0) 

A~· (0) 
f (-1VA2ri2/20~ sinz) 

r= o 
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(15) cez .. +t (z, ()) 
ce;.,+ t ( 1 ~ rr, (j) 

eX A z .. +t (0) 
t 

~ 
r = o 

(-1)'Azr+t J 2,+ 1 (2()X cosz) 

cez..+t(O,e) 

o'l. A z..+ ' <m 
t 

ctn z 

~ 
r= o 

~ 
r = 0 

se;,.+ 2 (0, ()) ~ 
c tn z .:.. e B ~+ 2 (()) , =o 

X (-1)'(2r+1)A 2r+t 1
2
,+ 1 (2() sinz) 

(-1)'(2r+2)8
2
,+

2 
I

2
, +2 (2()X sinz) 

In these formulas e ' = de/dz . The constant factor A in 16.4 (18) has been 
determined in each case by setting z = 0 or z = X rr in th e expansion or 
in the derivative of the expansion. The infinite series of Bessel func­
tions converge for a ll values of z . 

There is a considerable nurr. be r of expansions of ~1athieu functions in 
series of products of Bessel functions of the kind 16.2 (33), (35). The 
most important c-mong these are 

(18) ce
2
., (z, ()) = Pz,. 

A z .. 
0 

~ (-1)' A J (ex e iz) J (()X e- iz) 
r = 0 2r r r 

(19) ( ()) = p z .. + t ~ 
ce z,. + t z , A z. + t .:.. 

1 
r = 0 

(-])'Azr+t 

~ (- 1)' 82r+t 
r = o 
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S 2a+2 
(21) se2a+2 (z, (}) = B Za+z 

£ . 2 

~ 
r = 0 

(-1)r 8 Zr+Z 

119 

The multipliers p n and s n have been determined by Mclachlan (1947 
p. 368fT.) who compared tbe asymptotic form of the two sides of the 
expansions (18) to (21). By means of the results of sec. 16.7 one obtains 

(22) A: p 2,. = ce 2,. (O) cez.. (~ rr) 

n~ A z.+1 1 (O) , (1/ ) 
v 1 Pza+1 =- ce za+1 cez,.+1 /2 " 

e~ B ~·+ 1 s z.+ 1 = se;,.+1 (0) sez.+1 (Yz rr) 

e B~a+Z s 2a+2 = se;.+z (0) se;.,+z(~rr) 

The series in (18) to (24) converge for all values of z. These and 
other expansions in series of products of Bessel functions may be 
obtained from integral equations whose nuclei involve Bessel functions 
(Mclachlan 1947, p. 193.ff.). 

lnce has proved (see for instance Mclachlan 1947, Chapter VII) that 
the general solution of ~!athieu's equation with e.;, 0 is never periodic. 
Thus, if e (z) is any Mathieu function of the first kind, any second sol u­
ion of Mathieu's equation will be non-periodic. Since Mathieu functions 
of the second kind are of minor importance, we shall not give many 
details, and refer the reader to McLachlan's book, or to the analogous 
work in connection with the modified ~lathieu equation in sec. 16.6. 

There are several ways of constructing Mathieu fun ctions of the s econd 
kind. A degenerate form of Floquet's theorem states that in the case 
that iJl is an integer, and e(z) is the corresponding Mathieu function of 
the first kind, a second solution may be determined in the form z e(z )+ f(z) 
where f (z) is periodic and is represented by a sine series if e (z) is a 
cosine series and vice versa. Another method is based on integral re­
lations such as 16.3 (26). The simplest, and perhaps most efficient 
method is based on the remark that the series of Bessel functions given 
in this section remain formal solutiOns of ~.lathieu's equation if the 
Bessel functions of the first kind are replaced by Bessel functions of 
the second or the third kinds. The series resulting in this manner from 
(14) to (17) converge only if \cos z\ > 1 or \sin z\ > 1 respectively, and 
are not suitable for the computation of l\lathieu functions of the second 
or third kinds for real values of z. On the other hand, the series of pro­
ducts of Bessel functions, in which one of the Bessel functions is of 
the first kind and the other of the second or third kinds, such as 16.2 (35), 
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converge for all values of z . Moreover, these series are well suited 
for nu!T'erical computations. 

16.6. Modified Mathieu functions 

(1) 

The differcnti al equation 

d 2 u 
-- - [h - 2 0 cosh (2 z )] u = 0 
dz 2 

is known as the modified Mathieu equation: it differs from 16 .2(1) only 
in that z has been replaced by iz, and accordingly, the results of 
sections 16.2and 16.3 apply with slight changes. Frequently (1) appears 
in conjunction with Mathieu's equation \\>hen h has ~me of the charac­
teristic values a orb • We shall restrict ourselves to this case . 

Modified Mathieu fu~ctions of the first kind may be defined as 

(2) Ce (z, 0) = ce (iz , e) 
n n 

h =a n(O) 

h = b n(O) 

Expansions of modified Mathieu functions in Fourier series, in series 
of Bessel functions, and in series of products of Bessel functions now 
follow from the preceding section and are recorded in McLachlan 
(1947, sections 2.30, 2 .31, Chapters VIII and XIII). 

Modified Mathieu functions of the second kind are obtained on re­
placing Bessel functions of the first kind by Bessel functions of the 
second kind in 16.5 (14) to (17), and, similarly, Bessel functions of 
the third kind appear in the definitions of modified ~lathieu functions 
o f the third kind. The notation adopted by McLachlan indicates by Fe 
the functions corresponding to Ce, by Ge the functions corresponding 
to Se and adds a y for functions of the second kind, a k for functions 
of the third kind. 

(3) 

Modified Mathieu functions of the second kind 

ce 2a (~ rr, 0) 
Fey 

2 
(z, 8) = --==2a---

.. A 
0 

(8) 

ce 
211 

(0, 8) 

A 2m (8) 
0 

~ 
r = o 

~ (-1)r A 
2 

Y
2 

(201{ cosh z) 
r = 0 r r 
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(4) 

(5) 

(6) 
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ce;.+1 (X rr, 0) 
Feyz.+1 (z, 0)=- 0 ~ A z.+ 1 (O) 

1 

00 ,. ~ 
I. (-1) A2,.+1 Y2r+ 1(20 coshz) 

r= o 

ce z.+ 1 (0, 0) oo l{ 

= O~ A~+ 1 (0) ctnhz ,.::
0

(2r+1)A2,.+1 Y2r+ 1(20 sinhz) 

Pz.+1 
=A z.+1 

1 

h = a2a+1 (0) 

_ se2.+1 (X rr, 0) 
Gey2.+1(z, 0)- O~ 82.+1 tanh z 

1 

x f (-1)'"(2r+ 1) 8 2,..1 Y2,.+1 (20~ cosh z) 
r= 0 

se;_+ 1 (0, 0) 
= 0~ B z.+1 

1 

s Z.+1 
~ 82a+1 

1 

00 l{ 
I. (2r + 2)8 2r+2 Y2,..2 (20 sinhz) 

r= o 

=- s 2a+2 I; (-1),. B [J (Ol{ e -z) Y (0~ e z) 
8 Z.+2 r= 0 2r+2 r r+2 

2 

- J,.+2 (Ol{ e -z) Y,.(O~ e z)] h = b 
2
.+2(0) 
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In each of these four groups of expansions the first series converges 
when !cosh zl > 1, th e second when !sinh zj > 1, and the third for all 
values of z: in the first two series we also assume Re z > 0. 

There are several modified Mathieu functions of the third kind. The 
functions obtained when Y is replaced by H (j >, j = 1, 2, in the series 
for Fey nand Gey n are den;ted respectively L~ 1\'le ~)and Ne ~>, j = 1, 2, 
and the functions obtainedwhen Y

2 
(w) is replaced by (-1Yrr- 1 K (-iw) 

r ~ 

and Y Zr + 1 (w) is replaced by (-l)r 7T-
1 K zr + 1 (- iw) in the first two series 

representing Feyn and Geyn are denoted by Fekn and Gekn respectively. 
Since we have 

2 
J (w) + i Y (w) = H (I 1(w) =- i-v-l K (-iw) 

v v v 7T v 

from 7 . 2 (5) a nd 7 . 2 (17), the various modified l\1athieu functions are 
obtained by the relations 

(7) Cez..(z, e)+i Fey
2
m(z, e)= l\1e~!1 (z, e)=-2iFek

2
m (z, e) 

Cez..+ 1 (z, e)+i Feyzm+ 1 (z, e)= ~~e~!1+ 1 (z, e)=- 2Fek 2.+1 (z, e) 

For expansions ofthe various modified Mathieu functions of the third 
kind see McLachlan (1947, sections 8 .14, 8.30, 13.30, 13.40). 

The asymptotic behavior of modified Mathieu functions as z .... oo may 
be read off their expansions in series of Gessel functions, or in series 
of products of Gessel functions (see sec . 16. 7) . 

There are numerous integral relations between Mathieu functions 
and modified Mathieu functions, and a lso between modified 1\lathieu 
functions themselves. If N(z, () is a nucleus for the interval (a, b) as 

In 16 .4 (18), then 

r N(iz, () e(()d( 
b 

is a multiple of a modified ~lathieu function of the first kind. The 
integral relations thus arising from the limiting cases {3 = 0 , {3 = ~77 of 
the nuclei of Table 2 of sec. 16.4 are listcJ in McLachlan (1947, sec . 

10.20). 
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Let e > o, z > 0. Then the integrals 

Joo exp(2i el{ cosh z cosh 0 Ce (( , e) d( 
0 n 

foo s inh z sinh ( exp(~ i 01{ cosh z cosh() Se +t ((, e) d( 
0 n 

are convergent. lf th e Fourier series are s ubstituted for the modified 
~iathie u functi ons of th e first kind, a nd th e resulting integrals are 
e va luated by means of 7 ,1 2 (21), the foll ow in g integra l re la ti ons result 

(8) 17 A ~· F ek 2., (z, e) 

= ce
2 

( ~217, O)joo exp(2i0~ cosh z cosh 0 Ce
2
.((, e)d( 

.. 0 

e > o, z > o 

(9) 17 A ~"+ 1 Fek
2
,.+

1 
(z, e) 

= - e-Y. ce; .. +l (~ 17, e) Joo exp (2i e~ cosh z cosh ( ) Ce z .. +t (( , e ,\ 
0 

e > o, z > o 

xf
0

00 

s inh z s inh (exp(2ieY. cosh zcosh()Se
2
.,+

1
( ( , e)d( 

e > o, z > o 

(l l) B 2"+ 2 G k ( e) " . e-Y. ' (11 e) 17 2 e z..+z z , =- 4L se 2.+2 / 2 17, 

xf: sinbz sinh (exp(2i eY. coshz cosh()Se
2
,. +

2
((, e)d( 

0 > 0, z > 0 

~ e now separa te in (8) to (ll) the real and imaginary parts by means 
of equations (7) and obt a in a further gro up of integral relations 

(12) 17 A~· Fey Za (z, e) 

= - 2 ce
2 

(~ 17, e) Joo cos(2el{ cosh z cosh() Ce 
211 

((, e) d( 
• 0 

e > o, z > o 
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( 13) TT A ~m + t Fey 2m+ t (z ' 0) 

= 20-~ ce; .. +,e'2rr, e) f
0

00 

sin(20y, coshz cosh() Ce
2
.,+

1
( ( , O)d( 

(j > 0 , z > 0 

(14) TT n ~m+ t Gcy2m+t (z, 0 ) = '1 se2m+ t (1! TT, 0) 

xf
0

00 

sinhz s inh ( cos(2() y. coshz cosh ( )Se 2.,+
1

( ( , O)d( 

0 > 0, z > 0 

(15) rrB~m+z Gey2m+2( z , 0) = -ti O-~ se;m+z(l l TT, 0) 

x J~ sinh z si nh ( sin (20 y, cosh z cosh() Se 2.,+ 2 ( ( , 0) d( 

0 > 0, z > 0 

and a lso the integral equations 

(16) TT A ~m Ce 2m (z , 0) 

= 2ce 2 .. (z , 0) ]
0

00 

s in(20 Y: coshz cosh ( ) Ce 2 .. ( ( , O)d( 

0 > 0, z>O 

(17) TT A ~m+t Cc 2m+t (z, e) 

= 20- y, ce;m+ t (~2 TT, 0 ) J: cos(20y, coshz cosh() Ce 2 .. +1
( ( , O}i( 

0 > 0, z > O 

(18) TT B ~m+t Se2m+ t (z , f)) = - tl sez .. +t e! TT, (j) 

x J
0

00 

sinhz s inh (s in( 20y, cosh z cosh() Se 2.,+ 1
( ( , fJ)d( 

o > o, z > o 

(19) l,,z .. +zs ( fJ) · e-x , ('/ fJ) 
7T ) 2 e2m+2 z , =- ' l< se2m+2 1~ TT, 

x Joo sinh z sinh ( cos(20y. cosh z cosh() Se 2 .. +2 ( ( , O)d( 
0 

(j > 0, z > 0 

For integral relations for negative f) see ~.icLachlan \1947, Chapte r X). 
For integral re lation s whose nuclei involve !3essel fun ctions see 
\1cLachlan (1947, Chapter X) and \le ixn e r 0051 a) . \:e ixne r (ib id .) also 
g ives some integrals invo lving products of \lathieu functions. 
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16.7. Approximations and asymptotic forms 

Approximations for smalliOI . ~lathieu's equation reduces to adiffer­
ential equation with constant coefficien ts when e = 0, and we have 

(l) a (O) = b (0)=n 2 

n n 

ce"(z, 0) = cos(nz), se (z, 0) = sin(nz) 
n 

n = 1, 2, 

Starling from (1), the characteristi c values and characteristic functions 
may be expanded in powers of e. Strutt (1932, p. 36) proved that 

0-+0 

so that the characteristic curves belonging to ce" and se" are at con­
tact of order n - 1 at the point h = n 2, e = 0; tl.is is the only common 
point o f these two characteristic curves . Strutt (1932, p. 31 If.) also 
g ives the expansion of a (e) as far as 0 6

, of ce (z, 0)/ A" as far as 
n n n 

04 and of some coefficients A;IA~as faras 04 or 0 5
• Numerical bounds 

for the 0 -term in (2) were given by \hinstein (1935). 
Asymptotic forms for large izi . 1he asymptotic behavior of ~lathieu 

functions as lm z -+ oo, or of modified ~lathieu functions as He z -+ oo, 

may be ascertained from the Bessel function expansion::s by means of a 
general theorem proved by ~1eixner (1949 a) which states that under 
certain conditions the asymp toti c expansions of series like 16,6 (3) 
may be obtained by substituting the asymptotic expansions of the 
Bessel functions on the right-hand side. 

To obtain the leading terms of th e asyn•plotic expansions of modified 
~1athieu functions as He z-+ oo, we remark that 

J (20y, cosh z) "-' o-'{ (rr cosh z) - Y, cos (2(} y, cosh z- ~ 1117- ~ r.) 
v 

""'(~2 rr)- x e- ':4 e - v. z cos(O y, e z- X li1T- ~4rr) 

Re z -> oo, -rr <. lm z < rr 

by 7 .13(3) , Substituting this in 16.5(14), 

On the other hand, using 16,5 (18), and noting that for large He z the 
first term of the series dominates the others, 

Cez.. (z, (}) = cez.. (iz, (}) ""' Pz. (72rr)- y, fr'4e- y, 2 cos((} Y,ez- ~rr). 
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fly comparison of the last two equations we obtain the first relation 
in 16.5(22), and the others may be confirmed similarly. In order to 
obtain the asymptotic forms of modified ~lathieu functions of the second 
kind from 16.6(3) to (6), we use 7.13(4) instead of 7 .13(3), and this 
amounts to replacing 

cos (!;I~ e •- 1zrm- 1
/4 rr) by sin (t9~ e •- 12 V1T- ~ rr) 

ln this manner tlte following results are obtained: 

(3) Ce 2., (z , 0) "' p 2,. (!·2 rr )-X o-'A e -Y.z cos (0 ~ e' - ~4 rr) 

Ce
2
.,+

1
(z, 0)"-p 2,.+ 1 (~rr)-x e-!{ e-~. cos(eX e' -~rr) 

Se
2
.+

1
(z, t9)"-s 2.,+ 1 (~rr)-x e-'4 e - Xz cos(t9~ e'-%") 

Se
2
,.+2 (z, 0) "'s 

2
,.+

2 
(~2 rr)-x o-'4 e -~. cos(eY. e •- ~~ rr) 

n e z ... oo, -11 < ~~ arg e + lm z < 7T 

(4) Fey
2
.,(z, t9)'"Pz.,n2rr)-X e-'.4 e - Xz sin(t9 Y. e'-~rr) 

Fey
2
.+

1
(z, t9)"-p

201
+

1
(h11)-Y. e-!{ e-Xz sin(t9~ e'-~rr) 

Gey
2
,+

1
(z, t9)"'sz.+t(!t27T)-~ e-'.4 e-~. sin(t9~ e'-~rr) 

Gey zm+z (z, t9)'"" s z..+z (}2 ")-~ e-'4 e-~z sin(eX e •- ~ rr) 

Re z ... oo, -7T < ~ arg e + Im z < rr 

Asymptotic series In descending powers of e • or cosh z may be 
obtained from the modified ~lathieu equation 16.6 (1): see \1cLachlan 
(1947, Chapter xn. 

Asymptotic forms for large I t9l. The asymptotic behavior of ~1athieu 
fun ctions and of the characteristic values of h for large real values of 
e has been investigated by Jeffreys, Goldstein, and lnce. The results 
of these investigations, and references to the literature, are given in 
Strutt (1932, p . 37fT.) and ~lcLachlan (1947, sections 11.40 to 11.44). 

The principal results are: 
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(G) cen(z, 0)"' C"(cos z)-"- 1 1(cos(~z+~~n)]2"+ 1 exp(2UV sinz) 

+ lsin(Jizz + )(j'n)l 2"+1 exp(-2(;1X sinz)l 

sen+ 1 (z, e)"'' Sn+ 1 (cos z)_"_1 I( coseiz + ~ n)f"+ 1 exp(20 x sinz) 

- [sin(~z + l(j n)J2"+ 1 exp(-20 V sinz)l 

- Yzn<;;;<~n, 

(7) Ce" (z, O)'"" C" 2y,-" (cosh z )-';, 

x cos(2(;1 X sinhz- (2n + l) tan- 1 (tanhJilz)l 

Sen+1(z, 0) "' 5n+ 1 2 11,-n (coshz)-'~ 

x sin[20 Y, s inh z- (2n + l) tan-1 (tanh ~z)] 

For lar~e z, (7) and (3) may be compared to give 

(8) C"- (-l)m 2"-x rr"4 11- y, p" 

s = (- l ) '" 2 n-3/2 e-1/4 "-1/2 s 
n n 

z > 0, 

0-+oo 

where m = [:!_ J , i.e., n =2m or n = 2nz + 1 according as n is even or 
odd . 2 

J .anger (1934) investigated the asymptotic behavior of Mathieu func­
tions \\hen 0 is large and real while z may be complex. 

Equations (G) describe the behavior of Mathieu functions when 

- l < cos z < 1, 

and (7), when cos ;; > l. Both formulas fail near cos ;;; = l. In order to 
have formulas valid in a range including this point, Meixner (1948) and 
Sips (1949) expand Mathi eu functions in a series of parabolic cylinder 
functions. These expansions are of the form 

(9) 
oo X 

ce (z, U) = I. a D (20 cos z) 
n r =O r r 

sen+ 1 (z, 8) = sin z ~ 
r = 0 

where r ranges over even or odd integers according as n is even or odd, 
and the ar, f3 r satisf) fiv e- term recurrence relations. \~hen (J is large, 
the dominant terms in the expansions (9) are those corresponding tor = n, 
and we have 



128 SPF.CIAL FUNCTIONS ] 6 .7 

(10) ce (z, 8)"' a D (28~ cos z) 
n n n 

0 ... 00 

The an and (3 n may be determined by putting z = ~2 TT (after differentiation 
if necessary) and using the values of 0)0), D~(O) obtained from 8.2(4). 

16.8. Serie!i, integrals, expansion problems 
:\lost of the known infinite series involving :\lathieu functions may be 

interpreted as superpositions of solutions of the wave equa tion. As in 
sec. 16 ,1,1, let x,y be Cartesian coordinates, and u, v elliptic coordi­
nates, while p, cp are polar coordinates so that 

(l) x + iy = c cosh (u + iv) = p e i ¢ . 

Typical solutions of the two-dimensional wave equation 

a2 W a2 W 
(2) -- + -- + K 

2 W = 0 
ax 2 ay 2 

in elliptic coordinates are U (u) V (v) where V is a ~ 1 athieu function, U an 
associated Mathieu function, and 

(3) 8 = <~ K c ) 2 

in ~lathieu's equation. Typical solutions in polar coordinates are 

Z v(Kp) e i v¢ 

where Z v is a Bessel function of order v. The remark that elliptic cylin­
drical waves may be generated by the superposition of (circular) cylin­
drical waves, and vice versa, leads to a number of important infinite 
series; and elliptic cylindrical waves may similarly be related to plane 
waves. 

Consider 

(4) w = I: 
r= 0 

as a function of u and v, recalling t!.at 

(5) Kp = 2[8 cosh(u + iv) cosh(u- iv)]~ 

e 2;¢ = cosh(u + iv) 

cosh(u- iv) 

i = 1, 2 

from (1). Thus, (4) is an expansion of the form 16.2(30), and for real 
u, v (or, more generally, for Jim vJ < JRe uJ), and fixed u, it represents a 
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multiple of ce Zm (v, (}), Since 

W= U(u) ce 2m (v, fJ), 

129 

we have from 16.1.1 that U(u) is an associated ~1athieu function. The 
asymptotic behavior of (4) as u -+ oo, and hence p-. oo, shows that U (u) 
must be an associated l\lathieu function of the third kind, in fact 

( ' ) 
W = const. l\!e 2~ (u, fJ) ce zm (v, fJ) i = 1, 2 

We determine the constant factor by making u -+ oo, p-+ oo, using 7.13 (1), 
~2) on the left-hand side, and 16.7 (3), (4) on the right-hand side. This 
computation, and analogous work with ce 2,.+1' se 2m+t• se 2 m+z leads to 
the tollowing expansions in which (} is omitted from the sY:mbols of 
Mathieu functions and also from the coefficients , 

(6) 
00 

~ 
r= 0 

(-1)' A~; II ~~)(Kp) cos(2r¢) 

(') 
Mez~+t (u) ceZm+t (v) = Pzm+t 

00 

~ 
r= o 

i = 1, 2 

Ilere p and s have the same meaning as in 16.5 (22), 
For v = 0 and v = % rr, (6) reduces to 16.5 (14)-(17), and as u -> oo, (6) 

reduces to 16.5(1)-(4) so that the most important series expansions of 
Mathieu functions are particular or limiting cases of (6). 

Meixner (1949 a, see also Schafke 1953) generalized (6) in two respects. 
Ile admitted polar coordinates whose pole does not coincide with the 
<.:enter of the confocal family of ellipses and hyperbolas, and he expanded 
a product U (u) V (v) where V (v) is a solution of tbe first kind of the 
general Mathieu equation, i.e,, with arbitrarily given h and fJ, and U (u) 
is a solution of the third kind of the corresponding modified equation. 
His expansions are of the form 

U (u) V (v) = 



130 SPECIAL FUNCTIONS 16.8 

where 

Kp = 21 O[cosh(u + iv)- a][cosh(u- iv)- aJil~ 

2 .-'- cosh(u+iv)-a 
e '"' = --------

cosh(u- iv)- a 

and ll is the characteristic exponent of the general ~latl1ieu equation. The 
coefficients d rare given in Meixner's paper as 

dr = f (-1)" en J 2n_r(2a0) 
n=-oo 

where the c are the coefficients occurring in 16.2 (8), and V (z) is that 
solution of the general Mathieu equation which is represented by 16.2 (8). 

The representation of elliptic cylindrical waves as a superposition of 
plane waves leads to integrals rather than series. Consider 

(7) W = J 2 '" exp [i K (x cos a+ y sin a)] ce (a. 0) da 
0 n 

as a function of u, v. We see from Table 2 in sec, 16.4 that for fixed u, 
W is a multiple of ce n (v ), while for fixed v, it is a multiple of Ce n (u). 
Thus, 

IT'= const. Cen (u) cen (v), 

and the constant may be determined by putting x = y = 0, i ,e., u = 0, 
v = ~77, in w or aw;av according as n is even or odd. We follow a similar 
process with sen+,. use the symmetry relations of Table 1, sec .16. 4, and 
obtain 

(8) Ce 
2
,. (u) ce 2 ,. (v) 

-1 J ~ 'TI' ( = 277 p
2

,. 
0 

cos KX cosa) cos(Ky sin a) ce
2
,. (a) da 

Ce 2,.+1 (u) ce 2,+ 1 (v) 
~'TI' 

= 277- 1 p
211

+
1 
f

0 
sin(Kx cosa) cos(Ky sina) ce

211
+

1
(a)da 

Se 2,+ 1 (u) se 2,.+1 (v) 

= 277- 1 s
2
.,+

1 
J0~'" cos(K x cosa) sin(Ky sin a) se

2
.,+

1 
(a) da 

Se 2., +2 (u) se 2.,+2 (v) 

= -277- 1 s 
2
,.+

2 
J0~'" sin(KX cos a) sin(Ky sin a) se

211
+

2
(a) da 
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where x andy are given by 16.1(1), ()by (3), and p and s by 16.5(22). 
Similar integrals involving Bessel functions instead of trigonometric 

functions were given by Sips (1953, 1954). 
Inversion of the relations obtained above yields sums of infinite 

series of products of 1\lathieu functions. Equations (8) may be regarded as 
determining the Fourier coefficients in the expansion of 

cos 
(Kx cosa) 

sin 

cos 
(Ky sina) 

sin 

in a series of Mflthieu fuP.ctions; and lead to the following expansions . 

(9) cos(Kx cosa) cos(Ky sin a) = 2 ~ 
•= 0 

sin(Kx cosa) cos(Ky sina) 

00 1 
= 2 .. : 

0 
r;.+ 1 cez.+l (a) Ce 2,+ 1 (u) ce 2 .. +1 (v) 

cos(Kx cosa) sin(Ky sin a) 

sin(Kx cosa) sin(Ky sin a) 

Pere again x,y,K, c and u,v, ()are connected as in 16.1(1) and 16. 8(3), 
() has been omitted from the symbol of ~lathieu functions, and p, s are 
given Ly 16.5(22). From (9) a large nuiiiuer of expansions may be derived 
by differentiating v.ith respect to a, u, or v, and choosing special values 

for some of the parameters. Some of these expansions are listed in 

~!cLachlan's book 0947, sections 10.60, 10.61). 
The inversion of (6) leads to the expansion of 

( ' ) cos H,j (Kp) . (v¢ ) i = 1, 2 
SID 

in a series of products of ~lathieu functions and associated 1\!athieu 
functions (see, for instance, Sips 1953, 1954), and the result may be 
interpreted as the generation of circular cylindrical waves by the super­
position of elliptic cylindrical waves. Sips has also expansions invol­
ving products of four Mathieu functions: these are needed in case the 
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axis of the circular cylinder is different from the axis of the elliptic 
cylinder. The generalization to expansions involving products of solu­
tions of the general ~lathieu equation was given by Sch'Mke (1953), 

Lastly, the generation of elliptic cylindrical waves by the super­
position of other elliptic cylindrical waves leads to th e so-called addition 
theorem of ~lathieu functions (Scha1ke 1953). 

A somewhat different type of infinite series of ~ lathieu functions and 
of products of ~lathieu functions was investigated by Ince (1939), Csing 
special cases of (9) and of derivatives of (9), lnce expanded 

se2m+1 (z) 

Sin z 

in a senes I. a, ce 2,(z) and gave numerous other expansions involving 
~1athieu functions and their derivatives in combination with trigonometric 
functions. When() = 0, !nee's expansions reduce to the addition theorems 
and differentiation formulas of trigonometric functions, and other trigo­
nometric identities. 

For integral relations with trigonometric nuclei see sections 16.4, 
16.6, and (8); also ~1cLachlan (1941, Chapters X, XIV), Integrals invol­
ving Bessel functions are given in McLachlan (1947, Chapter X), Sips 
(l949a), Meixner(1951 a), Schiifke (1953). The latter author has evaluated 
an integral of a product of three ~lathieu functions. Both Meixner and 
Schafke extended their results to solutions of the general Mathieu equa­
tion, 

The orthogonal properties of Mathieu functions are recorded in 16.4 (15), 
(16), (17), It follows from the general theory of Sturm-Liouville problems 
that each of the four systems tce 2m!, lce2m+t!, lse 2.+1!, tse2m+ 2! is 
complete in the interval (0, ~~7T), each of the two systems Ice), lsen+t! 
is complete in (0, 7T ), and the systen, Ice n' sen+ 1! is complete in (0, 2 7T ): 

herem, n = 0, 1, 2, .•.. An arbitrary function which can be expanded in a 
Fourier series can alsobe expanded ina series of Mathieu functions. The 
coefficients in the latter expansion may be computed by means of the 
orthogonal properties of Mathieu functions, Important examples of such 
expansions are (9) and the expansions of (circular) cylindrical waves in 
series of Mathieu functions, 

Characteristic value problems for (non-periodic) solutions of the 
general Mathieu equations have been considered by Strutt (1943) who 
gave bounds for the characteristic values, asymptotic forms, expansion 
formulas, and expansion theorems. In Strutt's work, cos (2z) in 16.2 ( 1) 
is replaced by any real periodic function (period p) which can be expanded 
in a convergent Fourier series: the resulting differential equation is 
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Ifill's equation, and the boundary value problem consisting of Jlill's 
equation and the boundary conditions 

u(z
0

+ p)=au(z
0

), u'(z
0

+ f1) = au'(z
0

), 

a given , is called Hill's /'rob/em by Strutt, On the case of periodic 
~]athi eu functions, a= ± l.) 

F.xpansions in series of products of ~lathieu functions and associated 
~lathieu functions arise in connection with the (two-dimensional) wave 

equation (2) . Suppose we consider (2) inside of an ellipse u = u
0

, and 
impose the boundary condition W (u 

0
, v) = 0 (appropriate to the problem 

of vibrations of an elliptic membrane), Solutions of (2) are of the form 

tb c n(u, v) = Cen(u, 0) cen(v, 0) 

1/1 S n + 1 ( u, v) = Se n + 1 ( u, 8) s e n + 1 ( v, 0) n = 0, l, ... 

Those values of K for v.hich Ce" (u
0

, 0) = 0 or Se,+
1 

(u
0

, 0) = 0 are the 
characteristic values of (2) for the region u :S u

0
• These correspond to 

certain characteristic values of 0, and the resulting characteristic func­

tions may be denoted by cf; r ~, ~' s ~ +P n = 0, 1, 2, ... , m = l, 2, ... , 
The element of area is [cosh (2u) - cos (2 v )] du dv, and we have the 
following orthogonal property 

Juo J271 rf; em rf, c![cosh(2u)- cos(2v)l du dv 
0 0 n 

h, n = 0, l, ... ; rn, l = 1, 2, , . . ; k f, n or m I= l 

u 
J 0 J2 71 

rf; em 1/1 sk
1+

1
[cosh(2u)- cos(2v)J du dv = 0 

0 0 n 

k, n = 0, 1, ... ; l, m = l, 2, ... 

For the computation of the inte!,>Tals involving lw c ~ ]2 and [t,'J s ~ F see 

\icLachlan (1947, sec, 9 .40), The expansion of an arbitrary function In 
a series of 1/1 c and 1/1 s in the region u S u 0 now follows. 1 here are 
corresponding expansions for other boundary conditions. 
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SPHEROIDAL WAVE FUNCTIONS 

16.9 

16.9. The differential equation of spheroidal wave functions and its 
solution 

\\te shall adopt 

2 d 2 y dy 2 2 2 1 
(l - z ) - - 2 z ....:._ + [A + tl () ( 1 - z ) - 11 ( 1 - z ) - ] y = 0 

d:: 2 dz 
(]) 

as th e s tandard form of the differential equation of spheroidal wave 
functions. There is no generally accepted standard form, ~leixner, in his 
recent work (1950, 1951), uses (l)with 10 = y 2

, Bouwkamp, Strutt(l932), 
and ~leixner in his earlier work (1944, 1947, 1948) have, respectively, 
k 2z 2

, -k 2c 2 z 2
, and -y 2z 2 in place of tJ.()(l- z 2

) so that their)\ corre­
sponds to;.. + 4 e in (l), Stratton et al, (1941) use the differential equa­
tion satisfied by (l- z 2 )XI-Ly. "e shall, in this section, regard 8, A, 11 as 
g ive n, real or complex parameters, and z .as a complex variable. p. will 
be called the order of the spheroidal wave functions. 

"ith 

(2) z = cos v 

we obtain 

d
2
y dy 2 2 2 

--+ctnv- + ["A +IJ.8(s inv) -11 (cscv) ]y=O, 
dv 2 dv 

(3) 

the trigonometric form of the differential equation of spheroidal wave 
functions [see also 16.1 (11) , (12), (16), (17)]. 

\~e shall now discuss several special and limiting cases of (l) since 
these suggest the choice of rei evant sol u Lions, 

If () = 0, i..e.., K = 0 in the wave equation 16.1 (9) and (14), then equa­
tion(l)reducestoLegendre'sequation3.2(l)with )\ = 11(11 + 1). For the 
solutions in the cut z-plane see sec, 3.2, and for the appropriate solu­
tions on the cut see sec, 3.4. 

lf 11 = Y2, a simple computation shows that in terms of the variable v, 

(sin v)-~ y (v) satisfies ~lathieu's equation with() having the same mean­

ing as in 16. 2(1), and h =A+~+ '28. 
With 

(4) '= 2 ()~ ~ 
as the independent variable, (l) changes into 

(5) ( ~"2 - 4 ()) --+ 2(- + {.2
- )\- 4 ()- --:--~-d

2
y dy ( 48p.

2 
) 

':> d '
2 

d( - '
2

- 4 0 
y = 0, 
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and if e = 0 in (5), the solutions can be expressed m terms of Bessel 
functions. In particular, if e = 0 in (5), this equation has the following 
four solutions 

(6) 

where A= v(v + 1) = (v + ~) 2 - )4; see also 7.2(44) for the notation, 
These special and limiting cases are important not only because they 

exhibit the relation of spheroidal wave functions to other special func­
tions but also because they indicate the behavior of solutions of (1) near 
the singularities, and suggest the choice of special solutions of (1) as 
well as expansions of these solutions in series of Legendre or Bessel 
functions, For the relation of (l) to the differential equations of con­
fluent hypergeometric functions and parabolic cylinder functions see 
Meixner (1948, 1951), Sips (1949). 

The differential equation (1) has three singular points, z = 1, - 1, and 
oo, z = ± 1 are regular singular points, the exponents at each of them being 
± ~ p.. z = oo is an irregular singular point, and (5) suggests that there 
are two solutions of (l) which behave at oo like z v times a single-valued 
function, and z -v-l times a single-valued function, The exponent v 
appearing here is called the characteristic exponent of (1): it is a func­
tion of e, >., p. and, like the characteristic exponent of Mathieu's equa­
tion, it is determined by a relation of the form cos(27TV) = [(;\, p. 2

, e). 
Often it is more convenient to represent ,.\ as a function of e, p., and v, 

and the notation used by Meixner is ,\~(e). Clearly, 

(7) A~(O) = v(v+1), 

For a discussion of the functional relationship between .\, p., v, e see 
Schmid (1948, 1949), Schafke (1950), ~1eixner (1951). 

We shall assume that ,.\ = ,.\~(e) in (1), and express the solutions in 
terms of e, p., v. 

A first group of solutions will be obtained as expansions m senes 
of Bessel functions, (5) suggests expansions of the form 

(8) 

i = 1, 2, 3, 4 
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where ~,,<1> are the functions defined in (6). As a rule, we shall v.rite a 
r 

for aJ.I. (tJ) and simplify other notations similarly, Substitution of (8) in 11, r 
(1) leads to a recurrence relation for the coefficients a r which is given 
hy \leixner (1951) as 

(v+2r-11) (V-l2r-/1-1) (v+2r+IH2)(v+2r+/l+l) 
Oa + Oa +r 

(11 + 2r-3/2)(v+ 2r-1/2) r-r (v+ 2r+ :3/2Xr/+ 2r+5/ 2) r 
(9) 

[ 

(v+2r)(v+ 2n 1)+ 11
2
-1 J 

+ >.J.I.(O)-(P+2r)(v+ ~ r + 1) + . 2() a = 0 11 (v+2r-1/2)(v~ 2r+3/2) ' 

r = 0, ± 1, ± 2, ... 

From now on \\e assume that''+ ~c is not an integer , {It appears that the 
case thus excluded has not been fully investi ga ted,) 

The recurrence relation (9) is similar to 16.2 (9), After division by a 
suitable factor it leads to an infinite determinant whose vanishing is the 
condition which determines the functional relationship between e, >.., 11· v. 
Alternatively, infinite continued fractions R n and L n may be derived as 
in 16.2(16),(17), \\e shall assume that aJ.L (0) has been so chosen that 11, 0 

(10) aJ.I. (()) = aJ.I. (U) = a - J.L (U). 
v, o -v- 1, o v , o 

lt then follows that 

From the continued fractions \\e have, as in ]6.2 (21), 

r 2 a r 2 a 0 
(12) lim ~= lim ~ = -

~oo r-1 r)-oc r+l 1 

unless the sequence of coefficient!:> ... , a_
2

, a_., a
0

, a 1' a
2

, ... terrni­
nates to the ri ght or the left, "hen tire first or th e second limit in (12) 
becon.es n•eanin£,;1ess. ll:is cannot happen unless v + 11 or v- 11 is an 
integer, From the aS)P.1ptotic forn •ulas for Bessel functions we have 

I ( 1) I I 11 4 
(13) lim V11+2r-2 lim lJI11+2r 

r2 '-" ( 11 2 =~ ,--."" r-)-00 r L';~~2r+2 11 +2r 

.;, <J > ' (j) 1-
(14) lim 11+ 2r I in: 

11 11+2r j = 2., 3, 4 2 I (j) r 2 ' (j) Oz 2 
r->"" r ll11+2r-2 r-+- ("10 V11+2r +2 
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and it follows from (12)-(14) that (8) converges when lzl > l. In this 
region, (l- z- 2 )-~IL may be made single-valued by defining it by the 

binomial expansion, and we may take -rr < arg z::; TT in (8), In the excep­
tional cases, when one or the other of the limits (12) ceases to exist, 
the series of coefficients terminates in one direction, and the question 
of convergence in that direction does not arise. 

Jl.L. Schmid (1948, 1949) investigated thoroughly a class of recurrence 
relations which includes (9), Jlis results establish the existence and 
uniqueness (up to a common factor) of the a r' and also the expansion of 
)..IL and aiL in convergent series of powers of e. 

11 11, r ( . ) 
The asymptotic behavior of 5 J as z .... oo may be determined by means 

of results by Meixner (1949). If j = 1, 2, and e > 0, we let z .... oo in the 
upper or lower half-plane, if j = 3, 4, z .... oo in any manner. Then 

(j) 

l/;11 +2r (-1)r 
1/1 (j) .... 

11 

as Z-+oo 

by 7.13 (1)-(4), lf we set 

(15) siL(e)= [ l: (-1)raiL (e)r 1 

V r=-oo v, r 

then 

(16) lim [5~<i>(z, eVI/;;)l(2e~ z)] = 1 
z .... 00 

where in the cases j = 1, 2, it is assumed that lm(e ~ z) I= 0 , This re lation 
may also be written as 

(17) 5~<i>(z, e)'"" I/J;J>c2e~ z) 

i = 1, 2, 3, 4, z ... oo, larg(ex z )I < rr 

and in this form the case o f positive eX z need not be excluded. \\hen 
j = 3, 4, the range of arg (ey, z) can be extended as in 7.13 (l), (2), to 
(-rr, 2rr), (-2rr, rr) respectively. We shall assume throughout that s~ is 

determined by (15). 
From (6) it follows that 1/JJl.(+lzl, and hence 5Ji.(ll, is of the form z 11 

11 r 11 
times a function which is single-valued near oo , so that 5~(1) is a solution 
of the first kind. 5~(2) may be called a solution of the second kind. From 
(16) (6) and 7,13 (1) (2) it is seen that 5Ji.(Jl anJ 5Ji. (

4
l vanish exponen-

' J I ll V I 

tially as z .... oo in the half-planes Im(O~ z) > 0 and lrn(eX z) < 0 respec-
tivel y : thus 5 (J. 

4
) are solutions of the third kind. [3eside 5~(j) we have 

the further solutions 5~JL<i> and 5!;:~~>, j = 1, 2, 3, 4. Between these 16 
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solutions there ace numerous relations which are consequences e ither of 
(16) or of (ll) and identities between Bessel functions, We list a few of 
these relations, omitting z and e which ace the same throughout, 

(19) SJ.L(Jl = SJ.L( 1l + iSJ.L(2l = e -; 71 <v+X> SJ.L(Jl 
v v v -v-1 

SJ.L(4l = SJ.L(1l _ iSJ.L(2l = e i7T <v+ X>sJ.L(4) 
v v v - v -1 

(20) SJ.I.(2) =- (cosJm)-1 [SJ.I.(l) sin (vrr) + SJ.I.(O ] 
v v -v-1 

SJ.L(Jl = [i cos (Jm)r1 [SJ.L( 1l - SJ.L(1l e- i 7T <v+X>] 
v -v-1 v 

SJ.L(o\) = [i cos(Jm)r1 [SJ.L( 1l e i?T(v+X>_ SJ.L(1l ] 
v v -v-1 

(18) follows from (17) since the asyrr.ptotic representation 1n a sector of 
angular width > 77 determines a solution of (1) uniquely, (19) and (20) 
follow from (6), (8), (11), (15) in combination with 7, 2 (4), (5), (6), (9), 
Meixner (1951) gives these and other relations, in particular formulas for 
the analytic continuation to values of acg (eX z) outside (-rr, rr), and 
formulas for the Wronskians of the solutions s~<i>, It turns out, like in 
the case of Bessel functions, that any two of our four solutions ace 
linearly independent since v + ~ has been assumed not to be an integer, 

The solutions discussed so far ace represented by series convergent 
for !z I > l, and ace especially useful when z is large. We now turn to 
solutions useful near ± 1, and also on the segment (-1, 1), and to expan­
sions convergent inside the unit circle. Meixner denotes these soluti ons 
as follows : 

(21) Ps~(z, e)= 
00 

(-lYaJ.L (e)PJ.L (z) :£ 
r=-oo 

v, r v+2r 

Qs~(z, e)= 
00 

(-1YaJ.L (e) QJ.L (z) :£ 
r=-CX" 

11, r v+ 2r 

00 

(-lY aiL (e) pJ.L (x) (22) Ps~(x, e)= :£ 
r=-oo 

v, r v+ 2r 

00 

Qs~(x, e)= :£ 
r=-oo 

(-1YaJ.L (e)QJ.L (x) 
v, r v+2r 
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II ere, P, Q are the Legendre functions as defined in sec. 3 . 2 for the cut 
plane, and P, Q are the Legendre functions on the cut defined in sec, 3.4. 
Accordingly, in (21) z is in the complex plane cut alon g the real axis 
from -oo to 1, and we take \arg(z ± 1)\ < rr in (21); and in (22) x is on the 
cut, -1 < x < 1, although these solutions could be continued analytically 
in to the complex plane cut along the real axis from - oo to - 1 and fron: 
1 to oo, 

Substitution of (21) and (22) in (l) leads to the recurrence relation 
(9) so that the a rare the same coefficients as before, \\e assume from 
now on that 

(23) aiJ-
0

(0)=1 
11, 

and also that (lO) and (11) hold, so that 

(24) Ps~(z, 0) = P~(z), Qs~(z, 0) = Q~(z) 

Ps~(x, 0) = P~(x), Qs~(x, 0) = Q~(x) 

From (12) and sec, 3.9.1 it follows that (21) and (22) converge every­
where with the possible exception of ± l and oo, From 3, 2 (3), 3, 6 (2) it 
follows that Ps is (z - 1)- ~IJ. times a function single-valued near :: = 1 
if 11f 0, 1, 2, ... , and Ps is (z- 1)~ .. times a function single-valued 
ne<u z = 1 if 11 = m = 0, 1, 2, .... From 3 , 2 (5) it follows that Qs is z -v-

1 

times a function single-valued near z = oo provided that 11 + v is not a 
negative integer, Thus, Qs is a solution of the first kind. 

Uetween the sixteen solutions Ps;IJ., Qs;JJ., Ps:~_ 1 , Qs~_ 1 , Ps eJJ., 
QstiJ., Ps=~-1' Qs:~_ 1 there are numerous relations. These follow from, 
and resemble, the analogous relations for Legendre functions given in 
sections 3.3.1 and 3.4. Examples of such relations are 

(25) Ps~ = Ps'::_
11

_
1

, Ps~= Ps':_
11

_
1 

(27) Ps~(-x) = cos[(l1 + v)rr] Ps~(x)- (2/rr) sin[(l1 -1 v)rrl Qs~(x) 

which follow, respectively, from 3.3(1), 3.4(7), 3.3(2), 3.40<'1.) in con­
junction with (11). For a more detailed list of such relations, and fo1· a 
list of \\ronskians, sec ~leixncr (1951). 
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Finally, we shall indicate the relations between the solutions repre­
sented by series of 13essel functions, and those represented by series of 
Legendre functions. S~lll and Qs':::v-l are both solutions of the first kind, 
they both belong to the exponent v at oo, and hence must be constant 
multiples of one another . Meixner (1951) writes 

(28) S~ 11 l(z, 8) = 11-
1 sin((v- !1)77] e -<v+tL+I)n iK~(8) Qs':::v-l (z, 8) 

and establishes a number of identities satisfied by K~(O): these follow 
from the identities valid for S~(t) and Qs::. An explicit expression for 

K ~ is based on the remark that it follows fron · (8), (6), and 7, 2 (2) that 

00 

L 
00 

L 
s= 0 

8Xv+r+s z zr +zs 
(-1)• a'" (8) -------

v,r s!C(v+2r+s+3/2) r=-oo 

while it follows from (21) and 3.2(41) that 

Multiplying both sides of (28) by z -v (1- z -z) XtL, expanding in a Laurent 
series, and then comparing coefficients of z zk we thus obtain after some 
simp I ification 

(k- r)! l'(v+ l,+ r +3/2) 

k 

2: 
(- 1) r a fL (e) 

v , r 

r =-oo 

x---------------------------
00 

2: 
r= k 

Since all S (j) may be expressed in terms of SIll by (20), and Ps may 
be expressed in terms of Qs by 3.3 (8), clearly (28) suffices to express 
any one of the Bessel function series in terms of l .egendre function 
series and vice versa . All these relations simplify considerably when 11 
and vare integers, see sec.16 , 1l. 
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16.10 . Further expansions, approximations, integral relations 

Power series expansions. f~xpansions in powers of:: or z 2
-] have 

been given by Fisher 0937) and others: they do not seem to be very 
useful either for analytical work or for numerical computations . 

Expansions in series of products of Ressel functions do not seem to 
be known except in the case of sphero idal wave functions, see also 
sec. 16.11. 

~1eixner (1950) bas g iven expansions of products of solutions of 
16.9(l)usseriesofproducts of Bessel functions and Legendre functions . 
!lis expansions are based on the following remark. In a notation which 
differs slightly from that adopted in sec. 16.1.:!, we introduce on the 
one hand spheroidal coordinates ,;, TJ, ¢ , and on the other hand spherical 
polar coordinates r, X• ¢whose pole is on the axis of revolution. The 
connection with the Cartesian coordinates is 

(l) X= c [(e.- 1)(1- TJ 2 )] X cos¢= r sin X cos¢ 

y = c [(,;z- 1)(1- ry 2 )]X sin¢= r sin x sin¢ 

z = c,; 'I = r cos A'+ c a 

and we put 10= K 2 c 2
• It follows from sec. 16.1.2 that 

s~<i>(,;, O)Ps~(ry, O)e±iJLcl>, s~<i>(,;, O)Qs~(Tf, O)e±iJL4> 

are solutions of L\ W + K 
2 1f' = 0; and so are 

An investigation of the behavior of these solutions as ,; -+ oo and hence 
r -+ oo, and again as 17 -+ ± 1 and hence X -+ 0 , rr suggests expansions of 
the form 

(2) 

~ biL (0 a) 1/J(J) (Kr) (JIL (cos x ) 
t =- 00 v, t ' v + t 11 + t 

where 

(3) Kr = 20X (e + TJ 2 + a 2
- 2atry-l)X 

cos X= (e + TJ 2 + a 2
- 2a t11- 1)-x (tTJ- a) 
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1\leixner shows that the b t satisfy a five-term recurrence relation (which 
reduces to a three-term recurrence relation when a= ± 1 or when a= 0), 
proves the existence of a solution of this recurrence relation, and the 
convergence, in appropriate regions, of (2), and gives an explicit repre­
sentation of the b t in terms of the a r of 16.9 (9) and certain other coef­
ficients 8~,' ts which satisfy a comparatively simple recurrence re lation. 
lle discusses the cases of integer values of Jl, v, 11 ± v, and shows that 
all important expansions of solutions of 16.9(1) n:ay be obtained by 
specializing the parameters in (2). 1:- or instance, if a= 0 and TJ _, l in 
the first expans ion (2), we obtain 16.9(8); again if a= 0 and ( _, oo , we 

obtain 16.9 (21). 
We obtain new expansions for solutions of 16.9 (1) if we take a = ± 1 

and (-> oo or TJ-> 1 in (2). These expansions, together with their regions 
of convergence are: 

(4) Ps~(z, ())= exp(±2()~ zi) ~ i± 1 b~ r<e, 1) P~+r(z) 
t=- 00 ' 

Qs~(z, 8)=exp(±20~ zi) t =~ooi± 1 b~. 1((), 1)Q~+/z) 
z "' 1,- l, 00 

(5) 

I z - 11 > 2, i = 1, 2, 3, 1 

s~"-<i>(z ()) = -- ..s~'-(0) 

G
z + 1) ''~'-

II ' z- 1 II 
~ b ~'- ( (J - l) 1/1 (j) [2 eX (z + 1 )] 

t = _ 
00 

v, t ' v+ t 

lz + 11 > 2, h = 1, 2, 3, 4 

The coefficients in all these expansions satisfy three-term recurrence 
relations, and in some regions these expansions are more useiul than 

those of the preceding section. For Ps~(x, 0), Qs~(x, 0) replace P~+t(z ), 

Q~+t(z) in (4) by r~+t(x), Q~+t(x). 
1\leixner also obtained more ge neral expansions by maki ng (-+ oo or 

17-> 1 in (2) without specializing a. The ensu ing expansions contain an 
arbitrary parameter: for special values of this arbitrary parameter they 
reduce to 16.9(8) and 16.9(22) or (4) and (5). 

Expansions of s~<;>(z, 8) in series of Bessel functions of argument 
2 e~ (z 2 - 1) ~ may be obtained by putting a= TJ = 0 in (2) . Such expansions 
were given by Fisher (1937), ~1eixner (1944) and others. 
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Approximations for small! e1. From 16.9 (7), (9), (24), (28), (29), taking 
lr = 0 in 16.9 (29), we have 

(6) ,\~(0)=v(v + 1), Ps~(z,O)=P~(z), Qs~(z,O)=Q~(z), 

Ps~(x, O) = P~(x), Qs~(x, 0) = Q~(x), 

a iL (O) = s iL(0) = 1 a iL (0) = 0 
11, 0 v ' v, r 

r = ± 1, ± 2, ... 

1/ e vn i r (l + 1/- p.) r (1/2- 1/) 
I i IT' e-n.V /( IL(O) = ---.,..,--___: ____ _ 
e-o IJ 2v+ 1 l'(v + 3/ 2) 

From the last of these relations and 16.9(20) it is easy to evaluate 

lim e-xv SJ.LCil (z, e) 
e-o v 

i = 2, 3, tl. 

For expansions of ,\IL (e) and a (e) in powers of e see ~leixner (1944, v v, r 
sec. 6.3). 

Asymptotic forms for large izi. From 16.9(17), 16.9(6) and 7.13(1), 
(2) 

(7) S~C3l(z, e) = ~e-X z-1 ei(2 fl y,z- Y,v n - Y.n>[1+ O(izi-1)] 

z->oo, -TT < arg(eX z) < 277 

(8) 
X 

s~C4l(z, e)= 1
2
e-x z-1 e-d2P z- Xvn - Xn l[l t-O(izl-1)] 

z -> oo, - 277 < arg ( eY. z) < 17 

and the asymptotic forms of s~co, s~(Z) follow by means of 16.909). 
~leixner 0951) has obtained asymptotic expansions in descending powers 
of::- a, with a arbitrary, and has given the four te'rm recurrence relations 
satisfied by the coefficients of his expansions. 

The asymptotic form of the Q s follows by 16.9 (213), and the P s can be 
represented as combinations ofthe Q s by 3.3 (3). 

Behavior near z = l. If p. is not a positive integer, we have from 
16.9(21) and 3.2(14) 
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(9) 
') ~J.L 

PsJ.L(z, 0)= - (z -1)- ~J.L ~ (-l)raJ.L (e) [1 + O(Jz-11)] 
v r'(1-j1) r =-oo v,r 

and similarly 

el z- ~,o- ~J.L 
[1 + 0(\z- 1\)] 

,, (1 - jl) s ~(e) 

(~2- ~x)-XJ.L 
(I 0) Ps~(x, e) = J.L [1 + 0 (1 - x )] 

l ' (1- jl) s )e) 

z -> 1 

The behavior of the Qs can be deduced from (9) and the behavior of 
S~(j) follows by means of 16.9(28) and 16.9(20). 

Integral relations. In order to obtain integral relations between solu­
tions of 16.9 (I) we remark that this equation arises when the wave 
equation L\IT1 + K

2 lf/ = 0 is separated in the coordinates ,;, ry, ¢introduced 
by (1) . Let N (,;, TJ) e iJ.L¢ be a solution of L\IT' + K 

2 W = 0, and let f(z) be 
a solution of 16.9(1). 13y a co!l"putation similar to that carried out in 
sec . 16.3 it is seen that 

(11) g (,;) = fb N (,;, TJ) f(ry) dry 
a 

is a solution of 16.9(1), with,; = z, provided that 

(12) 
[ 

2 (aN df ) J b (1- T/ ) ary f- N d; a= 0 

We choose f(ry) = P s ~Jl-(z , 0) a nd 

2 ~ 2 ~ ~ 03) N(,;, TJ) = (,; - l) JL (rl - 1) J.L exp(20 ,;TJi) 

From (9)and the asymptotic behavior of Ps it follows that(l2) is satisfied 
if we take a = 0, b = i oo, and lte (eX ,;) > I He e~ \. Under these circum­
stances 

is a sol uti on of 16.9 (l) w ith ,; = z. l\~oreover, from (9) and the theory o f 
Laplace integrals it follows that as,; ... oo in He(e ~ ,;) >\ Tie ex\, g(,;) 
behaves asymptotically as 
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cxp(20v, (i + 1
1 p.rri-+ 12rri) 

(20V: )JL+ 1 ( s~IL (O) 

so that from (7) 

Thus we obtain thP first of the two intcp·al relations 

(] J) 5~( 3) ( ( , 0) = - e -', (JL+v) TT i 2/L o''>JL S ~Jl.({J) ce- J) 'f.JL 

'< J i oo (ry 2 - l) V,11 Ps - IL (ry, 0) cxp(20 '1, ( ryi)dry 
1 v 

(ls) s ~ <4l(f;, O)--c ', (J..LTvl n i2JL O'''Jl. s~I1(U)Ce-l)'w 

X f -'"" (ry 2
- 1 )''•Jl. Ps ~IL(ry, e) exr (- 2 {/" f; ry i) dry 

1 

The proof of (lS) is sin.ilar. 
He(O y, f;) > JHe Oy, J 

16.11. Spheroidal wave functions 

In the appl i cations lo solutions of the wave equation 1n prolate or 
oblate spheroidal coordinates (sec sections 16.1.2 and 16.1.3), 11 = m 

is an integer in 16.9(1). \1oreovcr, only those values of ' ' and A are of 
inlcre!:.t for \vhiclo 16.9(1) possesses a solution which is bounded on 
tl1e interval (-1, 1). \\ithout restriction, we n•ay lake 111 = 0, l , 2, .... \\e 
sec froll' the table in sec. 3.9.2 that th e only solution of Hi.9(]) which 
ren ·a ins bounded at z = l is Ps ~ (x, 0) (or a conslan t IT' nit iplc thereof). 
holT' 11). 9 (22) and 3. 9 (] 3) and (15) we see that this solution is unbounded 
al::: = - 1 unless vis also an integer. Accordingly, from now on we shall 
restrict ourselves to the differential equation 

(l) 

where m and n are ir.tcp:ers and () is real. On account of 16.9 (7), we may 

take m, n = 0, l, 2, •.. and n ~ m. 
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Mostofthe older, and many ofthe more recent, papers deal exclusively 
with the case of integer J.! and v, and the solutions of (l) arc mostly 
referred to as spheroidal wave functions, although some authors use this 
name for the solutions of the more general equation 16.9(1). The A." (0), 
m, n = 0, 1, 2, ... are called the characteristic values of A., and the 
bounded solutions Ps ~ (x, e) which arc the corresponding characteristic 
functions are called spheroidal wave functions of the first kind. There is 
a fairly extensive literature on spheroidal wave functions. For a biblio­
graphy and a summary of the resu Its up to 1932 see Strutt (1932), for 
references to more recent literature see Uouwkamp (1947) and 1\leixner 
(1951): the latter paper also gives an excellent summary of the results. 
Some of the more recent papers are listed under Abramowitz, 13ouwkamp, 
Eberlein, Hanson, Leitner and Spence, 1\leixner, Sips, Spence, Stratton 
et al. at the end of this chapter. For numerical tables see Stratton et al. 
(1941), Bouwkamp 0941, 1947), l\leixner (1944}, Leitner and Spence (1950). 
It should be noted that there is no uniform notation, and care is needed 
in using the results of the aforementioned papers. 

The numerical computation of A." (e) for moderate values of e may be 
based on the infinite continued fr;ctions mentioned in sec. 16.9: this 
method has the advantage of producing the ratios a /a

0 
in the course of 

the computation. For a description of the computational routine see 
Bouwkamp (1941, 1947) and Ulanch (1946). For small values of e the 
characteristic values and the coefficients may be represented by series 
in ascending powers of e. Bouwkamp (1950) and Leitner and Spence 
(1950) give the expansion of A.~ (e) in powers of 8 up to and including 8 4

• 

The numerical values of the coefficients in this expansion have been 
tabulated by Bouwkamp (1941, 1947, 1950), while 1\leixner (1944) tabulated 
the coefficients in the expansion of A.~ (e) up to and including es, and for 
a" (8)/a" 

0
(8) up to and including 83. 

n, r n, 
We assume throughout that m and n are integers, and 0 ~ m ~ n. In the 

recurrence relation 16.9(9)satisfied by the coefficients of the expansions 
16.9(22), the factor of ar+l vanishes when 

2r=-m-n-1 or 2r = -m- n - 2 

according as m + n is an odd or even integer. From the infinite continued 
fractions representing the coefficients it follows that 

(2) a • (8) = 0 
n, r 

2r ~ -m- n - 1 
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From 3.6 (3) and (6) it follows that 

- m- n - 1 < 2r < m- n 

so that the first expansion (22) reduces to 

(4) Ps~(x, 0) = L 
2r ;:>: • -n 

(-1Ya" (O)P• (x) 
n,r n+2r 

or 

(5) ~ 
r = o 

k, m = 0, 1, 2, ..• 

The coefficients satisfy 16.9 (9) with 

p.. = m, 11 = n, and ar=O for 2 r ,:$-m -n-l. 

We normalize (4) so that 

(6) 
1 (n + m)! F [Ps•(x, O)f dx = -- -:-----,--

- 1 n n + ~ (n - m)! 

I3y 3.12(19) and (21) this is equivalent to normali zing the coefficients so 
that 

(7) L 
2r ;:>: 11 -n 

1 (n+2r+m)! 
2 

1 (n+m)! 
[a" (0)] = -----

n + 2 r + Y2 (n + 2 r - m) ! n, r n + Y2 (n - m) ! 

and we complete the normalization by 

(8) a~. 0 (0)> 0. 

On account of 16.10 (6) this normalization is consistent with 16.9 (23). 
The ser ies 

(9) P<(z, 0)= L (-1Ya'" (O)P"'+
2 

(z) 
2r ~ . - n n, r n r 

converges for all finite z, and the functions (4) and (9) differ only by a 
factor of (± i)•. 
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From 3.3(7), (10) and 16.9(l1)we have 

_ (n - rn )! 
(10) Ps "(z, 0) = Ps "(z, 0) 

n (n + m )! n 

Ps ~ (-z, (J) = (-1)" Ps ~ (z, e) 

and numerous other relations for Ps and Ps follow from known formulas 
for Legendre functions. From 3 .4(20) ancl 3.4(23) we have 

(2m+ 2k)! 
(11) Ps'" +2k (0, (J) = Ps =~ 2k (0, 0) 

.. (2 k)! 

00 

= 2" TT~ L 
r= -k (k + r)! l' (~ - k - m - r) 

fr, m = 0, 1, 2, ... 

d Ps!~ 2k (12) (0, 0) = 0 
dx 

d rs:+2k+1 (2m+ 2k + l)! 
dx (O,(J)= (2k+1)! 

"" =-2'"+1 TTY,\' (-1Va:+2k+1 r(O) 
L (k + r)! I~(- ~2 - k - m - r) 

r=- k 

k, Ill = 0, 1, 2, 

For the solutions 16.9(8) we have in this case 

i = 1, 2, 3, 1\. 

Qs'!:v- 1 becomes infinite when v- 11 is zero or a positive integer but 
sin [(v- 11) 7T] Qs '!:v_ 1 approaches a finite I imit. By 3. 3 (3) 

sin[(v- f.L)TT] Qsl!:_v_
1 

(z, ())_. (-1)"+n+l 7T PS: (z, (J) 
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asp.-+ m, v • n, and 16.9(28) gives the connection 

(14) S"c 11(z, fJ)= K"(U) Ps" (z, 0) 
n n n 

between the two solutions (9) and (13), thus showing that spheroidal 
wave functions of the first kind may be represented by series of l3essel 
functions of the first kind; and these series turn out to be convergent 
for every finite non-zero z. The expression for/\" simplifies considerably, 
l sing (9) and (13) and proceeding as iP. the derivation of 16.9(29), with 
k = (m - n)/2 or (m - n ~ 1)/2 according as m - n is even or odd, we 
obtain 

= L (-] )" 17y, eY.m s - .. (8) a.. (U) 
2 n n , (•- n)/ 2 

06) l'(m +5/2)K:(e} 
d Ps" 

dx 
(0, 0) 

n- m even 

n- m odd 

From (14), (15}, (16) follow explicit expressions for th e values of 
s< tl and dscn/dz at z = o. 

Other expansions for spheroidal wave functions of the first kind arc 

(17) Ps"(z, 0)= exp(±20y, zi) 
n 

~ i ± t B"' (fJ) P" (z) 
t =m n, t t 

which follows from 16.10(4),_ some expans ions which can be derived 
from 16.10(2), (5), and expansions in series of products of l3essel func­
tions which were given by ~leixner (1949). 

Spheroidal wave functions of th e first kind are orthogonal functions 
on the interval (-1, 1 ). For statements about the zeros see ~le ixner (1944). 

Both S" <21 (z, 0) and Qs" (z, fJ) are spheroidal wave functions of the 
n n 

second kind. If lzl > 1, both of these functions satisfy the functional 
equation f(- Z) = (- 1 )"+I { (z ), and hence the y are numerical multiples 
of each other . 1\Jeixner (1951) gives the relation between them in the form 

Other expansions follow from 16.10(2), (4), (5) expansions in series of 
products of l3essel functions were given by l\1eixner (1949) . Spheroidal 
wave {unctions of the third kind are s:<J, 41 : they can be expressed in 
series of Legendre functions by means of 16.9(19), 16.11(14), (18). 
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We are now In the position to construct appropriate normal solutions 
of the wave equation in spheroidal coordinates. First, let us take 
prolate spheroidal coordinates u, v, ¢. It has been explained in sec. 
16.1.2 that for a wave function which is regular inside a spheroid u = u

0
, 

U is a spheroidal wave function of the first kind, and V is a modified 
spheroidal wave function of the first kind. Thus, interior prolate sphe­
roidal wave (unctions are seen to be of the form 

(19) S'"'ll(cosh u ~4K 2 c 2 ) Ps" (cos v, ~~K 2 c 2 ) e± •• ¢ 
n ' n 

m = 0, l, 2, ... , n; n = 0, l, :2, 

while external prolate spheroidal u1ave functions are of the form 

(20) s•<i>(cosh u, ~.K 2 c 2 ) Ps" (cos v, ~.K 2 c 2 ) e± ; .. ¢ 
n n 

j = 3, 1; m = 0, 1, ... , n; n = 0, l, ..• 

where j = 3 or 1 ac-cording as the asymptotic behavior at infinity is pre­
scribed as r- 1 eiKr orr- 1 e-iKr 

For oblate spheroidal wave functions we obtain from sec. 16.] .3 . 
similarly 

(21) s•<i>(-i sinh u, ~K 2 c 2 ) Ps" (cos v, -~.K 2 c 2 ) e± i•¢ 
n n 

j = 1, 3, 4; m = 0, 1, ... , n; n = 0, 1, ... 

where j = 1 for wave functions for the interior, and j = 3, 4 for the ex­
terior, of an ellipsoid u = u

0
• In (21), 40 =- K

2 c Z, and it is understood 
that 20~ =iKe is taken in the asymptotic formulas of sec.16.10. 

The expansion of an arbitrary function given on a (prolate or oblate) 
spheroid u = u

0 
in a series of the form 

00 

I. 
n= 0 

n 
I. (A • cosm ¢ + 8 ~ sinm ¢) Ps: (cos v, 0) 

•= 0 n 

is valid under the sarr:e conditions as for spherical surface harmonics, 
and the coefficients may be computed by using the orthogonal properties 
of trigonometric functions and of spheroidal wave functions. 
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16.12. Approximations and asymptotic forms for spheroidal wave functions 

Behavior near ± l. The behavior of spheroidal wave functions ncar 
± 1 may be investigated by substituting the approxin1ations g iven in the 
table in sec. 3. 9. 2 in the ex pans ions of spheroidal wave functions in 
series of Legendre functions, and then using 16.11 (2), ]6.9(]1), and 
16.9(15) to simplify the formulas, The results are as follo\\S, 

(2) 

(n + m )! 

I~S/0 (x, e)= (n + m)! (-1}" (1- x)Y,m I 

' --- ---..,....------ + O(j1- xj 1 + ~") 
n (n-m)! 2Y,m rn!s "(e) 

n 

m = 0, 1, ... , n; n = 0, 1, ... 

] ~ -1) = -- [s oum-1 log --
2 n 2 

(-1)" (m- 1)! 2Y,"- 1 

--------;-;,..--- + O(jz- 1\ 1 - ~ ") 
s •(e) (z - 1)Y.• 

n 

m = 1, 2, ... , n; n = 1, 2, ~ .... 

where 

(3) h 0 = 0, 
J 1 1 

h = - + - ~ ... + -
k ] 2 /: 

k = 1, 2, ... 

For Qs, replace z-] by 1- x in (2) . 
The behavior of these functions ncar -1 follows fr om 

(4) Ps "(-z, e)= (-1}" Ps" (z, 0), 
n n Qs"(-z e)=(-1)"+ 1 Qs•(z e) 

n ' n ' 

Ps:(-x, e)=(-1)"-" Ps:(x,O), Qs "(-x, 0) = (-1}"-,+ 1 Qs'"(x, e) 
n n 
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Behavior near infinity. For S"(j) see 16.10(7), (8) and 16.9(19). The 
P s and Qs may be expressed in ~crms of the 5 ~(;)by means of 16.11 (14), 
(18). 

Approximations for small 101. For A, Ps, Qs, 
From 16.10(6}we also have 

(5) 
(n - m)! 

lim o-Y.n K• (0) = --..---=--
e--o n 2"(_!_} (~) 

2 n 2 n 

see 16.10(6). 

, (n + m )! 
lim o-Xn K-m (0}= m = 0, 1, ... , n; n = 0, 1, ... 

e -o n 2 n ( .!.) ( ~) 
2 n 2 n 

and then by 16.11 (14), (18) 

(6) 

lim 0Y,n+XS'"(Zl(z,0)=- - - Q"(z) ( l}m+l 2"- 1 (1) (3) 
e -o n (n + m)! 2 n 2 n n 

m=0,1, ... ,n; n=0,1, ... 

Asymptotic forms for large I 01. First 0 will be taken as positive. The 
substitution 

(7) y = (1- z 2 )X• Y, 2 0~ z = Z 

carries 16.11 (1) into 

(8) (1- 2z0zy,) dz y m + 1 dY + (A- ~.z) y = 0 
dZ 2 

- 20y, dZ ·• 

where 

(9) 

For large 0, (8) is approximately the differential equation 8.2(1) of 
parabolic cylinder functions, and the interval -1 < z < 1 corresponds, 
in the limit as 0-+ oo, to-"" < Z < oo, Now, rs• is a bounded solution of 
16.11 (l), and also (1- z 2 )-y,., Ps" (z, 0) is b~unded on -1 < z < l. On 
the other hand, it is seen from sec. "8.4 that \\eber's differential e quation 
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has a solution which is bounded on -oo < l < oc if and only if}\- ~2 is a 
non-negative integer. 1\loreover, this integer is equal to the number of 
zeros of the bounded solution; since Ps~ has exactly n - m zeros, we 
conclude that}\ is approximately n- m + ~2, and Ps~ is approximately a 
numerical multiple of (1- z 2 ) ~ '" D "-" (2 e'-' z ). Thus we obtain 

(lO) >.."((;I)=- 4{;/ + 2(;1~ (2n- 2m+ 1)+ 0(1) (;1_. oo 
n 

Ps" (x (;I) "' c '" (1 - x 2 ) !{" D (2 0!4 x) ()-+ oo 
n ' n n-m 

where 

(ll) c '" = Ps~ (0, 0)/D n-• (0) n- m even 

d Ps'" /dD 
c " = ~e-~ ---" (0 ()) ~ (0) 

" dx ' dZ 
n - m odd 

Explicit expressions for c"" follow from 8.2(4) and 16.11(11), (12). 
In order to obtain increased accuracy, one may replace (10) by formal 

infinite series, 

(12) >."(()) = -10 + 20~ (2n-2m+1)+ ~ ()-~'>." 
n r = 0 n, r 

substitute (12) in 16.11 (l) and then equate coefficients of like powers 
of e. Approximations along these lines were obtained by Meixner (1944, 
1947, 1948, 1951), F:berlein (1948), Sips (1949). In particular, Meixner 
(1951) gives the expansion of>..~ up to and including the term (J- 512

, and 
he also states some of the c" . The usefulness of these formulas has 
been tested numerically. 

n, r 

If x is bounded away from zero, the parabolic cylinder function in 
(10) may be replaced by its asymptotic representation 8.4 (1). In the 
neighborhood of x = 0, the behavior of Ps" (x, ()) is more complex since 
all zeros cluster around this point. " 

\\hen () is negative, the points around which the zeros cluster are 
x = ± 1, and accordingly, these are the points near which the behavior 
of Ps~ (x, ())is rather complex. To investigate the behavior near x = 1, 
the substitution 

4(-e) ~ (1- z)= z 
may be used to transform 16.11 (l) into 
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04) z [ 
Z J d 

2 

Y [ Z J dY 1 - -- + (m + 1) 1 - --
8(-0)y, dZ 2 4(-0) y, dZ 

+ A-- 1- Y=O { z [ z ]} 
1. 8(-0)y, 

where 

(15) 8 A = (- 0)-X (A • - m - m 2
). 

n 

For large values of- 0, 04) is approximately a differential equation of 
the form 6.2(1) with 

b 0 = 0, b1 = m + 1, b2 = A. 

The general sol uti on of this approximate equation is given by 6 . 2 (6) as 

e -y,z 3 ~m; 1 
- A, m + 1, Z) 

where 3 (a, c, x) is the general solution of 6.1 (2). Since Y is pounded 
on 0 < z < 1, it must be bounded, as e ... -oo ' on 0 < z < oo, :\ow, the only 
solution of the confluent hypergeometric equation with c = m + 1 which 
is bounded at Z = 0 is <I> (a, c , Z ), and it is seen from 6 .13 (2) that this 
function increases exponentially as Z-> oo unless a is zero or a negative 
integer. Thus, ~ (m + 1)- A= -M, where M = 0, l, 2, ... , and the solu­
tion is approximately a numerical multiple of 

e-xz <1>(-M, m + l, Z) 

or, by 6.9(36), a numerical multiple of 

exp[2(-0)y, z] LZ [4(-0) X 0- z)). 

1\ow, M is the number of zeros of this solution in O<z < 1. SincePs~(z, ()) 
has (n- m)/2 or (n - m- 1)/2 zeros in this interval according as n- m 

is an even or odd integer, we have n = m + 2M or m + 2M + 1 according 
as n- m is even or odd. Moreover, Ps• (z, ())is an even or odd function 
of z according as n - m is even or odd~ and hence we have the following 
results: 
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(16) .\:+
2
k(O)= 4(-0)x (m + 2k + 1) + O(l) d ->- 00 

+ exp[-2(-e)Xx] L~ [4(-0)x (1 + x)]l 

C:+2k = Ps:+2k(O)/ L: [4(-0) X] 

(17) .\:+
2
H

1 
(0) = 4(-0)x (m + 21<: + 1) + O(l) 

0->- oo 

0->-oo 

Ps:+
2
k+l (x, 0) "-' ~ c;+2k+l (1- x 2 )X•Iexp [2(-0) X x]L :[4(-0)X (1-x)) 

- exp[-2(-0)Xx] L: [4(-0) X(l + x)]l o ... -oo 

The coefficients c ~ may he obtained by comparing both sides for small 
values of x. 

As in the case 0-> oo, increased accuracy may be obtained by expanding 
,\ ~ in decreasing powers of (- 0) X, and Ps ~ in a series of Laguerre 
polynomials (combined with exponential functions as above,) substituting 
in 16.11 (1) and then equating coefficients of like powers of e. See 
Svartholm (1938), Meixner (1944, 1947, 1948, 1951), Sips (1949). In 
particular, Meixner (1951) gives the expansion of>..:: up to and including 
the term (- e)- 512

' and he also gives a few coefficients in the expansion 
in series of Laguerre polynomials. 

If x is bounded away from ± 1, then the Laguerre polynomials in (16) 
and (17) may be replaced by the leading terms 

Near ± l the behavior of Ps is more complex and cannot be described by 
elementary functions. 

Other asymptotic forms. The asymptotic behavior of,\'" (()) and a • (()) 
n n, r 

as n -> oo has been investigated by Meixner (1944) who showed that the 
continued fractions lead to expansions in descending powers of 2n + l. 
Jle gives the expansion of A~ up to and including the term (2n + 1)- 5

, 

and the expansions of a /a 
0 

up to and including the terms (2n + l)-2
• 

Abramowitz (1949) investigated the case of a large m, and that of 
large m and 0 by methods similar to those employed above for the investi­
gation for large jOj. lie also tested his formulas numerically. 
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16.13. Series and integrals involving spheroidal wave functions 

Integral relations and integral equations. The integral relations estab­
lished towards the end of sec. 16.10 remain valid for spheroidal wave 
functions. In addition, there are integral relations with a = - 1, b = 1 
since Ps" is bounded on (- 1, 1), and has a bounded derivative, and 
hence 16."10(12) is satisfied for a = - ], b = 1 whenever{\' and ai\/aTJ 
are bounded. ~e take the nucleus 16.10(13) and consider 

(1) 

13y the work of sec. 16.10, this is an e llipsoidal wave function, and 
since g(f) is bounded on - 1 < f < 1, it is a nurr.erical multiple r.f 
Ps~ (.f, 0). In order to determine the numerical factor involved here, we 
compute 

by substituting 16.11 (4) . Now 

(3) r (1- 7J2) ~" p~+2r (7J) d7J 
-1 

c learly vanishes if n- m is an odd integer because then the integrand is 
an odd function of 7J; and by 3.12(25) the integral also vanishes when 
n - m is even and n + 2r f, m. Lastly, when n + 2r = m , we have by 
3 .12 (25) 

(4) J_'1 (1- TJ2)~'" 
(- 2)" m! 

P" (7J) d7J = ---
.. m + h 

Similarly, 

J~1 TJ(1-7J2)~" p:+2r(TJ)d7J 

vanishes unless n + 2r = m + 1 and 

(5) 
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so that 

(6) 
k+ 2m m! 

g(O)= (-1) "-- a~.-k(e) 
m+~ 

n = m + 2/c 

g(O)=O n=m+2k+1 

dg 
-(0) = 0 n=nz+'21r 
d( 

dg 2" m! 
-(0)=2eX i(-1)k+m ll~.-k(e) n=m+2k+1 
d( m + 3/2 

Using these results and the parity of Ps, we obtain from (1) the 
integral equations 

(7) 

(8) 

n = m + 2k + 1 

Meixner (1951) gives also the integral relations 

(9) J~ 1 exp(2i eXafry) J.,l2[e(1-a 2)0-7J 2 )(e-1)]y,! Ps~(ry, e)d7J 

= 2i n-m S"< 1>( t: 0) Psm (a e) 
n S ' n ' 

(-1)" e-x .. ( + )' 
--::--:----n __ m_. (a2- 1)-Y,m sm<J>c,;, 0) sm(l)(a e) 
2 2m 1 m! (n _ m)! n ' n ' 

In (10),Kr and cos X have the same meaning as in 16.10(3) . \\hen i = 1, 
(10) is valid for all .;, when j = 2, 3, 4 only for sufficiently large ( . !3oth 
relations can be established by remarking that their nuclei, as functions 
of (and 7], satisfy the partial differential equation of N in sec. 16.10 
and hence the integrals, as functions of(, are e llipsoidal wave functions. 
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In the case of (9), this wave function is bounded at ~ = ± 1 and hence 
must be a multiple of S" 10(~). The factor involved here may be deter­
mined by multiplying by(~ 2 

- 1)-x .. both sides of (9), making ~-> 1 and 
using (7), (8), and 16.12 (l). In the case of (10), the asymptotic behavior 
as ~-> oo determines the right-hand side. 

Other integral formulas may be derived from some of the expansions 
of earlier sections by using the orthogonal properties of Legendre func­
tions. For instance, it follows from 16.11(4), 16.9(11), and the ortho­
gonal property and normalization, 3.12 (19) and (21), of Legendre functions 
that 

(ll) J1 Ps~ (x, 8) P~ (x) dx = 0 
-1 

if 

(-lYa• ((;)) J1 Ps~(x, 8) P~(x)dx = n r 
-1 l + ~ 

l - n is negative or odd 

(l + m)! 

(l- m)! 

(-1)r U:"r((;l) (n + m)! 

l + ~-~ (n- m) ! 
if l- n = 2r, r = 0, 1, 2, ... 

Other integral formulas may be derived from expansions such as 16.10(2) 
and its various special and limiting cases. Some important integrals may 
also be obtained by giving special values to a, a, (in (9) and (10), see 
Meixner (1951). 

From the series and integrals already obtained, a number of expansions 
in series of spheroidal wave functions, or products of such functions 
follows. (ll) may be thought of as determining the Fourier coefficients 
in the expansion of P7 (x) in a series of spheroidal wave functions, 
and leads to the expansion 

(12) P~(x)= ~ 
r = 0 

which may also be regarded as the inversion of 16.11 (4). Similarly 
(7)-(10) may be interpreted as determining the Fourier coefficients in 
the expansions of the nuclei of these integral relations in series of 
spheroidal wave functions, see Meixner (1951). The expansions of plane, 
spherical, and cylindrical waves in spheroidal waves were given by 
Meixner (1944, 1951), Leitner and Spence (1950). 
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ELLIPSOIDAL WAVE FUNCTIONS 

16.14. Lame's wave e(JJation 

The differential equation 

(]) d
2 

2
'\ + lh -l[sn(z, k)]2 + u/e[sn(z, k)] 4 I A = 0 

dz 
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(see sec. 16.1.4) will be called the Jacobian form of Lame's wave 
e quation: it is sometimes also called the generalized Lame' equation, or 
the differential equation of ellipsoidal wave functions . If cu = 0, (l) 
reduces to I ame's equation 15.1 (6). In this section, all elliptic functions 
will have the same modulus k, and 15.1(6) shows that 0 < k < l. Sec, 
15.1.1 also shows that in ellipsoidal wave functions only those values 
of z occur for which Im z = 0, or lm z = K ~ or else He z = K but at first 
(l) will be considered for arbitrary complex values of z, 

An algebraic form of Lame's wave equation may be obtained by the 
change of variables 

(2) (sn z) 2 = x 

which transforms (l) into 

d
2 

A 1 (1 1 
(3) -- + - - + --

dx2 2 x x-, 1 
1 ) dA 

+ --
X- k - 2 dx 

The \\eierstrassian forn' of (l) may be obtained by the substitution 
15.2(2), trigonometric forms by 15.2(4), combined with A= f(z)M where 
f (z) is 1, sn z, en z' dn z, en z dn z, sn z dn z' sn z en z, or sn z en z dn z' 
and an alternative algebraic form by 15,2 (8) and other rational trans­
formations of (3). 

Equation (3)has four singular points: x = 0, l, k - 2 are regular singular 
points, each of them with exponents 0 and ~2, and x = oo is an irregular 
singular point. For the general theory of equations with irregular singular 
points see Ince (1927, p. 417fT.), Around any of the regular singular points 
there are solutions in terms of power series, very much like in the case 
of lleun's equation (sec, 15.3); but no such convergent expansion exists 
around the irregular singular point. Instead, there are formal expansions 
of the form 

(4) 
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where~ = x x , (x- l)\ or (x- k-z)X (subnormal solutions, Ince 1927, 
sec . 17.53). Although these forn1al series are divergent, they represent 
asyrr.ptotically, as x-> oo in certain sectors, solutions of (3). 

Equation (3) can also be considered, in several ways, as a confluent 
form of an equation of the Fuchsian class. The point of departure is 
either an equation with five regular singularities Once 1927, sec. 15.4) 
or else an equation with six elementary singularities Once 1927, p. 592) . 

From the genera l theory of differential equations with doubly-periodic 
coefficients Once 1937, p. 375fT., Poole 1936, p. 170fT.) it follows that 
(l) has a solution of the form 

(5) p (z) 

where a and 11 arc constants which depend on h, k: l, w, and P (z) is a 
doubly-periodic function with reriods 2K, 2i K ',[In writing down (5), we 
used the relation 13.20(1) between the sigma function and theta func­
tions.] Clearly, 

(6) 

() c~) 1 2 K 
p (-z) 

is a lso a solution , and it is seen frotr (5), (6) and Table 8 in sec. 13.19 
that a is determined up to its s ign, and integer multiples of 2 K and 
2i K ', Once one of the possible values of a has been chosen, f1 is deter­
nlined. 

In general u
0

(z) and u
0
(-z) are linearly independent, and the general 

solution of (l) is a linear COP' bination of (5) and (6). The only exception 
arises when 11

0 
(z) = ± 11 

0 
(- z ), or 

t:ZJ.Lz 0 -- - +0 ---(z +a) (z- a) 
1 2 K - - 1 21\ 

Putting z = a , we see fr om 'I able 9 of sec. 13.19 that a / K is a zero of 
0

1 
(v) and hence a = m K + n h. 'i in this case. Putting z = K we see from 

'! able 8 of sec . 13.19 Lhat e 2
J1){ = ± 1 and hence 2 K f1 = n 'rri in this 
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case, and a brief computation shows that n = n '. In any event, it follows 
that in the exceptional case u

0 
is either an even or an odd function of z, 

u
0

(z + 2K) = ± u
0

(z), u
0

(z + 2K'i)= ±u
0

(z) so that 2K and 2K'i are 
periods or half-periods of u

0 
(z ). In this exceptional case a solution of 

the second (or third) kind must be constructed in order to obtain a general 
solution of (1). 

According to sec. 16.1.4, the boundary conditions forB ({3) and C (y) 
in the case of ellipsoidal wave functions are the same as m the case of 
e II ipsoidal harmonics, and by sec. 15 .1.1 this means that the only case 
of interest from the point of view of ellipsoidal wave functions is the 
case when (l) possesses a solution which is a doubly-periodic function 
of z, with periods 4K and 4i K '. This is precisely the exceptional case 
of the last paragraph. The doubly-periodic solution isu (z), and is called 

, 0 
a Lame wave function of the first kind. There are two conditions for the 
existence of such a solution, one is a condition on a, the other on ll· 
Given w [= (a 2

- b 2 )X K in the case of the wave equation], these two 
conditions determine characteristic values of both h and l. 

From now on we assume that w is fixed in (1), and h and l have 
characteristic values. As w--> 0, the characteristic values of l approach 
ln = n(n + 1)k 2 where n = 0, 1, ... , to each ln there belong 2n + 1 char­
acteristic values of h, these being the characteristic values of h belong­
ing to Lame polynomials (see sec. 15.1.1). This shows that for w = 0 
the characteristic values of l are degenerate (or multiple): this degen­
eracy disappears when w,;, 0 (see also Strutt 1932, p. 61). 

If h and l have characteristic values, then u
0 

(z) is a Lame' wave 
function of the first kind. \\e have seen above U1at inthiscaseu

0
(-z) 

and u
0

(z) are linearly dependent, i.e., u
0 

is either an even or an odd 
function of z, and it may be proved as in sections 15.5.1 and 16.4 that 
u

0 
is also an even or an odd function of z- K, and likewise of z- K - K'i:. 

According to their parity at the points 0, K, K + K 'i, Lame wave func­
tions of the first kind may be divided in eight classes, and functions 
within the same class may be characterized by the number of their zeros 
on the intervals (0, K), (K, K + K 'i). There does not appear to be a 
standard definition of these functions, nor is there a well-developed 

notation. 
As in sections 15.5 and 16.4, the properties of Lame wave func­

tions at z = 0, K, K + i K' may be used to set up a number of Sturm­
Liouville proble!Tls for the intervals (0, K) -and (K, K + K' i). As in 
sec. 15.5, each Lame wave function is a common characteristic func­
tion of two Sturm-Liouville problems, one for each of the two intervals 
(0, K) and (K, K + K 'i). For each of these two Sturm-Liouville prob­
lems one obtains characteristic curves, that is characteristic values 
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of h in their dependence on l, and the characteristic values of h and l are 
determined by the intersections of these curves in the h,l-plane. Ortho­
gonal properties of Lame wave functions follow from these Sturm-Liouville 
problems in conjunction with the symmetry properties at the points 0, K, 
K + K 'i. 

1\o integral equations seem to be known for Lame wave functions but 
M;;glich (1927) has derived integral equations for ellipsoidal surface 
wave functions. From 16.1 (21), (22) it is seen that 

(7) 41({3,y)=B({3)C(y) 

satisfies the partial differential equations 

(8) 

Solutions of (8) which are regular on the surface of an ellipsoid (sec. 
15.1.1) will be called ellipsoidal surface wave functions. Transformed 
to the coordinates ¢, e introduced by 15.5 (45) we shall abbreviate (8) 
as 

(9) L 8 . <1> 'V = o. 

Now consider 

(10) exp[iK(x sinO'cos¢'+y sin O'sin¢'+ z cosO')] 

which represents, for fixed ()', ¢: a plane wave, and hence is a solution 
of {\If' + K 

2 If' = 0. Using 15.1 (8) and 15.5 (45), and putting CtJ = (a 2 - b 2 ) X K, 

(10) becomes 

(11) K(O, ¢; e: ¢) = exp~(t)~ sna sinO sinO' cos¢ cos¢' 

+ i kk' cna sinO sinO'sin¢ sin¢'+ i dna cosO cosO')] 

1\loglich now shows that for any fixed a, K satisfies 

and deduces by a process similar to that employed in s e ctions 15.5. 3 
and 16.3 that for each fixed a the characteristic functions of the integral 
equation 
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f
71 271 

(13) J K(O, ¢; 0~ ¢ ') 'J!(O~ ¢')sin8'd()'d¢'= A111 (8,¢) 
0 0 

are e II ipsoidal surface wave functions expressed in terms of the coord i­
nates (), ¢of sec. 15.5 (45). 

Very little is known about the actual construction of Lame wave 
functions. El lipsoidal surface wave functions reduce to ellipsoidal sur­
face harmonics as w--+ 0, and this suggests an expansion of ellipsoidal 
surface wave functions in a series of products of Lan1e functions (i .e ., 
in a se ries of e lli psoidal surface har!T'onics). For sn:all values of w the 
expansion would be expected to converge rapidly (Strutt 1932, p. 60ff.), 

1\lOglich (1927) obtained a number of expansions of Lame' wave func­
tions by expanding the nucleus of the integral equation (13) in various 
ways, and allotting particular values (most! y 0, ± K, ± K ± K 'i) to a. 
The most noteworthy of his results are expansions of ellipsoidal surface 
wave functions in series of spherical surface harmonics, expansions of 
Lame wave functions in series of Legendre functions of variablek ,- 1 dnz 
(other possible variables being snz, k snz, cnz, ikk'- 1 cnz, and dnz), 
and expansions of Lame wave functions in series of spherical Bessel 
functions 16.9 (6). These latter series have the advantage of exhibiting 
the asymptoti c behavior of Lame wave functions as z --+ i K: 

Lame wave functions of the second and third kinds may be obtained 
by replacing 1/J 111 in Moglich 's expansions in series of Bessel functions 
by 1/Jy>, j = 2~ 3, 4 (Moglich has the series with !/J~41 which he calls 
integrals of the second kind). For ellipsoidal wave functions, B and C 
in sec. 16.1.4 are Lam~ wave functions of the first kind, while A is a 
Lame wave function of the first or the third kind according as the ellip­
soidal wave function is constructed for the interior or exterior of an 
ellipsoid. 

For further information on ellipsoidal wave functions see Malurkar 
(1935) and Moglich (1927). 
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CIIAPTEH XVII 

AN JNTRODUCTION TO THE FUNCTIONS OF NUMBER THEORY 

Preliminary Remarks. The purpose of this Chapter is merely to give 
a first information about the more common functions of number theory and 
to indicate where more results may be found. No comprehensive survey 
has been attempted, and in particular the "hole theory of algebraic num­
bers has been omitted, as have been all topics which require the defi­
nition of a group, or a valuation, or other algebraic concepts. 

In order to avoid too many references in the text, a list is given here 
of those standard works of reference which should be consulted for infor­
mation on the topic of each individual section. For the whole of Chapter 
17, L. E. Dickson (1919-1923) is the most important source. For the 
individual sections consult: 

17.1. L. E. Dickson, 191Y, vol . I; Hardy and \\right, 1938, 1945. 
17,2, MacMahon, 1915, 1916; Hardy and Wright, 1938, 1945, 
17.3. L. E. Dickson, 1919-1923. 
17,5. Landau, 1927, vol. I. 
17.6. Landau, 1927, vol. I; Hardy and Wright, 1938, 1945. 
17.7, Landau, 1927, vol. II; Titchmarsh, 1930, 1951; Ingham, 1932. 
17.8, Landau, 1927, vol. I, 1909, vol. I. 
17,10. Landau, 1927, vol. II. 

17 .I. Elementary functions of number theory generated by Riemann's 
zeta function 

17 .1.1. Notations and definitions 

The following notations will be used throughout this Chapter: 

l, m, n 

m\n 
mY n 

denote positive integers (unless another definition is 
given). 
means that m divides n. 
means that m is not a divisor of n, 
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(l) 

(m, n) 

~' 11 
din din 

~ 
(,., n) = I 

p, PI' p2} 
q, ql' q2 

L, II 
p p 

SPECIAL FUNCT!Qf';S 17.1.1 

denotes th e highest comn.on divisor of m and n, If 
(m, n) = l, we say that m is prime to n, or that m and n 
are coprime . 
sum or product taken over all (positive) divisors d of n, 

s um taken over all m which are prime ton. 

denote prime numbers, i.e., numbers > l which have no 
divisor except unity and the number itself. 

the sum or the product taken over all prime numbers 
p = 2, 3, 5, 7, ll, .... 

is the standard form of n written as a product of powers of different prime 
numbers. Except when n = l, v.e assume that 

(2) a
1 

> 0, a
2 

> 0, ... , a.,> 0. 

v(n) 

¢ (n) 

¢k (n) 

Jk (n) 

d (n) = ~ l 
lin 

d k (n) 

denotes tile nun,ber of different primes dividing n; 
v0)=0. 
denotes Euler's function, It is the number of positive 
integers m which are prime to, and do not exceed n. 

= L m k • ¢ (n) = ¢ (n ). 
(m, n) = 1, I ~" :S n 0 

fork = l, 2, 3, ... , denotes Jordan's function. It is the 
number of different sets of k (equal or distinct) positive 
integers ~nwhose highest common divisor is prime ton. 
A common notation for Jk(n) is rk(n) or 1.:th totient of n. 

is the number of divisors of n, 

for 1.: = 2 , 3, 4, ... , denotes the number of ways of ex­
pressing n as the product of k different factors, Expres­
sions in which the order of factors is different are re­
garded as dis tinct, 

(3) ak(n)= ~ dk 
din 

denotes tile sum of the 1cth powers of the divisors of n, (including l and 
n). 

( 4) d (n) = d 
2 

(n) = a 
0 

(n). 

\\e shall write a(n) for a
1 

(n). 
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The following definitions refer to the standard form (1) of n. 
A(n) denotes Liouville's /unction. If n has the standard form 

a + ••• +a 
(l ), A ( 1) = 1 and A (n) = (- l) 1 v. 

/l(n) denotes Mobius' function, !l(l)=1, !l(n) (-l) v if 

a 1 = a 2 = ··· =a,_,= l. Otherwise !L(n) = 0, 

1\ (n) Jenotcs zero unless n = p m is a power of a prime, In 
this case, 1\(n)= logp. 

Multiplic~tive functions . 1\ function f(n) which is defined for all 
positive integers nand for which 

(5) f(n)j"(m)=f"(nm) if (n,m)=1, 

is called multiplicative. lf j"(n) f(m) = f(mn) for all m, n then f(n) is 
c::tlled completely multiplicative, The terms factorable and distributive 
are also used. 

The functions which have IJeen defined in this section are also called 
arithmetical functions, this nante being applied to any function f(n) 
defined for all positive integers n. 

17 .1.2. Explicit expressions and generating functions 

If n is written in the standard form (l), then ¢(1) = 1, Jk(1) = 1, and 
for n > 1 

(6) 

(7) 

(8) 

(9) 

¢ Cn) = nO- p~ 1 )(l- r; 1
) ••• (1- p~ 1 ) 

Jk(n) = n k(1- p~k)(1- r;k) ... (1- p~k) 

d(n) = (a
1 

+ l)(a
2 

+ l) ... (a,_,+ 1) 

k (a
1 

+ 1) 

PI - l 
k (a + 1) 

Pv v - 1 

p~-1 pk - l 
v 

For a multiplicative function f(n) there IS the fundamental identity 

00 

2:. f(n) = fl [1 + f(p) + f(p 2 ) + ... ] 
n= 1 p 

valid if the series on the left is absolutely convergent. In this case the 
product on the right is also absolutely convergent, and it is known as the 
Euler product of the series, If f(n) is completely multiplicative, then 
1 + f(p) + f(p 2 ) + ... is a geometric progression, and we have 

00 

L f(n) = II [1- f(p)r 1 

n= 1 p 
f(n) completely multiplicative, 
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Applying the fundamental identity to the completely multiplicative 
function n -sand to some multiplicative functions related to it, we obtain 
a number of identities involving Riemann's zeta function. The zeta 
function is discussed in sec . 17 .7, and many of the identities below are 
obtained in this manner. 

((s) = 
00 

n-• = ll (1- p-•)- 1 ~ ._ 
n= 1 p 

00 1 
( l 0) 

((s) = 
~ 11 (n) n -. 

n = 1 

(\s -1) 
( ll) 

((s) 

[((sW 
(12) --­

((2s) 

00 

~ 
n= 1 

n= 1 

¢(n) n -s 

(13) [( (s)]k= ~ d
0

(n)n-• 
n= t 

[((s )]4 
oo 

(14) --= ~ [d (n)Jl n -s 
((2s) n= 1 

00 

(15) ((s)((s-k)= 2 ak(n)n-• 
n= 1 

Res > l 

He s > 1 

Rc s > 2 

He s > 1 

He s > 1 

He s > 1 

Re s > 1, k = 2, 3, ••• 

Res > l 

Res > max(l, Re k + 1) 

({s) ((s-a) ((s-b) ((s-a-b) oo 

( 16) = ~ a a (n) a b (n) n - • 
((2s-a-b) n=1 

Res > max[l, He a+ l, Reb+ 1, Re(a +b) + l] 

He s > 1, !.: ~ 2 

where I' denotes Legendre's polynomial (defined in sec. 3.6.2), 

(18) 
( ' (s) 

---
((s) 
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where the prime indicates differentiation with respect to s. Relations 
( 14), (16) were discovered by Ramanujan, and (17) was proved by Titch­
marsh; (16) has been generalized by Chowla (1928). 

The functions on the left-l.and side of (10), (11), (12), (13), (14), (15), 
( 16), (17), ( 18), may be cons ide red as generating functions of the coeffi­
cients of n -s on the right-hand side because of the following lemma: 

LEMMA: If ~ c n n -s = 0 for all real s ~ s 
0

, and if the series con-
n= 1 

verges absolutely for s = s
0

, then c n = 0 for n = l, 2, 3, ••• (see Hardy 
andlflright, l945,sec.l7.1). 

17 .1.3. Relations and properties 

The functions ¢(n), Jl(n), Jk(n) are multiplicative and 

(19) ~/\(d)= logn. 
din 

The functions ¢ (n) and Jl(n) are connected by Mobius' inversion 

formula (also called Oedekind-Liouville formula). Let f(n) be defined for 

all n = 1, 2, 3, •••, and let 

(20) g (n) = L f(d). 
din 

Then 

(21) f(n) = ~ Jl(d)g c~) 
din d 

and conversely . In partie ular: 

(22) n = ~ ¢(d), 
din 

c,'>(n) = I 
din 

n 
Jl (d). 

d 

~lobius' inversion formula is a consequence of 

{
0 if n > l 

(23) ~ Jl (d)= 
din 1 if n = l. 

It can also be written in the forn.: 

(24) f(x) = ~ ,.,.(m) m -sF (mx), 
•= 1 

if 

(25) F (x) = ~ m-s f (mx) 
•=1 
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where f(x) is defined for all x >0, Jf(x)J = O(x •o) as x -+ao, and Res >s 
0 
+ 2. 

Another inversion formula (see Hardy and Wright, 1945, Chap. 16) can 
be stated by saying that each of the following equations is a consequence 
of the other 

[.,] ( ) 
G(x) = l F ; , 

n = 1 

where x is a real positive variable, [x] is the largest integer ~ x and 
where an empty sum (e.g., the first one if x < l) is interpreted as zero. 
IfF (x) = l for all x, this gives the formula of E. Meissel 

The Mobius inversion formula has been generalized (see Cesaro, 1887; 
H. F. Baker, 1889; Gegenbauer, 1893; E. T. Bell, 1926) and it has been 
used for a definition of an arithmetical integration and differentiation, 
g (n) in (20) being called the "integral" of f(n) (see L. E. Dickson, 1919, 
vol. I, Chap. 14). Another connection between ll and cp was stated by 
Rademacher and proved by R. Brauer (1926): 

For the cp function we have 

(27) ::£ (-l) n/d cp (d)= { 0 
~n -n 

if 

if 

n is even 

n is odd, 

(28) r-t r-t n r r r { [ Jr-t} 
l + 2 + ••• + l = l +2 + ••• + n 

where r = 1, 2, 3, ... , and where [x] denotes the largest integer .:5 x. 

(29) ::£ (n/d)cp.(d)=l•+2•+ ···+n• 
din 

k = 0, 1, 2, ... 

(30) cp
1

(n)= ~ncp(n) n > l 

(31) ::£ (n/d)3 cp
3 
(d)= I ::£ (n/d) cp(d)ll 

~n ~n 

(32) lim{~ [ cp(l)+ cp(2)+ ••• + cp(n) 1} = 2_ 
n-+oo n 17

2 
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(33) liminf ( ¢(n) log logn) = e-y 
n-+oo n 

wl.ere y is Fuler's constant. Davenport (l932) proved that for n -> oo 

n a 
cjJ (n) = - I ¢ (n) + 0 ( l) t a ?': 0 

a a+] 

and obtained analogous res.ults for a< u. 
The function IJ.(n) can be expressed in the form 

(34) f1(n)= ' (.,, n) = 1 

e 2ntm/n. 

This means that !J.(n) is the sum of the pnm1t1ve ntL roots of unity, or 
the sum of those numbers, p, for which p n = l but p" oJ l if 1 :S m < n . 

These numbers, p, are the zeros of a polynomial 

(35) k (x)- l1 (xd- l).U(n/d) 
n din 

of dep;re e cjJ (n ). 
For the following results see Landau (1927, vol. 2, Chap. 7), and 

Titchmarsh (195l). l .et 

(36) ,lf(n) = !J.(l) + /J-(2) + ••• + f1(n). 

Then for n -+ oo 

(37) .11 (n) = 0 [n Y, exp (A logn ) J 
lop; logn 

where A is a real positive constant . A consequence of this result is 

(38) L IJ.n(n) = 0. 
n= 1 

Biemann's hypothesis (see sec . L7.7) is true if and only if 

00 

(39) ' IJ. (n) n -s 
n = 1 

is convergent for all s for" ],ich fle s '> 
12. 

Fori\ (n), tl.e analogue of (38) is 

(40) 
n=1 

'\(n) -l 
------ - 2y, 

n 

''here y denotes F:uler's constant defined 111 l.l (4). See also Kienast 
(l926). 
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For the following account of the properties of a (n} and of d (n) see 
llardy-Wright (1945, Chap. 18). We have 

a(n) = 0 (n log logn) 

1 
a(1) + a(2) + •·· + a(n) = - TT

2 n 2 + O(n log logn}. 
12 

There is a positive constant A such that 

a(n) if>(n) 
A < 

2 
~ 1, 

n 

limsup laa(n) n-al =((a) 
n-> oo 

lim sup 
n-> oo n log log n 

a(n) 
= e Y, 

a > 1 

(see Gronwall, 1913). For the case where -1 < a < 0 see Bellmann (1950). 
Vaidyanathaswamy (1930, 1931) proved that 

ak(m,n)= ~ ak (~) ak (~) dk ll(d), 
dl(a, n) d \d 

and G. N. Watson (1935) showed that a 2,. +i (n) is divisible by any fixed 
integer k for almost all values of n. The term "almost all" is defined at 
the beginning of sec. 17.2. 

If f > 0 is arbitrary and fixed, then 

d (n) < 2 (I + € ) leg n/ leg leg n 

for all sufficiently large n, and 

d (n} > 2 (I-E) leg n/ log leg n 

for an infinity of values of n. For n-> oo 

d(1) + d(2) + ... + d(n) = n logn + (2y- 1)n + O(n 113
) 

where y is Euler's constant. For d (d (n)) and related questions see 
Hamanujan (1915). 

The asymptotic behavior of 

d p> + d k (2) + ... + d k (n} 

for large n has been investigated by Titchmarsh (1938). 
U Q (n) denotes the number of integers m, 1 S m .:5 n which are not 
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divisible by the square of an integer > 1, then for n -> oo we have 

Q(n) = 6n/rr 2 + O(n~). 

General theorems on arithmetical functions. Bellm ann and Shapiro 
(1948) proved that the functions n, ¢ (n), a(n), d (n), 2 "' (n), p..(n) are alge­
braically independent. 

Schoenberg investigated the asymptotic properties of classes of arith­
metical functions. For investigations of additive arithmetical functions 
see Erdos a nd Wintner (1939). For oi.her results see E. T. Bell (1930); 
D. H. Lehmer (1931). 

17.2. Partitions 

17 .2 .1. Notations and definitions 

We shall write 

( 1) a = b (mod n) 

if a- b is an integer which is divisible by n. 

Let \a"'l, v = l, 2, 3, ... , be a setS of positive integers and let N(x) 
be the number of those a"' which do not exceed x. Suppose that 

(2) lim x- 1 N(x)= a 
...... 00 

exists. If a= 0, we shall say that almost no integer n belongs to S . If 
a = 1, we shall say that almost all integers n be long to S . 

The number of decompositions 

k = 1, 2, 3, ... 

of n into a sum of any number of positive integers m1 , m
2

, ••• , m k where 

(4) m1 ~ m2 ~ ... 2m k 

is called the number of partitions of n and is denoted by p (n). If k is 
restricted so that 

(5) k 5, l 

we write p 1(n) for the number of partitions of n into at most l parts . 1f m1 

is also restricted, m1 5, N, v.e write Pz,N (n) for the number of partitions 
of n into at most l parts none of which exceeds N. The number of parti­
tions of n into an even number of unequal parts shall be denoted by E (n) 
i"nd that into an odd number of unequal parts by U (n ). 
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17.2 .2. Partitions and generating functions 

Jf P (n) is the number of partitions of n of a certain type, and if, for 
sufficiently small lx I, the infinite series 

(6) ~ P(n)xn = F(x), 
n= I 

converges, then the generating function F (x) is said to enumerate P (n). 
This is meant to include the case where F (0) .f- 0; then P (O) shall be 
defined to be equal to F ( 0). We l1ave 

(7) 0 11-xk!-1 lxl < 1 
k= I 

(8) lxl < l. 

Relation (8) expresses the fact that P,. (n) is also the number of partitions 
of n into parts which do not exceed m. lt can also be shown that the 
number of partitions of n into precisely m parts equals the number of 
partitions of n into parts, the largest of which is prec isely m. 

Many theorems on partitions may be stated in the form of an identity 
for the enumerating function F (x). These identities are usually of the 
following type: F (x) is expressed as both an infinite product and a 
series; both the product and each term of the series can be expanded 111 a 
series of powers of x. Examples: 

(9) 

(lO) 

00 2k 1 00 n 
Il (l+x ) = -- = ::£ x, 

k=O 1-x n=o 

U 11- x2k-ll-l • 
k= I 

Euler's identities: 

00 

c u) n c 1 + x 2
k -I ) = 1 + " 

k = I L 
k= l 

oo ~ xk 
(13) 11 (1-xk)- 1 = 1+ L 

k=l k=l Cl-xH1-x 2
) ••• (1-xk) 
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(14) 

(15) 
00 

~ (-l)"x~•(3m+l)• 
a=-oo 

Jacobi's identities: 

(16) Ji l<l-x 2")(l +x 2"- 1 z 2 )(1 +x 2"-
1 z-2 )! 

k= 1 

00 2 
= 1 + 2 x" (z 2n + z -2n) = z f- 0, 

n= 1 

(17) 
00 00 2 
II l(l-x 2k- 1 ) 2 (l-x 2k)l = ~ (-l)" xm 

k=1 •=-oo 

( 18) noo (1 X2k ) 

1- 2k-1 
k = I X n= 0 

(19) IT (l- X k)3 = 
k= 1 

~ (-l)" (2n+ 1) XY,n(n+l >, 
n= o 

(20) ll l (l -X Sk+ 1 )(1- X Sk+4 )(1- X Sk+S)l = 
00 

~ (-l)"x~m(S..+3), 
k= 0 m=-oo 

(21) Q !(1-x 5k+ 2)(1-x 5k+ 3)(1-x 5 k+ 5)l = ~ (-l'f X~m(Sm +1)• 

k= 0 ~~t=-oo 

Hogers-Hamanujan identities: 

(22) IT l(1-x 5k+ 1)- 1 O-x 5k+ 4 )-1 ! 
k= 0 

= 1 +I 
O-x)0-x 2) ••• (1-x")' 

m=1 

00 

(23) 11l0-x 5k+ 2)- 1 (1-x 5k+3)- 1 ! 
k = 0 

m=t 
(1- x)(1- '\: 2

) ••• (1- x") 

'!'he identities (17) to (22) and also (15) follow from Jacobi's formula 
(16) for z = e in u, x = e ' 71-r; the right-i.and -side of (16) becomes the 
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Fourier expansion of 0
3 

(ulr); and tlte left-hand side is the expansion 

of 03 in an infinite product," here 83 is one of the elliptic theta functions 
in the usual notation (see Chap. 13). A survey on the connection between 
partition problems and modular forms was given by Bademacher (1940). 

The formulas (9) to (23) can be stated in the form of partition theorems. 
Examples of suclt theorems are : 

Formula (9) shows that every n can be expressed in exactly one \\ay 
as a sum of different powers of 2 . 

Formula (10) states the fact that the number of partitions of n into 
unequal parts is equal to the number of its partitions into odd parts. 

Formula (15) shows that 

E (n) - l: (n) = (- 1) k if n = ~2 k(3k ± 1), k = 1, 2, 3, ... , m 

E (n) - U (n) = 0 all other n, 

where t;, U are defined in sec . 17.2 .l. 
The general term in the sum on the right-hand side in (22) enumerates 

the number of partitions of n- m
2 into at most m parts. Since 

m 2 =1+3+···+2m-1, 

we find that it enumerates a lso the number of partitions of n into at most 
m parts of minimal difference 2 . Therefore, we find that (22) is equivalent 
to the fact that the number o f partitions o f n into parts of the form 5m + 1 
and 5 m + 4 is equa l to th e number of partitions of n into parts with 
minimal difference 2. 

For a corresponding theorem about the number of partitions into parts 
of the type 6m + 1, 6m + 5 sec Schur (1926); an asymptotic formula for 
this number was given by Niven (1940). 

For the non-existence of certain irlentities in the theory of partitions 
see D. ll. Lehmer (1946) and Alder (1948). 

17.2 .3. Congruence properties 

Hamanujan (1919, 192 1) conjectured and Darling (1921), ~.lordell (1922) 
proved th a t 

(24) r (5 n + 4) = 0 

(25) p (7 n + 5) = 0 

(26) p(lln + 6) = 0 

(mod 5), 

(mod 7), 

(mod 11). 

These statements can be derived from certain identities, the first two of 
which are 
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oo noo (1 - X 1k)3 noo (1 - X 7k)1 

(28) ~ p(7n+5)x" = 7 ( k) 4 +t19x (
1

-xk)B • 
n=O k = ! 1-X k = ! 

There exists a similar identity for the enumerating function of p 03n + 6) 
which was discovered by Rademacher and Zuckerman (1939), But not all 
the terms on tbe right-hand side of this identity are divisible by 13. 

Watson (1938) proved tbat 

(29) p(n) = O (mod7b) 

if n = 7 b n 1
, where (n 

1
, 7) = 1, and b = 2, 3, 4, ... , and if 24n = 1 

(mod 7 2 b- 2
). For a survey of results of this type see Rademacher (1940). 

D. H. Lehmer (1936, 1938) proved 

(30) p (599) = 0 (mod 5 4
), 

(31) p (721) = 0 (mod 11 3
), 

(32) p (14031) = 0 (mod ll 4
), 

and hereby showed that certain conjectures of Ramanujan are justified 
in some special cases, The number p (14031) has 127 digits and was 
computed by using the asymptotic formulas of Hardy and Ramanujan 
(see sec. 17 .2.4) for r (n). 

17 .2.4. Asymptotic formulas and related topics 

llardy and Ramanujan (1916, 1918) showed that 

(33) lim 4n 3 ~ p (n) exp [-rr(2n/ 3) }1 ] = l. 
n-+ oo 

They also obtained an asymptotic series for p (n) up to terms of the 
order of magnitude 0 (n - !4 ); since p (n) is an integer, this resu It makes it 
possible to compute p (n) from the asymptotic expansion exactly if n is 
large enough (D. II. Lehmer, 1938). For simplified proofs see also Knopp 
and Schur (1925). D. II. Lehmer (1937) showed that the lfardy-Hamanujan 
series is divergent. Rademacher (1937 a, 1937 b, 1943) ohtained a remark­
able convergent series for .p (n), nan.ely, 

1 
00 

d ( 1 ) P (n) = -- \' A (n) k ~- f n --..., ~ L k d k ...,4 ' 
~ TT k= ' n -

where 
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A k (n) = L: 
(h, k) = 1 

1 _$h.$k 

SPECIAL FUNCTIONS 

{ 

h 
exp - 2 TT in k + 

J.L= 1 

A summation formula for p (n) v.as given by Atkinson (1939). 
l! usimi (1938) s tudierl integra l representations for P. (n) , 

17.2.4 

Tricomi (1928) investigated the asymp totic behavior of p 
1 

N (n), and 
Brigham (1950), ge nera l asymptoti c formulas for partition functions. 

For the whole o f thi s s ubsection see also Rademacher (1940). 

17.3. Representations as a sum or squares 

General remarks. The problen of the representation of an integer 
as a sum of squares i s a specia l case of the problem of its repres­
en tations by a (positive definite) quadratic form . rur this latter problem 
see Siege l (1935, 1936, 1937) and ~1inkowski (1911). The representation 
of n as a s um of squares can a lso be considered as a special case of 
the problem of th e representa tion as a s um of a fixed number of 1rth 
powers . For an account of th e results in thi s fielrl see Landau (1927, 
vol. II). 

The evalua ti on (or approximate evalu a tion) of the sum 

~ rk (n) 
n.$ r 

is the problem of coun tin g lattice-points In a k-dimensional sphere , For 
th e case k = 2, or for th e gene ra l theory of latti ce-po ints in two-d imen­
s iona l space, consul t Landau (1927, vol . II), a nd sec, 17.10. 

17.3 .1. De£initions and notations 

L et k 2 2 be a fixed integer. Then r k (n) shall denote the number of 
representa tions of n as a s um of k squares o f integers, 

v.here l ,. ••• , l k need not be different from each o ther and may be neg­
ative or zero. Tv.o representations s hall be considered different if they 
i:lVolve th e same numbers l ,. ••• , l k in a different order , For example we 

have r2 (2) = tl., since 2 = 1 2 +1 2 = (-1) 2 +1 2 = 1 2 + (-1) 2 = (-1) 2 +(-1) 2
• \le 
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shall need tlte sums of powers of certain divisors of n, Let d*, d**, d 1
, 

d", d+, d_, d1' d2, d
3

, d
4 

be any (positive) divisors of n "'hich satisfy 
the conditions 

(2) d* = 1 (mod 4), d** = 3 (mod 4), 

(3) n/ d 1 1 (mod 4), n/d" = 3 (mod 4), 

(4) d+ = 0 (mod 2), d - = 1 (mod 2), 

(5) d 1 = 0 (mod 2), n/ d 1 = 0 (mod 2), 

d2 = 1 (mod 2), n/d 2 = l (mod 2), 

(6) d3 = 0 (mod 2), n/d 
3 

= 1 (mod 2), 

d 4 = 1 (mod 2), n/d 
4 

= 0 (mod 2), 

and let 

(7) E k (n) = ~ d*k - ~ d**k, 

(8) F, I ( ) _ '>' d I k _ "\' d Ilk 
'k n - ""' - ' 

(9) L\k(n)=~d~, 

(lO) (k(n)=~d~-~d~, 

(ll) ~k(n)=~d~+1:d;-1:d;-~d:. 

\\e shall a lso need the coefficients of the expans ion of certain pro­
ducts of e II iptic theta functions in a series of powers. Let e 

11 
(u, r) 

[v = 1, 2, 3, 1; 0 4 (u, r) = eo(u, r)] denote the four elliptic theta functions 
(see Chap. 13). We shall write 0

11 
for e)o, r) and q fore ' 717

-. Then we 
have 

(12) 0
4

= n O-q2k)(1-q 2k- 1 ) 2 , 

k= 1 

(13) 8
2 

= 2q'4. 11 c1 _ q2k) c1 + q2k)2 , 
k= 1 

00 

(14) e
3 

= 11 
k= 1 

l 'sing these infinite products for e 4' e 2' e 3 we define the functions 
G(m), W(m), C(m), B(m) by their generating functions 
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00 

(lS) 16 "' 
111=0 

fl(m) q'" = 0~ 0~ o:, 
(l6) 16 

00 

(17) 16 "' 
m = 0 

( 18) 16 
00 

~ c (m) q m = o: e: 0~ (0:- o:). 
~~t=O 

173.2. Formulas forrk(n) 

Representation as a sum of an even number of squares. Glaisher 
( 1907) has given a survey of tl, e known formulas for r 21 (n) for 2l = 2, 4, 
••• , 18. l!is table has been supplemented by Harr.anujan (1918) who gave 
fonnulas for r 20 , r 22 , r 24 • For 2[ 2:_ 12, these fonnulas involve functions 
of the type of fl (n), IV (n), B (n), C (n) v.hich do not have a number-theo­
retical significance , (Fonr.ulas which involve only expressions of number­
theoretical significance have been developed by Boulyguine (see Dickson, 
1939, vol. II, p. 317). For 2l = 10 and for 2l = 18, the fonnulas in the 
table by Glaisher involve a lso sums which are taken over powers of 
certain complex divisors of r, a complex divisor of n being a number 
a + ib, where a, b are integers and such that (a 2 + b 2 ) In, These tv. o 
cases being omitted, Glaisher's table reads (with the notations of sec . 

17.3.1): 

(19) r 
2 
(n) = 4 E 

0 
(n ), 

(20) r 
4 

(n) = (-l)n- 1 8 .;'
1 

(n), 

(21) r 
6 
(n) = 414£ ~ (n) - E 

2 
(n)!, 

(22) r 8 (n)~(-1)n-
1 16 (3 (n), 

(23) r
12

(2n)=-8 .;'
5

(n), 

(24) r 
12 

(2n+ l) = 8l6
5
(2n + 1)+ 2 P- (2n + 1)!, 

4 
(25) r 14 (n) =61164 E ~ (n)- E 

6 
(n) + 364 Jrl (n)!, 

1 32 
(26) r

16
(n)=(-l)n-

17 
l(

7
(n) + 168(n)!. 
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For a formula for r 2~ see sec. 17 .4. The formula for r 
2 

(n) is equivalent 
to an identity in the theory of elliptic theta functions, viz., 

(27) e~ = 1 ~ 
•=-oo 

22 ~ 
qm I= I+ 4 L 

n = 1 

~ 
n. • = 1 

As a consequence of (19) we !:rave the following criterion. Let k (p) 
be the highest power of the prime number p which divides n. A necessary 
and sufficient condition for n to have a representation as a sum of two 
squares is that k (p) be even whenever p = 3 (mod 4). 

Formula (20) is equivalent to Jacobi's celebrated identity 

(28) e~ = 1 !: 
•=-oo 

=1+8 

This may also be stated in the following way: The number of representa­
tions of n as a sum of four squares is eight times the sum of those 
divisors of n which are not divisible by four. For an odd n, this is also 
eight times (and for an even n, it is 24 times) the sum of the odd divisors 
of n. This implies Lagrange's theorem: Every integer n > 0 has a repre­
sentation as a sum of four squares. It also shows that r k (n) > 0 for all n 

and k = 4, 5, 6, •••• 
Representation as a sum of an odd number of squares. This problem 

is more complicated than the problem of representation as a sum of an 
even number of squares. Now n c~n be represented as a sum of three 
squares if and only if, n is not of the form 

(29) 4a(8b + 7) a, b = 0, l, 2, •.•• 

For odd values of n, Eisenstein (1847) showed that 

(30) r
3

(4m + 1)= 24 f (-l-), 
I= 1 4m + 1 

(31) r
3
(4m+3)=8

2

,.f
1 

( ) 

l I= 1 4m + 3 

where (;;) is the Legendre-Jacobi symbol defined in sec. 17. 5. 
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II m is odd and not divisible by the square of a prime number, Eisen­
stein (1847) announced, and Smith (1894), Minkowski (1911) proved that 

(32) r
5
(n)=-80s, -BOu, -ll2u, 80s 

according as 

n = 1, 3, 5, 7 (mod 8). 

Usffig:~J·":~)~'o:i.I::(~Y 17~, we have 

Hardy (1920) proved that the number r 5 (n) of primitive representations 
of n as a sum of five squares (i ,e., of representations for which the high­
est common divisor of the five squares is unity) is 

(33) ;:-5 {n) = ~ n-l!z I (-n-) (2l + l)-2 

TT l=o 2l+1 

where 

c = 80, 

according as 

160, 112 

n :: 0,1,4, n = 2,3,6,7, n :: 5 (mod8). 

For more general results, in particular for r 
7 

(n ), see Mordell ( 1919 b), 
Stanley (1927), Hardy (1918, 1920, 1927). 

Hardy and Ramanujan (1918) have found asymptotic expansions for 

r" (n) which are exact when k = 3, 4, 5, 6, 7, 8. 

17.4. Ramanujan's function 

We define Ramanujan's function, r(n), for n = 1, 2, 3, •••, by 

(1) l: r(n)x" = x n {l-.x-) 24, 

n= 1 •= 1 

Ramanujan 's function is connected with r 
24 

(n) (defined in sec. 17,3 ,l) by 

(2) 
691 

r 22 (2n) = u 
11 

(2n·)- 2u ;
1 
(n)- 8 [259 r(2 n)+ 512 r(n)] 

16 

691 
(3) 

16 
r

24
(2n + 1) = u

11 
(2n + 1) + 2072r(2n + 1) 

where u 1 1 (m) is the sum of the elevenths powers of the divisors of m and 
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a ; 1 (m) the sum of the eleventh powers of its odd divisors; see Hamanujan 
(1916), Hardy (1927). 

Ramanujan conjectured, and l\1ordell (1919b) proved that r(n) is a 
multiplicative function (in the sense of sec, 17 .l.1) and that 

(4) ~ r(n) n -. = ll [l- r(p) r -. + r 11-2sr1 
n=1 p 

where He s > 13/ 2, and the product is taken over all prime numbers p. 
l\1ordell also showed that for all p 

(5) r(p")=r(p)r(p'"- 1)-p 11 r(pm- 2
) m=2,3,4, 

It follows from (5) that r(p ") is a polynomial In r(p) and r 11 
; this poly­

nomial has been determined by Sengupta (t948). For an expansion of 

L r(n) (x- n)k 
n:$ x 

inaseries involving 13essel functions see Wilton(1929)and sec.17.ll.2; 
for other series involving r(n) see van der Blij (1948). 

Ramanujan conjectured and Watson (1935) proved that r(n) is divisible 

by 691 for almost all n (in the sense defined at the beginning of sec, 
17 ,2). This is true although, as Ramanujan showed, r(n) is not divisible 
by 691 if 

1 :$ n _s; 5000 n f= 1381. 

Walfisz (1938) proved that for almost all n, r(n) is divisible by 

2 5 • 3 2 • 5 2 • 7 . 691. 

For congruence properties of r(n) consult also Wilton (1929), 13ambah and 
Chowla (1947), D. II. Lehmer showed that r(n) I 0 if 

n < 214928640000. 

Mordell (1917) proved a formula analogous to (4) for the coefficients 
((n) of the series 

(6) 
00 ( 2 4 I L (-1)" q 2m+1) I = 

n= 0 

this formula being 

(7) ~ f(n)n-' = If l1-2f(p)p-'+ps-2sl-1, 
n= 1 p 

This result was also conjectured by Ramanujan, For other results and 
generalizations see Rankin (1939). 
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17 .5. The Legendre -Jacobi symbol 

In this section p, p 1 , p 
2

, ... , denote odd prime numbers and u, v 
denote odd positive integers. 

We shall say that the integer k is a quadratic residue (mod n) if the con­
gruence 

(1} x 2 = k (mod n) 

has an intege r solution x . We define the Legendre-Jacobi symbol \ ~) 
for all k = 0, ± 1, ± 2, ••• , and for all u = l, 3, 5, 7, •••, as follows. If 
u = p is an odd prime, 

(2} (;) = 1 if p r k and k is a quadratic residue (mod p ), 

(3) c;) = -1 if p r k and k is not a quadratic residue (mod p ), 

(4) (;) = 0 if P I k . 

If u = p 1 p 
2 

••• p r is a product of r odd prime numbers (not necessarily 
different from each other), we define 

(5) (~ ) = ( ; ) ( ;) .... ( ;r) • 
If u, v are odd positive integers and (u, v) = 1, we have 

(6) ( ~)( ~ ) = (-l} (~ u-lO (~v-lO 

(7) c-u1
) 

= (-1}~u-~ 

(8) ( ~ ) = (-1)(u 2-1}/8 • 

Equations (6), (7), (8) are called the quadratic law of reciprocity and its 
first and second supplementary theorems. In particular (7), (8), state that 
-1 is a quadratic residue (mod p) if and only if p = 1 (mod 4), and 2 is a 
quadratic residue (mod p) if and on ly if p = 1 or p = 7 (mod 8) . It should 

be observed that ( ~) = 1 implies that k is a quadratic residue (mod u) 

only if u is an odd prime. 
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Generalizations of the T .egendre symbol can be defined if the theory 
of algebraic fields is employed. For this see, for instance, llasse {1930). 

]acobsthal's sums. We define the qth Jacobsthal sum of s by 

q = 2, 3, ••• ' s = 1' 2, 3, •••• 

Let the prime number p be of the form p = 4 f + l, where f is a positive 
integer. Then p = a 2 + b 2

, where a, bare integers. Jacobsthal (1907) 
proved that 

(10) a= X<ll 2 (r), b = h<l>
2

(n), X<ll
2
(-l) = ~ (p-3) {mod 8) 

where r denotes any quadratic residue and n denotes any quadratic non­
residue (mod p ). Analogous results for p = 6 f + l = a2 + 3 b 2 were obtained 
by Schrutka (1911) and Chowla (1949). For various other results and 
generalizations see Whiteman (1949, 1952); E. Lehmer (1949). 

17.6. Trigonometric sums and related topics 

Gaussian sums. Let n be a positive integer. We define for every in-
teger m 

(1) S (m, n) = 
n- 1 

~ exp (2 11 ir 2m/ n ). 
r = o 

If (n, n 
1

) = l, then 

(2) S(m, nn 1
) = S(mn 1

, n) S(mn, n 1 
). 

Form= 1 

if n = O 

(3) S(l, n) = if n = l 

if n = 2 

if n = 3 

If n = p is a prime number and (m, p) = 1, then 

(mod 4). 

(4) S(m, p)= PI (.!_) exp (2TTirrn) = c~) S(l, p) 
r=1 P P P 

n if p ;:: l (mod 4), ( np~) p'/ 

(m) . X - tp 
p 

if p = 3 (mod 4), 
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where ('if) denotes Legendre's symbol defined in sec, 17 .5. 

Ramanujan's sums are defined by 

(6) c (m) = L 
n (r, n)= 1 

exp (2rrirm/ n), 

where the sum is taken over the set of those of the nuntl..>ers r = 1, 2, ... , 
n- l for which (r, n) = l. Using 1\lobius' function (see sec, 17 ,1) we ],ave 

(7) cn(m)= ~ d11 (~) 
d!n, d!,. d 

where the sum is taken over all positive integers d \\hich divide both n 
and m. If (n, n 

1
) = l, then 

(8) cnnl(m)=cn(m)cnl(m). 

A sum involving the c n (m) is 

(9) ~ m _, c (m)'""- 1\ (n), 
m = 1 n 

For a proof consult llolder (1936). For applications see !lamanujan 
(1918); the c n (m) are important for the representation o f a number as a 
sum of squares . For series expansions see Carmichael (1932); for th e 
statistics of Ramanujan's sums see Wintner (1942) . 

Kloosterman's sums. Let n > 0 be an integer and let r denote any 
integer 0 < r :5 n such that (r, n) = l. Then there exists a uniquely deter­

mined r 
1 such that 

(10)0 < r
1

:Sn, rr
1 = l, (mod n), 

Kloosterman's sum is defined for integer u, v, n IJy 

r 
[ 

2rri J exp -n- (ur+vr 
1

) • (11) S(u,v,n)= L 
If (n, m) = l, then 

(12) S(u, v, n) S(u, w, m) = S(u, vm 2 + wn 2
, nm), 

For applications consult Kloost~rman (1926), Atkinson (1948). For 
generalizations see /\, \le i! (1948), 'ilso Salie' (1931), D. II. Lehmer 
(1938), Whiteman (1945). 

Generalizations. Gaussian sums have been generalized in many 
respects. For generalizations app lied to the theory of quadratic forms 
consult Siegel (1935, 1936, 1937, 1941). F:xpressions of the type 
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n - 1 

(13) !. 
r = 0 
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(
2rrim k) 

exp --- r 
n 
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(m, n) = 1 

for fixed values of k > 2 have been used by llardy and Littlewood for the 
definitions of the so-called "singular series" for Waring's problem (i.e., 
the representation of an integer as a sum of a fixed number ofkth powers); 
see Ha rdy and Littlewood (1920, 1921, l922a, b, d, 1925). These are the 
papers which are usually referred to by the title Partitio Numerorum. For 
other types of trigonometric sums see Vinogradow (1939, 1940). 

17.7. Riemann's zeta function and the distribution of prime numbers 

Let s be a complex variable. Then, for Re s > 1, Riemann's zeta 
function 

( 1) ( (s) = ~ n- • 
n = 1 

is an analytic function of s , As Euler has shown, 

(2) ((s) = ll (l - p -·)-' 
p 

Res > 1 

where the product is taken over all prime numbers p = 2, 3, 5, 7, ••• , 
The integral representation 

(3) ((s) =-- --- dx =----
1 ~00 

x.- 1 f'(l- s>j(o+J(-z)'- 1 

[' (s ) 0 e x - 1 2 rr i oo e z - l 
dz 

shows that ((s) can be continued analytically and is one-valued and 
regular everywh ere w ith the exception of s = 1 where ((s) has a simple 
pole, with residue l. Equation (3) also gives 

(4) ((0)=-~, ((-2m)=0, ((1-2m)=-B.,/(2m) 

where m = 1, 2, 3, ,,, , and where B., is the mt,h 13ernoulli number (see 
sec . 1.13). 

The Laurent series of ((s) for the neighborhood of s = 1 was given 
by Stieltjes, We have 

( (s) = -
1 

- + y + y (s - 1) + y (s - 1) 2 + · • • 
s- 1 1 2 

where y denotes Euler's constant[see 1.1 (4)], and where fork= 1, 2, 3, ... 

Oogv)k 1 
Yk= lim{! 

n-+ oo 
=1 

v k + 1 

(see llardy, 1912). 
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From (3) follows the functional equation 

(5) '(s) = 2 5 77 5 - 1 sin (~rrs) r(l- s) , (1- s), 

(6) ,(1-s)= 2 1 -s 77-s cos(~rrs)r(s) '(s). 

The zeros of '(s) at s = -2, -4, -6, ... are the only real zeros. 
It can be shown th a t apart from these, '(s) has no zeros outside the 

strip 0 < Re s < 1, but that there are infinitely many complex zeros, p, 
within this strip, and that 

(7} 
ebs n 

'(s)=--~---
2(s- 1) r(~s + 1) 

IJ 

where the product is taken over all complex zeros, p, and where 

(8) b=log2rr-1-~y. 

The definition of Euler's constant y is given in l,l (4), 
If h is a positive constant, s =a+ it, 

O~a~1, 2rrxy=JtJ, x>h>O, y>h>O 

x(s)= 2' 77.-
1 sin(~rrs)r(l-s)= ,(s)/,(1-s), 

then 

(9) 

This equation is called the approximate functional equation ofthe zeta 
function, The 0- terms in (9) can be replaced by an asymptotic series 
which proceeds in powers of JtJ-X, and whose coefficients are trigono­
metric functions. See Siegel (l93l) and Titchmarsh (1935, 1951). 

The function 

(lO) ,;(s) = ~s (s -1)11-X• r02s ) '(s) 

satisfies 

(ll) ,;(l- s) = .;<s ), 
and has the integral representation 

With 

(13) s=~+it, ,;(s)=S(t), 

equation (12) g ives 

(14) S(t) = ~- (t 2 + ~ ) Joo ( ~ e -n 
2
=) x- 312 cos (~t log x) dx. 

1 n= 1 
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For other results connected witlt ((s) consult sec. 1.12. 
Zeros of ((s ). Riemann conjectured that all the complex zeros of 

((s) have the real part~ (or that 2(t) has only real zeros). Hiemann's 
hypothesis has neither been proved nor disproved, although a great deal 
of relevant information has been obtained since Riemann's work. It is 
known that Riemann's hypothesis is true if and only if 

converges for Res > ~- [For Jl(n) consult sections 17.2, 17.3] 

The following are some of the known results about the complex zeros 
of ((s ). Let s = a + it, let N 

0 
(T) denote the number of those zeros of 

((s) for which a=~ and 0 < t < T, let N (T) denote the number of those 
zeros for which 0 < a < ] and 0 < t < T, and let N (a', T) denote the 
number of those zeros for which 0 < t < T and a > a'. Selberg {1942) 
proved that there is a positive constant A such that 

(15) N
0

(T) > AT log T 

for sufficiently large T. Also as T .... oo we have 

(16) 2rrN(T) = T log T- (l +log 2rr) T + OOog T), 

(17) N(a, T) = O(T3<1-o- lt <z-o- l(log T)s]. 

The last result was obtained by Ingham (1940) and holds for any fixed a 
in 1

2 < a < l. 13y taking a a function of T such that a-~ is sufficiently 
small, Selberg ( 1946) obtained an improvement of ( 17). 

Concerning numerical evidence in favor of the Riemann hypothesis, 
see Titcltmarsh (1935, 1936). Titchmarsh uses the approximate functional 
equation (9) and replaces the 0 tern.s by quantitative approximations . 
This enables him to compute the complex zeros of ((a + it) as far as 
t = 1468 and he finds them all, 1041 in number, on the line a= h. 

A large number of theorems has been proved about the distribution of 
values of ((s ). For these see Titchmarsh (1930). For the zeros of 

~ (n + a)-• 
n= 1 

consult Davenport and Heilbronn (1936). 
Distribution of prime numbers. Let rr(x) denote the number of primes 

.''l not exceeding x. Then for x -> oc 

(18) rr(x) = J x 
du l{ l -- + O!x exp[ -a (log x) ] 

log u 
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where a is a positive absolute constant. In particular 

(19) lim [x- 1 1T(x)logx]=1, 
%-+ 00 

and this result is known as the prime number theorem. The function 

(20) 1T(x)- _u_ = P (x) 1
% d 

log u 

changes its sign infinitely many times as x -+ oo. In fact, there exists a 
constant a such that both of the inequalities 

XX 
(21) P (x) > a-- log log log x, 

log x 

Y x 
(22) P (y) <-a-- log log logy 

logy 

are true for certain arbitrarily large values of x, y. However, if x > 10 , 
P (x) < 0 for the range of any existing tables. 

All of these results about 77(x} can be proved from theorems relating 
to the distribution of the zeros of ((s). If Riemann's hypothesis is true, 
then for x-+ oo, 

(23) P(x)= O(xX logx). 

But this cannot be proved at present. On the other hand, if (23) could be 
proved, or even if it could be shown that for any f > 0 

P (x) = 0 (x X H) 

as x-+ oo, Riemann's hypothesis would be true. 
Mills ( 194 7) proved the existe nee of a real number A > 1 such that 

[A 3 "] is a prime for all integers n 2 1, deducing this in a simple way 
from a result due to Ingham (1937) namely, that for all large x there is a 
prime between x 3 and (x + 1) 3

• See also Niven (1951). 
Generalizations. Dedekind 's zeta function is the analogue to 

Riemann's zeta function for an algebraic number field; ( (s) may be con­
sidered as Dedekinds's zeta function for the field of rational numbers 
(Hasse, 1927, 1930; Brauer, 1947). For the definition of a zeta function 
in "fields of characteristic p" and in a "simple algebra" consult F. K. 
Schmidt (1931), llasse (1933), Deuring (1935) and Eichler (1949). Other 
generalizations of Riemann's zeta function are the L -series of Dirichlet 
and their generalizations and the zeta fun c tion of P. Epstein. For these 
see sections 17.8 and 17. 9. 
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17 .8. Characters and L- series 

Let n > l be a fixed positive integer, and let m be any integer. We 
shall consider functions X (m) such that 

(i) x(m) = x<m I) if m = m (mod n), 

(ii) xO) = l, 

(iii) x(m) = O if (m,n),;£1, 

(iv) x(m) x<m I) = x(mm I). 

A function with these four properties is called a character (mod n ). The 
function 

(l) X, (m) • {: 

if (m, n) = l 

otherwise 

is called the principal character (mod n). The value of x(m) is different 
from zero if and only if (m, n) = l, and its ¢ (n )th power is then equal to 1. 
Here ¢(n) denotes Euler's function of sec. 17.1. A character is called 
real if all of its values are real. The real characters modulo n are the 

principal character and the Legendre-jacobi symbol ( '!;) . A product 

X a (m) X b (m) of two characters is again a character (mod n ) . There exist 
precisely ¢(n) different characters (IT'od n). If we denote ¢(n) by h and 
the h different characters by X 1 , ••• , X h, then 

• ~' x)m) x.(m). { : 

if 1/ = 11 

(2) v, 11 = 1, 2, ... , h, 

if 1/;, 11 

where a bar denotes the conjugate complex value. If (m, n) = l, (m 
1

, n)= 1, 

if mm 
1 = l (mod n) 

(3) 

otherwise . 

If we take 11 = l in (2), we find that 

for all characters different from the principal character. 
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Let n > 1 be a fixed integer, and let X be a character modulo n. Then 

(4) L(s, x) = ~ x(m) m-• ne s > 1 
a=t 

is called an L-series. The L-series were introduced by Dirichlet. They 
have many properties in common with Riemann's zeta function . The 
analogue to Euler's product is 

(5) L (s, x) = n [1- x(p) p -·r1 Res > 1 
p 

where th e product is taken over all prime numbers p. If X 
1 

denotes the 
principal character, then 

(6) L(s,x
1
)=((s) n (1-p-•) 

pin 

where the product is taken over the finite number of primes which divide 

n. If X.;, X 1 , then L (s, x) is an entire function of s which does not 
vanish at s = l. 

Let X be a character modulo n . Suppose that for some fixed divisor, N, 
of n (N < n) and for all m and m 

1 satisfying 

m = m (mod N), (m, n) = (m 1 
, n) = 1 

we have 

x(m) = x<m I), 

Then we say that the character X is imprimitive (mod n). Otherwise we 
say X is aprimitive character (mod n). If n > 1 and we choose N = 1, then 
X will be imprimitive (mod n) if x(m) = x(m I) for (m, n) = (m I' n) = 1; 
since (l, n) = 1, and x(1) = 1, such a x can only be the principal char­
acter (mod n). lienee the principal character (mod n) is primitive if and 
only if n = 1. 

Let x be a primitive character (mod n). Then L (s, x) vanishes for 
s = 0, -2, -4, ... 'if x(-1) = 1 and for s = -1, -3, -5, ... 'if x(-1) = -1. 
If we introduce 

(7) a=~-~x(-1), 

then for every primitive chara~ter X and for n > 2 

( 8) e- (s, X) = rr-~ s -~a n ~ s +~a r ( ~ s + ~ a) L (s , X) 

is an entire analytic function which does not vanish outside of the 
strip 0 <Res < 1. It has a representation as an infinite product analogous 
to 17.7. ( 7), and it satisfies the functional equation 

(9) e-<s, x) = ((x) e-n-s, x) 

where 
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(10) £ (x) = - in-~ 'f x (m} cos (2m rr/n). 
·=1 

It can be shown that ldx)l = 1. 

The L- series are important for the investigation of the distribution 
of prime numbers in an arithmetic progression. 

For the relation between (5) and (9) see llecke (1944), Petersson 
(1948). The zeros of ((s, x) shov. a behavior similar to that of the zeros 
of ((s); it has also been conjectured (but not proved) that their real 
part is always ~. For lower bounds for L (1, x) and for applications to 
number theory consult Siegel (1935, 1943), Page (1935), Rosser (1949). 

The L-series have been generalized by Artin (1924, 1931, 1932). 
Artin introduced into the coefficients the characters of other groups 
besides those of the multiplicative group of the residue classes which 
are coprime ton. (These are the coefficients of the ordinary L series,) 

17.9. Epstein's zeta function 

Let p be a positive integer, let 

g = (g 1 , ... , g P), h = (h 1 , ••• , f. P), m = (m 1 , ••• , m P) 

be vectors with p real components (the components of m will be integers), 
and let 

be the scalar product of g and h, and similarly for other vectors. Let 
[a ,u.) be a non-singular symmetric p x p matrix, [a:.J the inverse (recip­
rocal} matrix, 

(2) 1;(x)= f f a X X ,u.v .u. 11 ,u.= I v= I 

the quadratic form associated with [a ,u.)• ¢*(x} the quadrati c form asso­
ciated with [a:), and let tl be the determinant of the a,u.v' \\e assume 
that the real part of ¢(x) is positive definite. Finally, lets be a complex 
variable. 

Epstein's zeta function of order p, associated with the quadratic form 
¢ is defined by 

g 

(3) z 
h 

g l, ••• ,gp 

hI, ••• , h p 

m -oo 
p 

[¢ (m + g >r~ps exp [2rr i(m, h)]. 
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The prime indicates that summation is over all integers m 
1

, ••• , m 
except if all components of g are integers when the term m = -g is to b: 
omitted. The series is absolutely convergent, and defines an analytic 
function of s, in the half-plane fie s > l. 

The fundamental theorem in the theory of zeta functions is the func­
tional equation 

(4) 77-Y,ps f'U~ ps) l I~ I (s)¢ 

=A-y, "-Y,p(1-slf'[Xr0 -s)]e-z7Tt(g,hlz ~~g~ (1-s) *. 
<I> 

The function defined by (3) and its analytic continuation is an entire 
function of s except when all components of h are integers: in the latter 
case the zeta function has a simple pole at s = 1, and the residue at this 

pole •s 

(5) TTY,p ~ -Y, j[' (~ ~ p + l), 

The zeta function vanishes at 

(6) s = -2k/ p, k = 1, 2, 3, 

It also vanishes at s = 0 unless all components of g are integers when 
its value at s = 0 is 

(7) - exp[-2rri(g, h)]. 

These results are due to P. Epstein (1903, 1907). Epstein has also 
investigated some special cases, for instance, the cases where p = 1 or 
p = 2 and where all components of g and h are zero. fn particular, the 
constant c 

0 
in the Laurent expansion of 

(8) 
1
0 o I c Z (s) <I> = -- + c 0 + c 1 (s - 1) + 
00 s-1 

has been determined by Epstein. He also showed that the results of 
llerglotz ( 1905) can be derived from his formulas. llerglotz had investigated 
sums of the type 

(9) 
00 

~· 
a = -oo b = -oo 

¥ohere n = 0, 2, 4, •••• Siegel (1943) has investigated and generalized 
Epstein's zeta function and has proved theorems about the zeros. 

17 .10. Lattice points 

A lattice point in the x, y- plane is a point whose coordinates are 
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i'1tegers . There exists a general theorem of van der Corput (1919) about 

the number of lattice points in certain domains, a special case of which 
will be stated below. We define a domain D in the x, y-plane as follows. 
Let w - ~ be a positive integer, and let f(x) be defined and possess 
continuous and positive first and second derivatives m ~ :S x :S w . Let 

(l) f(~) > 2, 0 < [' (x) < 1, [" (x) > z- 3 

where z > l is independent of x . Let D be the c losed domain 

(2) ~2 X~ w, 

let 

~~y~f(x), 

(3) A (D) = J: lf(x)- ~] dx 

be its area, and let L (D) denote the nun~ ber of lattice points in D. Then 
van der Corput's theorem states that 

(4) \L (D)- A (D)\ < cz 2 

where c is a constant. Jarnfk (1926) has proved that for certain cw·ves 
f(x), the exponent 2 on the right-lmnd side of (4) is the best possible in 
the sense that it cannot be replaced by any smaller exponent. 

~lore detailed results have been obtained for domains enclosed by 
special curves, in particular by a circle. Let A (u) denote the number of 
lattice points within tlte closed don,ain 

(5) X 
2 + y 2 ~ U. 

With the notations of sec. 17.3 we may also "'rite 

Let J 1 (z) denote the Bessel function of the first kind of order one (see 
sec. 7 . 2 .1 ). Then Hardy proved for all u > 0 

(7) lim [~A (u+l)+~A(u-()] 
(-+ 0 

00 

~ n-~ r 2 (n)J1 [2rr(nu)~]. 
n= I 

If u is not an integer, the left-hand side of (7) is simply A (u). It can be 
proved that 

A (u) - TT u = 0 (u 11
) 

is true for every v.? 1/3 and is not ture for any v ~ 1/ 4. 
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There exists a large number of papers on the theory of lattice pcints; 
in particular, the number of lattice points in an ellipsoid has been inves­
tigated by van der Corput. 

17 .11. Bessel function identities 

Researches on th e order of magnitude of various numerical functions 
have yie lded a number of identities involving Gessel functions. The two 
examples 

00 

r 
2 

(n) 
(l) ~I r 2 (n) =rrx+x~ I J

1 
[2rr(nx)~] 

n$x ~ 
n=1 

and 
00 

(2) ~I r(n) = x 6 I r(n) 
J

12 
[4rr(nx)~] 

n~ x n= 1 
ns 

have already been referred to. Other examples are 

(3) 

(4) 

'\' 
1 a(n) rr 2 x ~ a(n) 

~ -- = --- ~(y+ log 2rrx)+ ~ --
n 6 n 

n_5 x n= 1 

d (n) = x I og x + (2 y - 1) x + ~ 

where y is Euler's constant and the prime indicates that the last term of 
the sum is to be multiplied by ~ if x is an integer. The infinite series of 
Bessel functions can be thought o f as representing exact expressions for 
the error made in approximatinR the left-hand sides by the elementary 
functions on the right. 

Voronoi (1904) stated (1) without proof and Hardy (1915) was the first 
to prove it rigorously. Formula (3) is due to Wigert (1917) and (4) to 
Voronoi (1904). 

Delicate questions of convergence can be avoided by considering 
the 'integrated form' of such identities in which the left members assume 
the form 

Oppenheim (1926) gave a general method for deriving most of the above 

and more general identities and discussed the summability by Rieszian 
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means of the infinite series on the right in case of divergence, Apostol 
(1951) gave a short proof of a theorem of Landau (1915) which states that 
the general identity 

(5) 
1 

q! 

" r(k) 
~ a(n)(x- n)q = p --:----~ 

n = 0 r (k + q + l) 

X X (q+k) 

+ y(2rr/ A)q 

00 

n = 1 

a(n) 

nX(k+q) 

xk+q 

holds if the numbers a (n) are coefficients of a Dirichlet series 

¢ (s) = }: a (n) n - s 
n= 1 

converging absolutely for Res > k, regular for all s except for a possible 
pole at s = k with residue p, and having functional equations of the form 

(A )• ( A) k-s 
\. ~ r (s) ¢ (s) = y \ 2;; r(k - s) ¢ (k - s ). 

Such Dirichlet series have been studied in detail by Heeke (1938), 
Examples of permissible coefficients a (n) are Ilamanujan's function r(n) 
and the functions r k (n) of sec, 17,3, The series of Bessel functions on 
the right of (5) is absolutely convergent if q > k - h, but in special 
instances it may converge for smaller values of q, 

An example of an identity of a different type is found in Hardy (1940): 

~ r(n)e-4 7T snX = 2XsTT-zs/zr(25) ~ 
n - 1 2 n = 1 

r(n) 

(s Z + n )ZS/Z 

this can be shown to be a special case of the Bessel function identity 

the a (n) satisfying the same conditions as in (5). 
For related results in connection with "summation formulas" see 

Ferrar (1935, 1937). 
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CHAPTER XVIII 

MlSCELLANEOUS FUNCTIONS 

18.1. Mittag-Leffler's function E a(z) and related functions 

The function 

00 

(1) 
f'(ak + l) 

was introduced by Mittag-Leffler (1903, 1904, 1905) and was investigated 
by several authors among whom we mention \\iman (1905), Pollard (1948), 
Humbert (1953). In this chapter E will always stand for the function (l) 
which must not be confused with the physicists' notation for the incom­
plete gamma function mentioned in sec . 9.2. 

E a(z ), for a > 0, furnishes important examples of entire functions of 
any given finite order: in a certain sense each E a (z) is the simplest 
entire function of its order (Phragmen 1904). Mittag-Leffler's function 
a lso furnishes examples and counter-examples for the growth and other 
properties of entire functions of finite order, and has other applications 
(Buhl 1925). 

We have 

and En (z ")for positive integer n is a generalized hyperbolic function (see 
also sec. 18.2). 

~!any of the most in1portant properties of E a(z) follow from Mittag­
Leffler's integral representation 

(3) E (z)=-l-1 ta:t et dt 
a 2rri C t - z 

where the path ot integration C is a loop which starts and ends at -oo, 

206 
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and encircles the circular disc ltl ~ izi 11ain the positivesense:-rr~ argt 
~ 11 on C. To prove (3), expand the integrand in powers of z, integrate 
term-by-term, and use Hankel's integTal l. 6 (2) for the reciprocal of the 
gamma function. 

The integTand in (3) has a branch-point at t = 0. The complex t-plane 
is cut along the negative real axis, and in the cut plane the integrand is 
single-valued: the principal bra nch of t a is taken in the cut plane. The 
integrand has poles at the points, 

(4) t = z 1 Ia e 2 rr i .. I a 

" 
m integer 

but only those of the poles lie m the cut plane for which 

(5) -arr < arg z + 2rrm. < arr. 

Thus, the number of the poles inside C is either [a] or [a+ l], according 
to the value of arg z. 

Feller conjectured and Pollard (1948) proved that E a(-x) is completely 
monotonic for x ~ 0 if 0 ~ a ~ l, i.e., that 

(6) 
dn E (-x) 

(-l)n a ~ 0 
dxn 

X~ 0, O~a~l 

The proof is based on (3). 
To investigate the asymptotic behavior of Ea(z) as z-+ oo, first assume 

that z-+ oo along a ray which is outside the sector iarg zi ~ arr/2 (there 
are such rays if 0 < a < 2). If there are any poles t • satisfying (5), they 
will lie in the half-plane He t < 0, Oeform C to consist of two rays in 
the half-plane He t < 0 so that the poles, if any, lie to the left of C, also 
set 

1n (3) and note that (l- t a z- 1
)-

1 is bounded uniformly in izl and t if 
arg z is constant and t is on C. Using again 1.6 (2), the result is 

N-1 
(7) Ea(z) =- L 

n = 1 

z -+ oo, iarg(-z)i < (l- ~:i a)rr 
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The 0-term is uniform in arg z if 

\ arg (- z )\ .$ ( 1 - Y:! a - f) 1T, 

The result is vacuous when a.?: 2. 
Next assume that z .... oo along a ray, and \ arg z \ _$ a 77/ 2. Then there 

is at least one t,. satisfying 

(8) -Xa7T_$argz+27Tm_$Xa7T, 

and there may be several (if a 2: 2): these poles lie in the half-plane 
Re t 2: 0. C can now be deformed as before except that in the course of 
the deformation of C the poles satisfying (8) are crossed and contribute 
residues. The result then is 

(9) 
n=t 

Z -n 

--- + 0(\z\-N) 
f'Cl-an) 

z -> oo, \ arg z \ _$ X a 1T 

where t. is given by (4) and summation is over all those integers m which 
satisfy (8). In particular, if 0 < a < 2, m = Ois the only integer satisfying 
(8), and 

1 I t (10) Ea(z)=- expz 1 a+0(\z\-) 0<a < 2, \argzj_sXa7T, Z->oo 

a 

From (7), (9), (10), and the definition of the order of an entire func­
tion (see, for instance, Copson 1935, sec. 7 .4) we infer that E a (z) is an 
entire function of order 1/ a for a > 0. The asymptotic expansions (7), 
(9) were generalized to complex values of a by Wiman (1905). 

The zeros of E a(z) were investigated by Wiman (1905). For a 2: 2 
Wiman proved that E a (z) has an infinity of zeros on the negative real 
ax is, and it has no other zeros. If n (r) is the number of zeros of E a(z) 

in jzj < r, Wiman proved 

[ 

r

17

t la J [ 1/a J 
(11) sin : .$ n (r) < ~ sin : + 1 a.?: 2 

where [x) is the greatest integer_$ x. For 0 < a < 2 the distribution of 
zeros is entirely different. Excluding the case a= 1 (when there are no 
zeros), Wiman shows that asymptotically the zeros lie on the curve 

(12) Re z t/a+ log jz \ + log \f' (-a)\ = 0 
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and also that 

0 < a < 2, a~1 

Moreover, for 1 < a < 2, there is an odd number of negative zeros. Wiman 
investigated the zeros of E a(z) also for complex values of a. 

The functional relations 

(14) 

(15) 

(16) 

( _:!_)" E (z " ) = E (z • ) 
\dz • " 

(_:!_) • E (z •In) = n~1 
dz • In L 

k = 1 

Z -k .. In 
------ + E (z • In) 
r{l- km/ n) • In 

where m and n- l are positive integers, are immediate consequences of 
(1). From (16) 

n- 1 

..!:._ [e-'E (z11n)] = e-z L 
dz 11n k = 1 

Z -ki n 

r {l- k / n) 

and upon integration of this by means of 9.1 (l) 

(17) E1/n(z11n)= e ' [1+ni1 y(1-k/ n, z)J 
k = 1 r {l- k/ n) 

n = 2, 3, ... 

An explicit expression for E !i follows froTT' (14) and (17). The third 
equation (2) follows from (17) fo; n = 2 by means of 9.9(1), (2). 

The integral 

oo -t a 1 
(18) f o e Ea(t z)dt=--

1- z 

was evaluated by Mittag-Leffler who showed that the region of conver­
gence of(18)containsthe unit circle and is bounded by the line Rez 11a = l. 
The Laplace transform of E a (t a) may be obtained from (18), and was 
used by llumbert (1953) to obtain a number of functional relations sat­
isfied by E a(z ). 
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The function 

(19) Ea, f3 (z) = 2 
k = 0 

r(ak+f3) 
a,{3 > 0 

has properties very similar to those of Mit•ag-Leffler's function: see 
Wiman (1905), Agarwal (1953), Humbert and Agarwal (1953). The follow­
ing formulas may be obtained precisely as their special cases (3 = 1 
above. 

(20) E a 13(z) = -
1
-. [ 

' 2rrL C 
dt 

z-+ oo, \arg(-z)\ < (l- ~ a)rr 

z-+ oo, \argz \::; ~ arr 

(23) Ea, 1 (z)=E a(z) 

E (z) = -
1
- + z E (z) 

a, f3 1~ ({3) a, a+ f3 

(24) 
.-1 
~ E (ze 2 71 ih/ .. ) = mE (z") 

h=O a , /3 .. a , /3 

a, (3 > 0 

In (20), C is the same path as in (3). In (22), t • is g iven by (4) and m 

runs over all integers satisfying (8). In (24) and (25) m is any positive 
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integer. The region of convergence of (26) is the same as that of (18). 
The Laplace transform of t/3-l E a (ta) may be evaluated by means of (26) 
and was used by Agarwal (1953) and by Humbert and Agarwal (1953) to 
obtain further properties of E f3 . a , 

A function of two variables resembling E a , f3 was briefly discussed by 
Humbert and Delerue (1953). 

The functions Eaand E a , /3 increase indefinitely as z-+ oo in a certain 
sector of angle a TT, and approach zero as z -+ oo outside of this sector. 
Entire functions which increase indefinitely in a single direction, and 
approach zero in all other directions, are also known. Two such functions 
are 

L 
zk 

r [1 + k (log k )-a] 
k=2 

0 < a < 1 

()() 

[ log(kz + 1/ a)J L 
k= 0 

0<a<1 

Theyhavebeendiscussed, respectively, by Malmquist{l905) and Lindelof 
(1903). 

Barnes (1906) has investigated the asymptotic behavior of E a (z ), and 
also that of several similar functions, in particular of the functions 

L k = 0 (k + 8)!3 r (l + a k) ' 

L zkf'(1+ak) 

J..=o f'O + a+ak) 

()() 

L •= 0 

zkf'(1+ak) 

k! 

A function intimately connected with E a , f3 is the en tire function 
()() 

(27) ¢(a., {3; z)= L 
k=o lr!l'(ak + {3) 

a, {3 > 0 

which was used by Wright (1934) in the asymptotic theory of partitions. 
The connection with Ea,f3 is given by 

(28) J 00

e-t'cp(a,{3;t)dt=s-1 Ea 
13

(s- 1
) 

0 • 
a> 1, {3 > 0 
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a re sometimes called hyperbolic fun c tions of order n. They reduce to 
hyperbolic functions when n = 2. 

(3) h
1
(x, l)=e"', h

1
(x, 2)= coshx, h

2
(x, 2)= sinhx 

In genera l, n will be a fixed positive integer and will, as a rule, not be 
indicated . It will also be convenient to extend the definition (2) to all 
(positive, zero, or negative) in tegers i which is tantamount to setting 

(4) hi+n(x,n)=h,(x,n) i integer 

This will often simplify the writing of formulas. 
Since 6>n = l, all hi satisfy the differential equation 

dny 
(5) - - y = 0 

dxn 

and since 

(6) 
n 
~ (U r ,. = 0 for integers r not divisible by n 

•= 1 

= n for integers r divisible by n, 

the h . 
' 

also satisfy the initial conditions 

dr, h . 0 if i f, j 
(7) ' (0) = 0 . . = dxf-l l) 

if l i = j 
i, j = l, 2, ••• , n 

Thus,h,, ••• , hn form a linearly independent set of solutions of (5), and 
their \\ronskian is equal to unity. 

The power series expansion 

00 

(8) h,(x, n) = l 
r=O 

L = 1, 2, ... , n 
(nr + i - 1) ! 

is obtained by expanding the exponential functi ons m (2) and using (6); 
the integral representation 

(9) h.(x, n)=-
1
- [ ' ') . 

~TTL C 
~=--- dt 

t n- 1 
i = l, ... , n 
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where C is a simple c losed c urve encircling the unit circ le once in the 
posi tive sense , is proved by the remark tha t the eva luation of the integral 
as a s um of res idues leads to (2); a nd th e re lation 

(lO) exp(cu" x) = f cu (i-l) " hi(x, n) 
l = 1 

m integer 

follows £rom (8). 
Some of the basic form ulas for hyperbolic functions of order n are 

(ll ) hi (cu" x) = cu (i -I) " hi (x) 

(13) h . (x+y)= f h . (x)h ._ .+1 (y) 
' j= 1 1 ' 1 

(14) hi h2 h n 
h hi h n -1 n 

n 

II 
• = 1 i = I 

f cu ( i -I),. h (x )) = l 
' 

h2 h3 hi 

n-i Joo S (15) e - s t h .(t) dt = ---
o ' sn-l 

R e s > l, t = 1, 2, ... , n 

Here i, j , m are any integers [except 1n (lS) where i is restricted]. (ll) 
and (12) follow from (2), (13) fo llows from (5) since h .(x + a) is that 
solution o f tbe differential equation (5) whose j -th deriv~tive is hi_ (a) 
when x = 0, (14) is the Wronskian of h 1 , ... , h n which is a circulant (see 
Aitken 1939, sec. 51) a nd can be eval ua ted expl icitly, and (15) is the 
Laplace transform of h/t) and follows I ikew ise from (2) or (8) . 

For these and other formulas see Poli (1940, l949a, the latter wi th a 
deta iled bibliograph y), Oniga (1948), l3ruwier (1949, l949a), and Silver­
man (1953) . Poli (l949a) indicates some relations which hold when n is 
a composite number, g ives expa nsions in terms of the hi, a nd some 
applications. Bruwier (l949b) considers l, cu , cu 2

, ... , cun -l as the units 
of a linear a lge bra , the multiplication ta ble be ing specifi ed by 
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(hypercomplex numbers). e w x is a hypercomplex nun1ber, and (1 0) shows 
that the hi are the components of e w x. This fact is used by Bruwier to 
prove the properties of the hi(x). ~latrices whose elements in the i-th 
row and j-th coluwn are a . h . . (x, n)/a . , where i, j = 1, 2, ..• , nand ' } -' } 
a

1
, ••• , an is a given set of constants, were considered by Lehrer 

(1954). 
From (8) and 18.1 (19), 

06) h (x) = x i- 1 E (x") 
1 n, t 

and in particular 

giving the connection with 1\littag-I .effler's function. 
The n functions 

00 

08) ki(x, n)= L 
r= 0 

(-l)r Xnr+ i-1 

(nr + i- 1) ! 

L = l, ~ •... , n 

L = 1, 2, ... , n 

are sometimes cal led trigonometric functions of order n; they are solutions 
of the differential equation 

d"y 
(19)--+y=O 

dx" 

and satisfy the initial conditions 

dj- 1 k . 0 if 
(20) 

dxj- 1 
(0) = 0 .. = ,, 

1 if 

i ~ j 

i = j i, j = 1, 2, 

llere again we extend the definition to all inte gers i by setting 

(21) k i+n (x, n) =- k i(x, n). 

... 'n 

These functions have been investigated by the above-mentioned authors 

and also by Mikusi~ski (1948). \\ith 

(22) A= exp~:i) 
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by k 1 (x), ••• , kn (x) and lead to the following conclusions. Each k /x, n) 
has an infinity of simple positive zeros: the zeros of k . (x, n) and k .(x, n ), 
i f; j (mod n) interlace. The least positive zero of k '.(x, n) is b~tween • 

[ 
(i + n - 1)! J 1/n 

(i - l) ! 
and 

[ 
2 (i + n - 1) ! J 1

/n 

(i - 1) ! 

The large positive zeros of k ;(x, n) are approximately equally spaced, 
the distance between two consecutive zeros of k i (x, n) approaches 

TT csc(rr/ n). 

Quotients like lc .(x, n)/ lc (x, n) may be regarded as generalizations 
of tan x and ctn x~ for the~e generalizations see Oniga (1948), Poli 
(1949) . 

An entirely different generalization of trigonometric functions was 
given by Gramme( (1948, 1948a, 1950). 

18.3. The function v(x) and related functions 

The functions to be considered in this section are 

(l) f
oo x 1 dt 

v(x) = , 
ret+ 1) 

0 

oo xa+ t dt 

v(x, a) =i 
0 r(a + t + 1) 

(2) ll (x, {3) = loo 
r<f3 + 1) ret+ 1) 

1
00 xa+ t t /3 dt 

!l(x, (3, a)= -------
0 r ((3 + 1) r (a+ t + 1) 

The first of these functions was encountered by Volterra in his theory of 
convolution-logarithms (Volterra 1916, Chapter VI, Volterra and Peres 
1924, Chapter X): Volterra denoted v(y- x) by >.(x, y), and v(y- x, a) 
by >.(x, y; a) or >.(x, ria). These functions also occur in connection with 
operational calculus, appear in an inversion formula of the Laplace trans­
formation, and are of interest in connection with certain integral equa­
tions. It may be noted that (2) is the definition of ll adopted in recent 
papers; some of the older papers write ll for a function which differs from 
(2) by a factor r ((3 + 1). 
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13etween the four functions defined by (l), (2) we have the following 
relations 

(3) v(x)= v(x, 0)= Jl(X, 0)= Jl(x, 0, 0) 

v(x, a) = Jl(x, 0, a), 11(x, {J) = Jl(x, (3, 0) = x Jl(x, (3- l, -1) 

xv(x, a-1)-av(x, a) = Jl(x, 1, a) 

All integrals in (1), (2) converge if x f, 0, a is arbitrary, and Re/:3 > -1. 
All four functions are analytic func tions of x with branch-points a t x = 0 
and oo, and no other singularity; v(x, a) and Jl(X, {{,a) are e ntire fun ctions 
of a. The definition of11can be extended to the entire {:3-plane by repeated 
integrations by parts. From (2) it follows that 

(4) Jl(x, {:3, f oo xa+t [ t /3 +1 J 
a)- d 

l' (a + t + 1) I ' ({:3 + 2) 
0 

_1_1"" {3+1_!:_1 xa+t Jdt 
= -1((3+2) 

0 
t dt lr<a+t+1) 

= . 

(-])" ! "" f3+ .. 

= r ({:3 + m + 1) 0 t 

and the last expression may be regarded as the definition of Jl(x, {:3, a) 
for Re (3 > -m - l. The so extended functions Jl(x, (3, a) and Jl(x, (3) 
= 11(x, {3, 0} are entire functions of {3, and they are analytic functions 
of x , and Jl(x, {3, a) is also a n e ntire functi on of a. 

From (4) it follows that 

d"'-
1 

[ x a J (5) Jl(x, -m, a)= (-1)•-l --1 da"'- l '(a + 1) 
m = 1, 2, ... 

and since x a/r(a + 1) is an entire function of a, we have by Taylor's 
expansion 

f' (a + t + l) 2: 
n=O 

(6) 
(-t)• 

Jl(x, -n- 1, a) 
m! 
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In order to investigate the behavior of p. (x, {3, a) as x -> 0, we rewrite 
the second fonnula (2) as 

(7) f oo E 1) t f3 dt f'({3 + 1) p.(x, {3, a)= xa exp -t log-
x f' (a+ t + 1) 

0 

From (6) we have 

(8) 
1 

f' (a+ t + 1) 
l: 

n = 0 

(- t)• 
p.(1, -n- 1, a)--­

m! 

and it is known from Watson's lemma (Copson 1935, sec. 9. 52) that 
substitution of (8) in (7) and integration term-by-term will give the 
asymptotic expansion of the integral in descending powers of log (1/ x ). 
Thus, 

(9) 
~ )-{3-1 

p.(x, {3, a)= xa \og ~ [ :~: (-1~!({3 + 1). 

x p.(l, -n- 1, a) ~··:t .o o .. : n J 
Re {3 > -1, X-> 0, 1&·0·· ~)I< · 

The asymptotic expansions of the other three functions in descending 
powers of log (1/ x) follow by (3). The first terms of the asymptotic ex­
pansions of v(x) and of v(x, a) were obtained by Volterra. 

The behavior of v(x) as Re x -> oo can be seen from Ramanujan's 
integral (llardy 1940, p. 196) 

/

oo e-xtdt 

(10) v(x) = ex-
0 

drr 2 +(logt)2) llex > O 

A thorough investigation of the asymptotic behavior of v(x) was under­
taken by Ford (1936). Briefly, Ford's method is as follows. Let us inte­
grate 

1 1" xa+tdt 
ll(x, w) = ------:-

[sin(rrw))2 
0 

f'(a + t + 1) 
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around a rectangle in the w-plane whose corners are - N- ~- ic, k + ~ - ic, 
k + ~ + ic, - N - ~ + ic where k and N are integers, k + N ~ 0, and c is 
a positive number. H (x, w) is a meromorphic function, and its poles 
inside the rectangle are at w = n, n = -N, -N + l, ... , k- l, k. The 
residue of H at w = n is TT -

2 xa+n;r (a+ n + 1). If c ... oo, the integrals 
along the horizontal lines of the rectangle vanish so that 

k -2 a +n 

l 
TT X 

H dw = 
n = _ N r (a + n + 1) 

Clearly, the second integral is O(lxla·-N-~). In the first integral we set 

l (/It+~+ H(x, w) = H, + H2 =[sin (TTw)]2 o 

It can then be shown that 

l f lt+~+ioo l lit+~ Xa+tdt flt+~+ioo 
-2-. H, dw = -2-. r(a+t+ l) [sin(TTW)]-2dw 

17 
t k + ~- ioo 

17 
t 0 It+~- ioo 

l 

2TTi 

_
2 

X t 

f
k+~ a+td 

=TT O r(a +t+l) 

i
k+~+ioo 

H
2 

dw ... 0 
lt+ Y,- ioo 

and hence, making k-> oo, 

as k ... oo, 

00 
xa+n -N-~+ioo 

v(x, a)- \' = - ~ TTil 
n,?_N r(a + n + l) 

-N-~-ioo 

Hdw 

lxl ... oo 
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Combining this result with 18.1 (21), (22), 

v(x, a) = ex+ O(lxl a.-N) x-+ oo, largx i.S ~TT 

-- O(lxla.-N) u < I I< X -+ oo, 12 TT argx _ TT 

for any integer N. 
For Jl(x, {3, a) a somewhat less complete result can similarly be 

derived. Because of the branch-point of 

1 1" H (x, w, {3) = [ . ( )]2 
Sin TTW O r(a+t+1) 

at w = 0, one is forced to takeN=- 1 and obtains, as above, 
00 

a.+n /3 1 X+ioo 
J1(x,{3,a)- L x n -~rri H(x,w,{3)dw 

n=1 r(a+n+1) 1/. 
12 - tOO 

Further progress then would seem to depend on the asymptotic expansion 
of the entire function 

00 

r (a+ n + 1) 

The following recurrence formula, differentiation formulas, series, 
and integral are easy consequences of (1) and (2). 

d" v(x) 
(12) v(x, -n), 

dx" 

d" v(x, a) 
----- = v(x, a-n) 

dx" 

d" J1 (x, {3) 
(13) dx" Jl(x, {3, -n), 

d" Jl(x, {3, a) 

dx" 
Jl(x, {3, a-n) 

(14) ~ u" Jl(x, n) = e -u v(xe u), 
00 

n -(a.+1)u u ~ u Jl(x, n, a)=e v(xe , a) 
n= 0 n= 0 

I 
n= 0 

({3 + 1) -(a.+1)u ( u ) 
----"'" u" Jl(x, {3 + n, a)= e J1 xe , {3, a 

n! 
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00 f'(y) 1({3-y+ 1) 
(15) J au y- 1 ( -u {3, a)du= 11(x, {3-y, a) 

0 e u p. xe , [' (f3 + 1) r 

Re f3 > -1, Hey > 0 

For numerous other formulas regarding these functions see in particular 
Barrucand (1951), Colombo (1950, 1953), Humbert and Poli (1944). 

The occurrence of the functions 11 and p. in operational cal cui us is 
due on the one hand to the formulas 

(16) /
00 

e-st dt = ll(e -•), 

0 f'(t+ 1) l
oo e-st 

----- dt = eas ll(e-•, a) 
[' (a + t + 1) 

(17) !00 
0 

t /3 e-st 
-- dt = p.(e-•, f3) 
f'(t+l) 

f oo __ t f3_e_-_•t_ 
dt = e as p. (e- s, {3, a) 

['(a+ t + 1) 
0 

Re f3 > -1 

Re f3 > -1 

which are equivalent to (1), (2} and show that the functions 11, p. are 
Laplace transforms of simple functions; and on the other hand to the 
formulas 

Res > 1 

Rea > -1, Res > 1 

Re s> 1 

Joo -st ( f3 } d - a- 1 (1 }-/3- 1 e p. t, , a t = s og s 
0 

Re a > - 1, Re s > 1 

which may be established by means of (1), (2), (4) and show that 11 and 
p. have very simple Laplace transforms. For derivations of many properties 
of the functions 11 and p. by means of operational calculus, and for the 
application of these functions in operational calculus, see Barrucand 
and Colombo (1950), Colombo (1943, 1943 a, 1948), Humbert 0944, 1950), 
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llumbert and Poli (1944), Parodi 0945, 19·1.7, 1948), and Poli (1946). 
~ioreover, one of the numerous inversion formulas for the Laplace 
transforn•ation 

(20) f(s) = Joo e-st F(t) dt, 
0 

viz. the formula (Paley and \\iener 1934, p. 39, Doetsch 1937) 

1 100 

(21) F(t) = lim -- f(s)[v(st,-~ + ;\i)-v(st,-~-;\i)]ds 
A->oo2rri 0 

involves v(x, a). 
The integral formulas 

! 00 ~ 2) X {3+1 ~ ~ 
(22) exp _ 

4
y p.(x, (3, a) dx = 2 y rr p.(y, (3, 

0 

~a) 

He a > - 1, He y > 0 

(23) 1,- xexp 0::) e (x, {3, a) dx • 2ft " rr '" r"' e(y, {3, ~a- l;) 

He a>- 2, Hey > 0 

(24)!,- exp (- ::) Dv( .;,, ) e (x, {3, a) dx 

2/3+~v+t ~ ~~~+~ ( (3 t / t / ) = TTy p.y, , / 2a- / 21/ 

He a > -1, Re y > 0 

may be established by substituting (4) in the integrands: in the last 
case, (24), use 8.3 (20). These formulas show, in particular, that the 
functions v, p. satisfy the following integral equations 

(25) ;; "_, r _, !,- exp 0 ::) v(x) dx. v (y) 

~ 77 -X y-X~oo exp 0:: )p.(x, (3) dx = 2 /3 p.(y, (3) 

0 
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(26) ~ TT -
112 y - 3121·00 

x exp (- ::) v(x, -1) dx = v(y, -1) 

~" -,, y-"' f~ x oxp ~ ::) p(x, ~. -1) dx • 2• p(y, ~.- 1) 

(27) 2 -Xv- t -X -xv-Xioo (-~) D ~ x ) ( ) d rr y exp 
8 

-a 
2

x X v x, a x 
0 y y 

= v(y, a) Rea > -1 

= 2/3 ll(y, {3, a) Rea > -1 

In the case of the integral equation with the nucleus 

1 ( x
2

) -..----.,-,- exp - -
2rr~ y~ 4y 

it is known (Stankovic 1953) that (25) gives all characteristic functions 
which, in a certain sense, are of regular growth; a similar statement is 
likely to be true in the case of (26) and (27). For other integral equations 
whose solutions involve the functions v and ll see Colombo (1943 a, 1952) 
and Parodi 0948). 



MISCELLANIWUS F'UNCTIONS 

REFERENCES 

Agarwal, R.P., 1950: Ann. Soc . Sci. Bruxelles. Ser. I. 64, 164-168. 

Agarwal, R.P., 1951: Bull. Calcutta Math. Soc. 43, 153-167. 

Agarwal, R.P., 1953: C.R. Acad. Sci. Paris 236, 203 1-2032. 

Agarwal, R.P., 1953a: Bull. Calcutta ,\1ath. Soc. 45, 69-73. 

225 

Aitken, A.C., 1939: Determinants and matrices, Oliver and Boyd, Edinburgh and 
London. 

Barnes, E.W., 1906: Philos. Trans. Royal Soc . A 206, 249-297. 

Barrucand, Pierre, 1951: C.R. Acad. Sci. Paris 232, 1058-1060. 

Barrucand, P.A. a nd Serge Colombo, 1950: C.R . Acad. Sci. Paris 230, 1335-1337. 

Bruwier, Laurent, 1949: Bull. Soc. Roy. Sci. Li'ege 18, 72-82. 

Bruwier, Laurent, 1949a: Bull. Soc. Roy. Sci. Li'ege 18, 169-183. 

Bruwier, Laurent, 1949b: Mathesis 58, 216-222. 

Buhl, Adolphe, 1925: Series analytique. Sommabilite . (Mem. Sci. Math. Fasc. 7) 
Gauthier-Vi liars , Paris. 

Colombo, Serge, 1943: Bull. Sci . Math. (2) 67, 104-108. 

Colombo, Serge , 1943 a : C.R . A cad. Sci. Paris 216, 368-369. 

Colombo, Serge, 1948: C.R. Acad. Sci. Paris 226, 1235-1236. 

Colombo, Serge, 1950: Ann. Telecomm. 5, 347-364. 

Colombo, Serge 1952: C.R. A cad. Sci . Paris 235, 857-858, 928-929. 

Colombo, Serge, 1953: Bull. Sci. Math. (2) 77, 89-104. 

Copson, E .T., 1935: An introduction to the theory of functions of a complex 
variable. Oxford. 

Doetsch, Gustav, 1937: Math. z. 42, 263- 286 . 

F'ord, W .8 ., 1936: The asymptotic developments of functions defined by Maclaurin 
series . Univ. of Michigan. 

Gramme!, Richard, 1948: Arch. Math. 1, 47-51. 

Gramme!, llichard, 1948 a: lng.-Arch. 16, 188-200. 

Gramme), Ric hard, 1950: lng.-Arch. 18, 25()-254. 

Hardy, G.IJ., 1940: Ramanujan. Cambridge . 

Humbert, Pierre, 1944: C.R. Acad. Sci . Paris 218, 99-100 . 



226 SPECIAL FUNCTIONS 

REFERENCES 

Humbe rt, Pierre, 1950: C.R. Acad. Sci. Paris 230, 504-505. 

Humbert, Pierre, 1953: C.R. Acad. Sci. Paris 236, 1467- 1468. 

Humbert, Pie rre and R .P. Agarwal, 1953: Bull. Sci . Math . (2) 77, 180-185. 

Humbert, Pie rre and Paul Delerue, 1953: C.R. Acad. Sci. Paris 237, 1059- 1060 . 

Humbert, Pierre and L ouis Poli, 1944: Bull . Sci. Math. (2) 68, 204-214. 

Le hre r, Ye hiel, 1954: Riveon Lematematika 7, 71- 73. 

Linde lof, Ernst, 1903: Bull. Sc i. Math, (2) 27, 213-226. 

Malmquis t, Johannes , 1905: Acta Math. 29, 203- 215 . 

Mikus i~ski, Jan G., 1948: Ann. Soc . Polan. Math. 2 1, 46-51. 

Mittag-Leffler, G.M., 1903: C.R. Acad. Sci. Paris (2), 137, 554-558. 

Mittag-Le ffler, C .M., 1904: R. A ccad. dei Lincei, R endiconti (5) 13 , 3-5. 

Mittag-Leffler, G.M., 1905: Acta Math. 29, 101-182. 

Oniga, Theodore, 1948: C.R. A cad. Sci. Paris 227, 1138-1140. 

Paley, R .E .A.C . and Norbert \he ner, 1934: Fourier transforms in the complex 
domain . Ame rican Mathematical Society, New . York. 

Parodi, Maurice, 1945: Bull . Sci. Math. (2) 69, 174-184 . 

Parodi, Maurice, 1947: C.R. Acad. Sci. Pari s 224, 780-782. 

Parodi, Maurice, 1947a: R evue Sci. 85, 360. 

Parodi, Maurice, 1948: Ann. Soc. Sci. Bruxell es I, 62, 24-26. 

Phragmen, Edvard, 1904: A eta Math. 28, 351-368. 

P oli, L ouis , 1940: Ann. Soc . Sci. Bruxelles I, 60, 15-30. 

Poli, Louis , 1946: C . R . Acad. Sci. Paris 222, 580-581. 

Poli, Louis, 1949: Ann. Univ. Lyon. Sect. A (3) 12, 5- 25 . 

Poli, L ouis , 1949a: Cahiers Rhodaniens 1, 1-15. 

Pollard, Harry , 1948: Bull. Amer. Math. Soc . 54, 1115-1116. 

Silverman, L.L., 1953: Riveon Lematematika 6, 53-60. 

Stankovic, Bogoljub, 1953: R ec . Acad. Serbe Sci. 35, 95-106. 

Volterra , Vito, 1916: A cc. dei Lincei, Memorie (5) 11, 167-249. 

Volterra, Vito and Joseph Pe'r~s, 1924: Lecons s ur La composition et les 
fonctions permutables. Gauthier-Villars, Pari~. 



MISCELLANEOUS FUNCTIONS 

REFERENCES 

~iman, Anders, 1905: Acta Math. 29, 191-201, 217-234. 

Wright, E.M., 1933: ]. London Math , Soc . 8, 71-79. 

"'right, E.M., 1934: Acta Math. 63, 143-191. 

Wright, E.M ., 1934 a: ?roc . London Math. Soc . (2) 38, 257-270. 

Wright, E.M., 1940: Quart.]. Math. Oxford Ser. 11, 36-48. 

227 



CHAPTER XIX 

GENERATING FUNCTIONS ( 1) 

FIRST PART: GENERAL SURVEY 

19.1. Introduction 

If a sequence of numbers g
1

, g
2

, ••• , is determined as the sequence 
of coefficients in the expansion into an infinite series of a certain 
function, this function is called the generating function of the numbers 
g • 

n The most frequent type of infinite series to occur in this connection 
IS a power series 

C(t) = I: gn t". 
n= 0 

Often the g are functions of one or several variables, x
1 

, x
2

, ••• , xP, 
say, and we"have a relation of the form 

(1) C(x
1 

, .... ,x ;t) = I: gn(x
1 

, ... ,x )t". 
p n= 0 p 

Here C is called the generating function of the functions g n (x
1
,, •• ,x ), 

and x
1

, ••• ,xp, tare regarded asp+ l independent variables. With the 
exception of a few particularly important examples, p will always be 
unity in this chapter, and accordingly we write 

C(x,t) = I: gn(x)t" 
n = 0 

for the generating function C (x,t) of the functions g n (x) of a single 
variable. 

As a rule, the power series occurring as generating functions have 
a positive radius of convergence. Sometimes, however, it is useful to 

(1) This chapter is based on an extensive list of generating functions 
c ompiled by the late Professor Harry Bateman. 

Professor E. D. Rainville kindly contributed a supplementary list of 
generating functions, and ass isted us in the preparation of this chapter by 
very helpful discussions and s uggestions. 

228 
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consider also power series which have zero radius of convergence, that 
is to say, are divergent except fort = 0. If questions of convergence do 
not matter, we speak of formal power series, write 

(2) G(x,t)"-' ~ g (x)tn, 
n= 0 n 

and say that, G (x, t) is equivalent to or associated with the formal power 
series on the right-hand side of (2). 

Occasionally Laurent series, that is expansions of the form 

(3) G (x,t) = g n (x) t n' 
n= -oo 

00 

L 

will also be considered. 
Power series and Laurent series are not the only expansions which 

occur as generating functions. Another type of series, which is of fre­
quent occurrence in number theory, can be exemplified by the generating 
functions of sec. 17,12. Yet another type, factorial series, is fre­
quently met with for instance in combinatorial analysis._ 

The name "generating function" was introduced by Laplace in 1812. 
A brief discussion of Laplace's work on generating functions is found in 
Doetsch (1937). Laplace used not only generating series, but also gen­
erating integrals. The most important integral of this kind is now known 
as Laplace's integral and usually written as 

f(s) = Joo e -su g (u)du. 
0 

The connection with generating power series is more easily seen after 
a change of variable, t = e -•, Actually, both series and integrals may 
be replaced by the Laplace -Stieltjes integral 

(4) 

whel'e a(u) is a function of bounded variation, and the right-hand side 
is a Stieltjes integral. !\!any modern authors, for instance Widder (1936), 
use the term" generating function" in the sense of (4). Anyone familiar 
with Stieltjes integrals will see at once that generating power series, 
Dirichlet series, and Laplace integrals are particular cases of (4). 

19.2. Typical examples for the application of generating functions 

Often the generating function of a sequence lg nl of numbers or func­
tions is constructed in order to investigate the properties of thegn • We 
shall give a typical example from combinatorial analysis. 
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In ordinary algebra multiplication is associative, i.e., (ab)c = a(bc), 
and similarly for any number of fa ctors. A product of n factors is deter­
mined by the succession of these factors, and is independent of the 
grouping of the factors for purposes of multiplying two factors at a time. 
Even in some algebras in which the commutative law of multiplication, 
ab = ba, no longer holds, multiplication is still associative. The algebra 
of matrices is such an algebra. Nevertheless, there are algebras in which 
the associative law of multiplication does not hold; they are called non­

associative a lgebras. In such algebras it may happen that (ab )c and 
a (be) are different, so that the product abc may have p

3 
= 2 different 

values according as we multiply the product ab by c, or else a by th e 
product be. Note that the order of the factors has not been changed, and 
the difference in the result is due entirely to the non-associative char­
acter of multiplication. Given n factors, in a pre-assigned order, we may 
insert parantheses in several ways, so as to reduce the multiplication of 
n factors to n - 1 multiplications of two factors at a time. With four 
factors, a, b, c, d, we have the possibilites 

((ab) (cd)), (a(b(cd))), (((ab)c)d), (a((bc)d)), ((a (bc))d). 

Let p be the number of ways of i;Jserting parentheses in a product of n 
factor;, Clearly, p

1 
= p 2 = 1, p

3 
= 2 and p

4 
= 5 . 

The last step in forming the product of n factors is the multiplication 
of a product of the first m factors by a product of the last n - m factors. 
There are p • different products of the first m factors and p n-• different 
products of th e last n - m factors, and m may take any of the values 
l, 2, ... , n- l. Thus we have 

(l) Pn=p, Pn-t + P2Pn-2 +··· + Pn-t P,• 

With n = 4, we obtain p
4 

= 1·2 + 1·1 + 2·1 = 5; 
with n = 5, we obtai n p 

5 
= 1·5 + 1·2 + 2 ·1 + 5·1 = 14, etc. 

Let us now form the generating function 

(2) C(t) = ~ p t" 
n ' n= I 

and observe that on account of (l), the coefficient of t ", for n _? 2, tn 

is again p n. There is no linear term in (3). Therefore, we have 

(4) [G (t)] 2 + t = C (t). 
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This is a quadrati c e quation for C(t), and C(t} is that root of this equation 
which vanishes v..hen t = 0. \';e assume l1.tl < 1, take (l-4t)X to mean 
that value of the square root which has a positive real part, and obtain 

(5) C(t)=~-~{l-4t)X. 

Expanding the right-hand side of (5) In a binomial senes we thus find 

(6) C(t)=- ~ n~ 1 (-4)" (~) t" 

and, therefore, 

(7) ( ~) =-1 ( 2n-2) 
n n-1 n 

Apart from giving a simple formula for a computation of p , which is 

independent of the computation of p n-
1

, p n-
2

, ••• , formula n (7) can be 
used to investigate the asymptotic behavior of p n as n ... ""' From 1.18 (4) 
we derive that 

(8) n -+ oo. 

Generating functions are also a powerful tool in the investigation of 
systems of polynomials. As an example we shall investigate Tchebycheff 
polynomials, T" (x), defined by the generating function 

1-t 2 
00 

(9) C (x,t) = 
2 

= ~ f: T (x)t", 
1-2xt+t n=o n n 

where f: 0 = 1 and fen= 2 if n = l, 2, 3, 4, .... The properties of the Tn(x) 
have already been reviewed in Chap. 10. An expansion of C in a geo­
metric series, 

(10) C(x,t)=(l-t 2
) ~ (-t 2 +2xt)", 

n= 0 

shows that the coefficient oft" on the right-hand side is a polynomial m 

x, that the highest power of x in the coefficient of t" is exact! y x n, and 
that the coefficient of xn t" is 2". We thus see that T n(x) must be a 
polynomial of x which is of degree n, and that the coefficient of x" in 
Tn(x) for n ;::: 1 is 2n-1

, 

Multiplying (9) by 1-2 tx +t 2 and collecting the terms involving t" on 
both sides, we find 

fen Tn- 2 x f:n-1 T n-1 +l:n-2 T n-2 = { O 
-1 

n >2 

n = 2 
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Since (10) gives T
0 

= 1, T, = x, we find that 

(ll) Tn- 2x Tn-l + Tn_ 2 = 0 n =2,3,4, .... 

Let x be real and let -1 < x < 1. Then the series on the right-hand 
side in (9) converges absolutely for all complex values of t for \\bich 
\t\ < 1, since the singularities of G (x, t) as a function oft are at t = t 

1 
and t = t 

2
, where 

Cauchy's formula then gives 
1 

(13) c T (x) =- J t-n-l G(x,t) dt, 
n n 2rri C 

where C denotes any simple closed c ircuit surrounding t = 0, and such 
that \t\ < 1 on C. Integral representations such as (13) may be used to 
estimate the functions represented by them. In the particular case under 
consideration, it ts even possible to evaluate the integral in (13) ex­
plicitly. \\e put 

x = cos ¢, t 
1 

= e i <J:> , 

so that 

t = e -i<J;, 
2 

C(x,t) = {l-t 2)(t-ei<P)- 1 (t-e-i¢)- 1 , 

and from (13) 

(14) c T (x)=(2rri)- 1 J t-n- 1(l-t 2 )(t -ei<P )- 1 (t- e -i<P )- 1 dt. 
n n C 

If n 2: 1, there is no singularity at infinity, and the evaluation of the 
integral in terms of the residues at the poles t 

1 
and t 

2 
gives 

(15) T (x) =cos n¢ =cos (n cos- 1 x). 
n 

This expression is also valid when n = 0. 
If we introduce in (9) 

(16) x=cos¢, t=eiw, 

we find 

(17) G(x,t) = G*(<f>,w) = (1-e iw+i</:>)- 1 + (1- e iw-i<J:>)- 1 - l. 
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Thus C* is a sum of functions depending on ¢ + w and <P- w only 
and therefore 

a2c* a2c* 
(18) --=--. 

aw 2 a¢ 2 

Now 

a dx a 
=- (l- X 

2
) Y, 

a 
( 19) -=--

a¢ d¢ ax ax 
a dt a a 

(20) -=--=it-. 
aw dw at at 

By substituting (19), (20) in (18) we find from (17) 

By expanding the left-hand side of (2l) in a power series in t we find 
that T n (x) = y satisfies the differential equation 

(22) ( l - X 
2

) Y 11 
- Xy 

1 
+ n 2 Y = 0. 

The orthogonality relations of the T n (x) can be obtained by computing 

(23) ! 
1 

l - t 2 l - s 2 

----- -----...,- (l- X 2) -X dx. 
l-2xt + t 2 l-2xs+s 2 

-1 

This integral is an elementary integral which can be evaluated explicitly. 
The result is 

277(-1 -~). 
l- st 2 

Expanding in powers of s and t, and comparing coefficients of s" t ", we 
see that 

(24) J_\ T n (x) T 
111 

(x) (1- x 2)-X dx = {O 

7T/f n 

nf.m 

n = m. 

Although this is a somewhat laborious proof of (24), the method deserves 
to be mentioned since it can be applied in many instances. 

The proofs of formulas (13), (22), (24) are to some extent typical 
examples for the way in which the generating function can be used in 
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order to obtain integral representations, differential equations, or integral 
relations for the generated functions. In general, a combination of recur­
rence relations and differential equations is obtained if it is possible to 
find a relation between C and the derivatives of C with respec t tot and to 
x, For instance, if 

(25) C(x,t) = (l- 2tx + t 2 )- y, = ~ 
n = 0 

v.here P n (x) is the l .egendre polynomial of degree n (see Chap. 3) , th e 
identity 

i1C ac 
(26) t-= (x- t)-at ax 
gives 

(27) nP (x) = x P' (x)- P' (x), 
n n n-1 

and the relation, 

ac 
(28) (1- 2tx + t 2

)- = tC ax 
gives 

(29) P ~- 2x P ~- 1 + P ~- 2 = P n- 1 • 

lf we eliminate P ~- 2 by using (27) with n - 1 instead o f n, we obtain 

(30) nPn_ 1 =P~-xP~_ 1 , 

From (27) and (30) we find 

(3 l) ( l - x 2
) P ~ = - nx P n + n P n _ 1 • 

Differentiating (3l) with respect to x , and combining the result with (27), 
we find Legendre 's differential equation 

(32) (l -X 
2

) P ~~- 2x P ~ + n (n + l) P n = 0. 

Difference equations can be obtained in many cases where the gen­
erating function involves an exponential fun c tion. The generating fun c­
tion for the !1ernoulli polynomials Rn (x) (see Chap. 1), 

00 

L 
n = 0 

8 n (x ) t n / n ! , 

gives 
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(34) t(et-1)- 1 [eCx+llt_e"t]= ~ [B (x+l)-B (x)]tn/ n!. 
n= 0 n n 

Since the left-hand side in (34) is t exp (xt), we have 

Other types or functional equations for generated functions may be 
obtained in a similar manner. 

Finally, the existence of a generating function for a sequence g n of 
numbers or functions may be useful for determining 

by Abel's or Cesaro's summation method. If 

00 

(37) G (t) = k g tn 
n= 0 n 

and if 

(38) A(t) = ~ 
n= 0 

then 

(39) A (t) G (t) = ~ 
n= 0 

where 

(40) Yn = ,\n go+ ,\n-1 g 1 + ••• + ,\0 gn . 

19.3. General theorems 

For each n = 0, l, 2, ... , let g n (x) be a polynomial in x which is of 
exact degree n. If 

n = l, 2, 3, .•• 

the g n (x) are said to form an Appell set of polynomials. In this case 
there exists a formal power series 

00 

(l) A (t) ,.._, k 
n = 0 

such that 

a t n 
n 
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( 2) A ( t) e tx ""' ~ g n (x) t n , 
n = 0 

Thorne (1945) showed: A set of polynomials g n (x) is an Appell set if 
and only if there exists a function a(x) which is of hounded variation in 
(0, oo) such that the Stieltjes integrals 

f.L = ("" x n d a(x) 
n jo 

n = 0, 1, 2, ... 

exist, 

f.Lo f, 0, 

and 

Joo g (rl(x) d a (x) = { 0 
0 n 

1 

n f, r 

n = r. 

Then the formal power series A (t) is defined by 

Scheffer (1945) proved that the set g n (x) is an Appell set if and only 
if there exists a function {3 (x) of bounded variation in (0, oo) such that 

b = J x n d {3 (x) 
n o 

n = 0, 1, 2, ... 

exists, 

b 0 ~ 0, 

and 

(3) 1
00 

(x + t) n 
g n (x) = -

1
- d {3(t) 

o n. 
n = 0, 1,2, .... 

Varma ( 1951) showed that then, with the same {3 (t), the polynomials 

(4) g:(x) = [

00 

:~ 
3
F

2
(-n,a,b;c,d; -t/ x) d{3(t) 

also form a n Appe II set. Here 
3
F

2 
denotes a generalized hypergeometri c 

series(see 4.1). The generatin g function associated with the g: becomes 

(5) A *(u) e w: ""' ~ 
n= 0 

g: (x) u n 

where 
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For examples o f Appell sets see formulas 19,7(1), 19.7(2) , 19,7(23) and 
19.7 (34). 

J<~xpansions of the type 

ex t 00 

(7) -- = ~ !{ (x) t" 
((t) n = -oo n 

were studied by llalphln (1881) and Bird (1934), 
Scheffer (1939) used th e notion of an Appe ll set as a basis for a 

classifi cation of polynomial sets, For each n = 0, l, 2, ... , let g n (x) be 
a polynomial which is precisely o f degree n in x . Then there exists an 
operator J which is uniquely detem1ined by the g n (x) and which has the 
following properties: 

J is a linear operator acting on x " (and hence on any polynomial in x). 
I et y = y(x) be any polynomial in x . l.et J [y) denote the polynomial upon 
which y is mapped by J . Let J be such that, for n = l, 2, 3, ,,, , J[x "] 
is precisely of degree n- land that J[x 0

] is zero. Then it can be shov.n 
that for all y 

(8) J[y] = ~ L" (x) y<•l(x), 
•= 1 

where r <•) is the m -th derivative of r, and where 

(9) L (x) = l + l x + ... + l x • - 1 
m a, O a,1 a,a -1 

is a polynomial in x of degreeS m- 1 such that 

(lO) A =ml
10

+m(m-l)l
21

+··· +m!l _
1
f0 

... , ' ll,lll 

m = l, 2, 3, ... 

Now the L" (x) (and tl1erefore J) are uniquely detem1ined by 

n = l, 2, 3, ... • 

Let k be th e max imum degree o f the L (x). (If th e degrees of the L are 
not bounded, k = oo,) Then the se t of ;olynomials g (x) is said to be of 
A -type k. The Appell sets are special sets of A -t;pe zero. For these, 

L., (x) = c,. c 
1 
f. 0, m = l, 2, 3, ,, , 

and the c., a re constants. If we associate witl1 J tl1e formal power series 

J (t) "'c 1 t + c 2 t 2 + c 3 t 3 + •.•• 
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we may define another formal power series H (t) by 

( 12) J[H (t}] = t. 

19.3 

Then a ll se ts g n (x) satisfying (ll) can be constructed by choosing an 
arbitrary set of constants a"(n = 0, 1, 2, ••• ), with a

0 
~ 0, putting 

00 

A (t} "" ~ 
n = 0 

and 

(13) A (t} e"HCt) "" ~ g (x) t". 
n = 0 . n 

All orthogonal sets g" (x) defined by a generating function of this type 
have been determined by Meixner (1934) (see sec . 19 .12). 

The case where 

(14) (1- t) .B ct>(t) exp (__:_) = 
1-t n= o 

g n (x) t n 

and <1> (t) is regular for It I .5 l has been s tudied by Wright (1932), who 
obtained results on the asymptotic behavior of the g (x) for n -+ oo , 

Iluff (1947) and Huff and Rainville (1952), provel if 

( 15) f(z) = 

and 

00 

(16} cf>(t} = L bnt", 
n = 0 

then 

00 

( 17) cp (t) f(xt) = ~ 
n= 0 

g n (x) t n 

defines a set g n (x) of A -type k if and on! y if 

where 
0

Fk denotes a generalized hypergeometric series (see Chap . 4) . 
and {3

1
, ••• , {3k, a are a rbitrary constants. For numerous other results 

on generating functions of the type (17) consult lluff (1947), and I3renke 
(1945). Rainville (1947) (unpublished) observed that in the particular 
case where cp(t) in (16) is exp t, the g" (x) in (17) satisfy 
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00 

(c)n an (~)n 
n! 1-t 

00 

n= 0 n= o 

For applications see 19.10(15) and 19.10(16). 
Rainville (1945) proved: if 

(20) H(x)= ~a x"/ n! 
n = 0 n 

and 

00 

(21) G(x,t)=etl/(xt) = L gn(x)t"/ n!, 
n= 0 

then 

(22) gn(x)= •~o(~) 
(23) xg~(x)=n[gn(x)-gn_ 1 (x)] 

(24) f (-1)k (n) g•(x) = (-1)"anx" •= 0 k 

(25) 

n 

gn(xy)= l (n) y•(1-y)"-•g.(x). 

•= 0 k 

Fasenmyer ( 1947) showed: if 

(26) H (x) = 
00 

:S 
n= 0 

a x" 
n ' 

then 

1 [-4tx J (27)-1/ ( )2 
1-t 1-t 

~ 
n= 0 

g n (x) t n 

where 

n 

(28) g n (x) = 2 
• = 0 

239 

n ~ l 

In the case where H (x) is a generalized hypergeometric series PFq 

(see Chap, 4) each gn becomes a generalized hypergeometric series 

p+zFq+z' 
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K. P . Williams (1924) studied generating functions <1>(2xt + t 2) where 
<l> (z) is a power series in z, and used his results for a characterization 
of the Legendre and llermite polynomials. 

Truesdell (1948) studied generating functions F (z, a) which satisfy 
the equation 

a 
(29) - F (z, a)= F (z, a+ 1). az 
In particular, Truesdell proved the following U1eorem. 

If F(z + t, a) possesses a Taylor series in powers oft, then 

00 

(30) F(z+t,a)= L F(z,a+n)t"/ n!. 
n= o 

If for fixed values of a and z = z 
0 

(31) sup 
n-+ oo 

F (z 
0

, a + n + 1) 

F(z
0

, a+ n) 

1 
=-

k 
kf.O 

and if there exists a real number h < 1 such iliat for certain values of w 
for which lw I < k 

(32) IF (z + tw, a)l < e ht 

then, for the same values of w 

(33) ~ F(z,a+n)w"=f
00

e-tF(z+tw,a)dt, 
n= 0 0 

provided iliat the series converges uniformly in z in a domain including 
the fixed point z 

0
• 

Other theorems of Trues de II de a I with the series 

00 

(34) L F (z, a - n) w" . 
n= 0 

Various applications will be listed in the table of generating functions, 
in particular, see sections 19.9 and 19.10. 

19.4. Symbolic relations 

In the older literature symbolic relations were often used in order to 
express certain identities in a concise form, and also in order to ab­
breviate proofs. ]n contemporary literature the use of symbolic relations 
is rarer. We shall give two examples. 
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Following Hainvill e (1946), we shall use the convention that the 
notation =; used in place of= means that exponents shall be lowered to 
subscripts on any symbol such as B, P, II, L which is undefined here 
except with subscripts. Thus, if R n denotes th e Bernoulli numbers 
which can be defined by the generating function 

(l) 
00 

t (e t_ 1) _, = ~ 

n= 0 

we write 

to indicate that the 13emoulli polynomial B n (x) of 19.2(33) can be ex­
pressed explicitly as 

(3) Rn (x) = r~ 
0 

(~) B rxn-r, 

The symbolic derivation of this expression is as follows. The gen­
erating funciions (l) and 19.2(33) are in symbolic form 

t (e t_ l)-1 ~ e Bt, text(e t_ 1)-1 =; eB<xlt, 

13y comparison, 

and (2) follows on comparing coefficients oft n. 

Similarly, if L n (x) is the Laguerre polynomial of degree n, 

n (-1)k n! 
L (x) = \' x k 

n k f 0 k ! k ! (n - k ) ! ' 
(4) 

and if P k is the Legendre polynomial of degree /c, the relation 

means that 
n n 

(6) 
k! k! (n - k )! 

Pk(z)= L (n)Lk(x-1)Ln-k(x + ]), 
k= 0 lc 

The relations (5), (6) were proved by Rainville (1946), who gave a large 
number of similar relations between the llermite Legendre and Laguerre 
polynomials. The proofs use generating functions. 
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In the calculus of finite differences the symbol E is often used for the 
shift operator which increases subscripts (or any other specified vari­
able) by unity. Thus 

(7) E g n - g n + 1 ' E k g n = g n + l k, n = 0, l, 2, ••• • 

Using this operator, the generating function of Hermite polynomials 

00 

(8) L 
n= 0 

/] n (x) t n / n ! 

may be written as 

(9) 

The operatl)r E, as defined above, acts on the (discrete) variable n. 

Friedman ( 1952), extends its definition so as to act also on the variable 
x. Given any function of x, expand it in a series of Hermite polynomials, 
and apply E to the Hermite polynomials. That is to say, if 

(10) ((x) = a
0

1!
0
(x)+a

1 
H

1
(x)+··· 

define 

( ll) E ( (x) = a 
0 

H 
1 

(x) + a 
1 

II 
2 

(x) + .. • • 

All other variables (s, t, y, ... ) are unaffected by, and hence commute 
with, E, Multiplication by the variable x also defines an operator acting 
on any function ((x), From the recurrence relation 

( 12) II n+l (x) = 2x II n (x)- 2n If n-l (x) 

we find 

xlf n(x) = "'h H n+l (x) + n/1 n-l (x). 

Therefore, multiplication by X maps the function r (x) in ( LO) upon 

(13) x{(x)=a 1 1J
0

(x)+ ~ [~2an_ 1 +(n+l)an+ 1 ]lln(x). n= I 

From (ll) and (13) we find 

(14) x F: ((x)- E xf(x) = ((x). 

Helations of the type (14) between two operators play a role in quantum 
theory. Equation (14) illustrates that E does not commute with x. llow­
ever we may multiply any expressions involving I:: by quantities not 
involving x and add. For instance, from 
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00 

(15) eiEtH (x)= ~ 
0 n= 0 

2
. 2 

inH (x)tn/ n!=e txt+t 
n 

and 

(16) Joo exp (ist- ~ t 2 y- 2 ) dt = 2rrX y exp (-y 2 s 2 ) 
-oo 

we find by substituting E for s that 

(18) 

( 19) 
2rrXy ( xzyz ) 

= (1-4yz)Y, exp -1- 4yz • 

Comparing (17) and (19) gives 

where w 2 = l - 4 y 2 , 

19.5. Asymptotic representations 

Generating functions may be used with good effect for the determi­
nation of the asymptotic behavior of the generated numbers (or functions) 
as n -+ oo, If 

( 1) G (t) = 
00 

L {!, t n 
n= 0 n 

has a finite radius of convergence, then G (t) has one or several singu­
larities on the circle of convergence, and the location and nature of these 

singularities determines the behavior of g n for large n. If (l) converges 
everywhere, then C (t) is an en tire function, and the behavior of C (t) for 
large \t\ determines the behavior of gn for large n. 

The case of a finite radius of convergence of (l) was first investi­
gated by Darboux (1878), and later by many authors. Darboux's method 
leads to the following general theorem formulated by Szego (1939, theorem 

8.4). 
Let C (t) be regular for \t\ < 1, and let it have a finite number of 

distinct singularities 
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(2) 
i¢, i <l>z 

e , e , 
i ¢ 

e r 

' 
on the unit circle ltl = 1. Let 

(3) 
00 

G (t) = ~ 
v= o 

Orl -i ¢ k a k +v b k 
c 

11 
(l - te ) , k = 1, 2, ••• , r 

1n the vicinity of ei¢ k, \\here bk > 0. Then the expression 

00 

(4) L 
v= o 

furnishes an asymptotic expansion of g n in the following sense: if Q is 
an arbitrary positive number, and if a sufficiently large number of terms 
is taken in (4), then we obtain an expression which approximates g n with 
an error which is 0 (n-O) as n-+ ""• 

Any finite radius, R, of convergence can be reduced to unity by the 
transformation t = Ru. Darboux's method can also be adapted to cover the 
case of (proper) logaritlunic singularities. The case of exponential 
singularities on the circle of convergence is more difficult. It has been 
investigated by Perron, Faber, Hausler, and, more recently by Wrigh.t 

(1932, 1933, 1949), who gives references to earlier literature. 
Darboux's method has been applied successfully to the investigation 

of the asymptotic behavior of the classical orthogonal polynomials, and 
of certain aritl101etical functions. In the case of a generating function 
which is entire, in many cases it is possible to find an alternative gen­
erating series with a finite radius of convergence. Hermite polynomials 
(of even degree), for instance, may be generated either by 19.4 (8), or by 
19.4(20), and Oarboux's method applies to the latter but not to the 
former, generating function. 

The case of a generating function which is entire has been investi­
gated by many authors. Among earlier writers the most important papers 
are due to Uarnes, I in de lof, and \htson. Ford (1936). gives a summary 
of the results and references to most of the litera ture before 1936, and 
\\right (1948) gives references to more recent literature. 
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SECOND PART: FORMULAS 

No completeness has been attempted in the following list. The gen­
erating functions are listed in increasing order of complexity. A"hiernrchy" 
of functions has been laid down, and is indicated in the section headings. 
Each generating function is listed in the section corresponding to its 
"highest" function. No lexicographical order was developed, but the 
following principles were used as guides in compiling the list, and may 
help the user in finding any desired result. A function of a parameter is 
considered more elementary than a similar function of the principal vari­
ables x or t. Thus, (1 + t)x .appears later than (1- 2xt + t 2 )-v. A product 
of an algebraic function and of an exponential function is considered 
more elementary than an exponential function of an algebraic function. 

Almost every entry is accompanied by references to the literature. 
These references have been selected as convenient, and they do not 
necessarily indi cate that the generating function was introduced in the 
paper referred to, nor do they give the newest or most comprehensive 
source. 

The generating functions of number theory have not been included 
here. For these see Chap. 17. The generating functions of combina­
torial analysis have likewise been excluded. 

19.6. Rational and algebraic functions. General powers 

(l) 
1- t 2 

-----=1+2 ~ 
1 - 2 tx + t 2 n = 1 

T,. (x) t". 

The T,. (x) are the Tchebycheff polynomials of Chap. 10. 

(2) (1- t)-k-1 (1- xt)-1 = ~ g~k>(x) t" 
n= o 

(3) g~k>(x)= i (-l)"_ .. ck-
1
)x" • 

.. = o n- m 

k = 0, l, 2, ••• 

II ere g ~kl (x) is the k -th Cesaro mean of the first n partial sums of the 
senes 

l+x+x 2 + .... 

(For applications see Obrechkoff, 1934). 

(4) 
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The P n (x} are the I .egendre polynomials, (see Chap . 10). 

(5) 
0- x 2) l{ 

l-2tx+t 2 

19.6 

The U,+
1 

are the Tchebycheff polynomials of the second kind (see Chap. 
10). 

(1- 2tx + t 2 ) 31 2 
~ 

n= 0 
(2n + 1) Pn(x) t". (6) 

The P" (x) are the Legendre polynomials of Chap. 10. 

(7) (l-3xt+t 3 )-l{ == }2 g (x)t". 
n= 0 n 

Recurrence relations and a linear homogeneous differential equation of 
the third degree for gn were derived by Pincherle (1889). The polynomials 
generated by 

(l-3xt+t 3)-v 

have been investigated by P. Ilumbert (1920). 

(8) 
l + t 

(9) 

v== o 

~ g (x) t" 
n= 0 n 

r(k+ n-v+ l) (2v+ l) 

r (k + l) r (n- v+ l) 
P v (x) 

where P )x) is the I .egendrc polynomial of degree 11 and Re k > -1. 
Applications to the problem of summability of the series of Laplace and 
Legendre are given by Gronwall ( 1914). 

== ~ g (x) t", 
n = 0 n 

n 

(ll) ~n(x) == I r(k + n- v) 
l ' (k) l(n +] -v) [P)x) + pv+1 (x)]. 

v== o 

For applications consult Gronv.all (1914); also compare with (8). 

}: Cv (x) t". 
n= 0 n 



19.7 GENERATING FUNCTIONS 247 

The C~ are Gegenbauer's polynomials. Consult Chap, 10, sec, ll ,1 , 2, 
and also Gegenbauer (1874). 

Let w = (1- 2xt + t 2)~, then 

2<1 
(13) 

w (1- xt + w)a 

00 

n= o 

( 1 + a) 11 C ~ +a (x) t 11 

(2a+1)
11 

11 

where the cv are the Gegenbauer polynomials ofChap.lO; compare also 
11 

(12) and Szego (1939). 

(14) (1-3xt+3yt 2 -t3)-v= ~ 
n= 0 

H~(x,y) t 11
, 

Ordinary and partial differential equations for the H~ have been derived 
by Devisme (1932, 1933). 

(15) [1- x• + (x- t)•]-v = ~ 
n= 0 

For an investigation of the .c~ consult Devisme (1936), 

(16) (1-t)b-c(l-t+xt)-b= ~ (c) F(-n,b;c;x)t 11/ n! 
n= 0 n 

The notations are in those of sec.2,1, For applications (in physics) see 
Gordon (1929). 

Let w = (1- 2tx + t 2
)\ then 

(17) 2a+.L3w- 1 (1- t + w)-a (1 + t + w) - .B= ~ 
n= 0 

p (a,f3l(x) t 11 

n 

(18) = ~ 
n= o 

(a+ l) 
------'

11
'- F(a + {3 + n + 1, -n; a+ 1; ~- ~x) t", 

n! 

where the P,.<a,j3) are the Jacobi polynomials (compare Chap. 10 and sec, 
2 .5.1 where a proof is given). 

(19) (1 + t)"' = 11~ 0(:) t" 

where 

(2 0) ( x ) = x(x-1) ··• (x-n + l) 
n n ! 

n = 1, 2, 3, ... 
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(21) (~) = l, 

are the binomial polynomials of x . Equation (19) is the well-known bi­
nomial theorem which was rigorously proved by Abel in 1826 , 

(22) (~X l- tJ 
(x) 

(23) g (x) = --" F(-n -x· 1-n-x· -l) 
n I ' ' ' n. 

(24) = 2x F (l- n, l- x; 2; 2) 

The notations are as in sec, 2.1 • References: Mittag-Leffler (1891), 
Bateman (1940). The generating function is of the generalized Appell's 
type 19.3 (13) with A (t) = l, 

(25) (l+t\x (l-t)-1 = ~ g n(x)t" , l-tJ n=o 

An explicit expression for g"(x) can be found from (22) and 19.2(37) to 
19.2(40) with J\(t) = (l- t)- 1

• For applications consult Pidduck (1910, 
1912). 

(26) (2xt)-q [ (~ : :) x- l J q ~ g (x) t" 
n= o " 

[see Mittag-Leffler (1891).] 

The g n (x) satisfy the functional equation 

and every solution of (28) in terms of polynomials can be obtained from a 
generating function of the fonn 

(l + {3t 
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by an appropriate choice of the constants {3, a
0

, a
1

, •••• Reference: 
Ren~ Lagrange (1928). The generating function is of the generalized 
Appell type 19.3 (13). 

Let G = G (x, t) be that root of the equation 

(29) l+xG-(l+G)"=xt 2
, 

which possesses an expansion 

(30) G (x, t) = ~ g (x) t n / n ! • 
n= 1 " 

Then 

{ 
an-1 

(31) g (x) = 
1 n acn [ 

l+xG -
2

(G + l)"J -~n} 
xG G= o 

and g 
1 

= 2~ (l - x) -~. The g n (x) were used by Barnes (1906) for the 
investigation of the asymptotic behavior (for z ... oo) of 

f'(l + nx) 
----zn, 

n= 0 n! 

19.7. Exponential functions 

00 

{1) (t-l)•ext = ~ x•L:(x)m!tnh/(m+n)!. 
n= -a 

The L: are the Laguerre polynomials of Chap, 10; see also Truesdell 
(1948). 

(2) exp (2xt- t 2 ) = ~ FJ n (x) tn/ n!, 
n= o 

The H n are the Hermite polynomials of Chap, 10. 

X 2 t (t - 2) oo 
{l- t)- 1 exp = L g

2 
(x) tn 

(l-t) 2 n=o n 
(3) 

(4) 
2 

ex dn 2 

g (x) =-- -- (xne-x ) 
2n n! dx n 

(see Humbert, 1923), The g
2
n(x) have the property that 

Joo 2 Jo 2 e-x x • g (x) dx = e-x x • g 
2 

(x) dx = 0 
0 2n - oo n l 

s = 0, 1, 2, ... , n -
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(5) exp[Xx(t - t- 1)] = 
n= - oo 

The Jn (x) are Bessel functions of the first kind (see Chap. 7). 

(6) exp lx [u + t-(ut)- 1 ] /3! = ~ J (x)u" t". 
n,..t~ = -oo n,a 

(7) 
x n+a 

J (x) = 
0
F

2
(m+l,n+l;-x 3 / 27) 

n,• 3"+"f'(n+l)[' (m + l) 

where 0~ is a generalized hypergeometric series~ompare sec .4.1). For 
negative values of n, m th e right-hand side in (7) means 

00 

(8) (x /3)"+- l 
l= 0 

[' (l + l + n) r (l + l + m) 

For proofs and applications to the equation 

a 3 u a 3 u a 3 u a3 u 
--+ --+--- 3 +U=O ax 3 ay 3 az 3 ax ay az (9) 

consult P. Humbert (1930). 

See De visme (1932, 1933). 

oo t n 

L II (x)-
n =O n l! 

where l = X n if n is even and l = X n - X if n is odd. The II are the 
Hermite polynomials of Chap. 10; see also (2) and Szego (1939). 

(
2x

2J oo ( X t)" 
(12) (l-t 2)- ~ exp - - = L [II (x)F --

l+t n=o " n! 

The II n are the Hermite polynomials of (2) [consult also Chap. lOand 
Tchebycheff ( 1889)]. 

( 
xt ) oo (13) (1-t)-a- t exp --- = ~ L~(x) t". 
l-t n= 0 
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The L:(x) are the generalized Laguerre polynomials of Chap. 10 ; see 
also Szego ( 1939). 

[ 
(l-t 2)lLlJ oo 

( 14) exp X = L g n (x) t n 
t n= o 

(15) gn(x)=(-l2x)"(n-l)! 
[~nJ ____ x_-_z_l ______ _ 

L l ! (n -l) ! (n - 2l - l) ! 
l = 0 

v.here Pi n] = ~2n if n is even and [ 1ln1 = 1
2 n- 1 ~ if n is odd, and 

3
f', is a 

generalized hypergeorr.e tric series; notations are as in sec. 4.1. For 
applications to a problem in the theory of electrons see 1\lott (1932). 

(17) (l-2xt)-X explx- 1 [l-(l-2xt)X]! = ~ F (-n,n+l;-%x)t"/ n!. 
n= 0 2 0 

The 
2
F

0 
are I3essel polynomials. See (18), (19) and Krall and Frink 

( 1949), Burch nail ( 1951). 

(18) (l- 2xt)-X [~ + X(l- 2xt)Y:] 2 -aexp I ~2 bx- 1 [1-(l- 2tx)X]! 

= ~ y n (x, a, b) t "/ n! • 
n= 0 

The y n (x, a, b) are called generalized Bessel polynomials by Krall and 
Frink (1949), and satisfy orthogonality relations on the unit circle of the 
complex x-plane. For a proof of (18) see Burchnall (1951). Explicit 
expressions are: 

(19) yn(x,a,b)= k~o (~) (n+k:a-2)k!(~)k 
= 

2
F

0 
(-n, a-l+n; -x/ b) 

(20) (b b) 1 -X a 1/ (2%) IT' ( -1) Yn x,a, =X e 1-Y,a,n - Y: +Y: a X • 

Notations:/'~ is as in Chap. 4; W is as in Chap. 6; compare also sec, 
4.7 and (17). 

(21) (1-t) .B exp(__:__\= ~ gn(x)t", 
\l-t) n=o 
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(m- {3) n ,. x L - (3-1 ( ) 
x = e -x 

n! rn ! n 

see (13) and sections 2.1 and 6.9.2 for the notation. The L - {3-l are ~he 
ge neralized Laguerre polynomials. Heference: Wright (1932). n 

text 00 

(23)-,-= ~ Bn(x)t"/ n! 
e -1 n=o 

(24) 
n= 0 

Jlere Rn (x) is the Bernoulli polynomial and En (x) is the Euler polynomial 
of degree n. Let 

(25) B n = B n (0) 

(26) £n=2"£n{~~), 

The 8 n are the Bernoulli numbers (cf. Chapter 1) and the En a re the 
Euler numbers. 

n 

(:) Bv xn-v (27) B n (x) = l 
v= o 

n 

( :) 2-v E ,_,(x _ ~) n-v , (28) £ n (x) = l 
v= o 

For a report on the ex tensive literature and for numerous results and 
applications consult f.'ort (1948) and 1'\orlund (1924). For generalizations 
compare (30), (34) to (37) and (57). 

(29) 
e tx_ l 00 

~ g n (x) t n • 
n= 0 

The g n (x) are closely related to the Bernoulli polynomials [see (23), 
and also Hermite (1878) and Gerger (1888) for generalizations and appli­
cations), 

(30) 
t l ext 

(e '-1) 1 
~ B <ll(x) t"/ n!, 

n = 0 n 
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The B (!) (x} are called generalized B emoulli polynomials. Compare (23) 
n 

and see also Norlund (1920, 1924). Some special cases are: 

(31) Blnl(x) = Jx+
1 

(s- l)(s-2) ... (s-n)ds 
n x ' 

I dI-n 
(32) B< 1 + 11 (x) = ~ (x-1)(x-2)···(x-n) l~n 

n l! dxl-n 

B~0(x+y) =I ( ~) x(x-1) ... (x-r +l) B~~:'1 (y) 
r =o 

(33) 2tetx ( p+t e21-l)- 1 

=-P- + ~ w<pl (x}t"/ n!. 
p-t p+1 n = 1 n 

Tlte c.u~Pl are polynomials in x of degree n if p f. 0. If p-> oo, 

w (p) (x) -> 2 n B (Y:; x) 
n n 

where B (x} is the 13ernoulli polynomial [cf. 19.4(3), (23)]. The w<~l(x) 
can be e:panded into a series of functions 

sin J.L I x, COS J.L I X 

where J.L 1is the l-th real root of 

J.L cos IJ. + p sin J.L = 0. 

l = l, 2, 3, ... 

For this and other results and for applications to a problem In the con· 
duclion of heat compare Koshliakov (1935). 

w
1
t w 1t (e - 1) ... (e -1) 

(34) I e xt 
W 1 • ., cu I t n= 0 

B <- I ) ( I ) "/ I n xw
1

, ... ,w 1 t n .• 

cu t cu t oo 
(35) 2-l (e 1 + 1) ... (e 1 + 1) ext= ~ .E ~-. ll(xlc.u 1 , ... , w

1
) t"/ n! 

n = o 

(36) 
(.(.) ... (.(.) tl 

----~1------~~--~--~xt 
(e w 1t- 1) ... (e wit- l) 

00 

L 8 ~ 1 ) (xI w 
1 

, ... , w 
1 

) t "In ! 
n= 0 

2 1ex 
( ) - ~ £<! )(I ) "/ I 37 cu t «> t --:::: " n xwl' ... ,w1 t n. 

(e 1 + l) .. , (e I + 1) n - o 

l = l, 2, 3, .... 
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The B c- 1 l, B Cll are the Bernoulli polynomials of order -l and l, re­
spectiv"ely. Th~ E c: 1 l, E 1 ~ l are the corresponding Euler polynomials of 
higher order. For results and applications of these polynomials see 
Norlund ( 1920, 1924). 

(38) (ext_l)t 11 (et-l)-11 = ~ 
n= 0 

<I> II, n + I (x) t n ' 

(39) (e xt_ l) t -~~- 2 (e t _ l) 11+ I = ~ \JI ( ) n 
k II, n+l X t ' 

n= 0 

Imschenetzky (1884) investigated the <I> 
11 

n+t' 11' 
11

,n+l for 11 = 0, 1, 2, ... , 
They are closely related to the generalized Bernoulli and Euler poly­
nomials of (34) to (37); see also Norlund (1924). 

(40) exp[x(l+t-et)]= ~ gn(x)t"/ n! 
n= 0 

Mahler (1930) introduced the g (x) for the investigation of the zeros of 
the incomplete gamma function (see Chap, 9 and also (41), (46)], 

(41) exp[at+x(l-et)]= ~ g~a l(x)t"/n!. 
n= 0 

The g Cal have been investigated by Toscano (1950), Related functions 
are th;se studied by Hilb (1922), compare (46), and Mahler (1930), com­
pare (40), Toscano (1930) gives references to the older literature where 
the g Cal have been introduced in connection with problems of actuarial 
mathe~atics. Some of the results of Toscano (1930) are: 

d 
(42) g Ca+l)(a) - g Ca l(x) = - - g Cal (x), 

n n dx n 

Equation (42) relates the g (a) with the functional equation studied by 
Truesdell (1948). The g~al(x{is a polynomial of degree n both in x a nd a 

(43) g Ca l(x) = x -ae x (x _!}_)" xae -x • 

" \: dx 

If I}. a is the difference operator defined by 

(44) /}.a r (a) = ((a + l) - ((a), 

then 

n 

(45) g (a ) (x) =[exp (-x /}. )]a" = \' 
n a f.-

(-1) .. 
---x" /}.,.a". 

m! a 
•= 0 
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Toscano ~ives expansions of g<al(x) in a series of Laguerre polynomials 

L ~ (consult Chap. 10) and pr~ves the followin~ integral relation 

Joo e-x x'haJ [2(xu)'h] g<.Bl(x) dx = (-l}"u'hae-u g<a-j3+1l(u). 
0 a n n 

The relation 

e x g ~a) (- x) = ~ (a+m)"x• j m! 
•= 0 

has been stated by Whittaker and \\atson (1935), page 336. 

J
oo oo 

(46) exp(e 1-tx) exp(sx-e•)ds= ~ 15 (x)t". 
t n= 0 n 

Thegn (x) were used by l!ilb (1922) to construct a solution of the func­
tional equation 

(47) u (x + 1) -xu (x) =h (x) 

where h (x) is given. llilb shows that under certain conditions h (x), 

(48) ~ g (x)h<nl(x)=u(x) 
n= 0 n 

IS a solution of (47). Here h <ol = h (x) and h (n) is the n-th derivative of 
h (x), 

(49) e- 1 (l+a- 1 t)x= ~ a-'hn(n!)-'hp (x)t". 
n= 0 n 

The p n (x) are the Poisson-Charlier polynomials of Chap. 10; see also 
Sze~o (1939). 

(50) (l-tY"""e 1x= exp[x(2t+t 2/ 2+t 3/3 + •••)] 

= ~ g (x) t n. 
n= 0 n 

The g n (x) are a set of polynomials of the generalized Appell's type 
l9.3 ( 13). With the notation of sec. 2. l, 

n-l(x) x" 
X l -1 
( -l)lll =-,-2FO(-n,x;-x ), 
n . . n. 

l= 0 

Sylvester (1879) investigated the g n (x) and showed that the numbers 
g (l / 4) can be used for the computation of the number of different terms 
inn the determinant of a skew-symmetric matrix of degree 2n. Similarly, 
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g n (1/ 8) is signifi cant for the computation of the number of different terms 
in a determinant of degree 4n which is skew-symmetric with respect to 
both diagonals. 

00 

= L ~ (x) t n • 
n = 0 n 

Thegn (x) a re a gener alized Appell set of type 19.3(13) which is related 
to the Hermite polynomials (see Chap. 10)" Consult van Veen (1931) for 
results and applications to the problem of asymptotic behavior of Hermite 
polynomials. 

(53) (1-t2)-Xc (1+ t \ x e-2%t 

1- tJ 
= (1-t 2)-Xc exp [x(t 2/2 + t 3/3 + ••• )] = ~ 

n= 0 
g n (x) t n • 

Thegn (x) are a generalized Appell set of polynomials of type 19.3(13). 
They have been introduced by Tricomi (1949) for the investigation of the 
asymptotic behavior of Laguerre polynomials (see Chap . 10), The 
fundamental recurrence relation is 

(54) (n+1)gn+ t =(n+c-1)gn-t +2xgn_2 

n= o 

The An (x) are sometimes called Appell's polynomials. They are related 
to a special case of the g n (x) defined by 19,3 (13). This can be seen by 
writing 

e-x(l+xt) 11t= explx[s- 1 log(1 + s) -1]1 

We have 

dA 
(56) __ n_ = xA + x 2 A + ... 

dx n-t n-2 ' 
A (x) = x n+t 

n 

lim f 
n-> oo •= t 

s = xt. 

f p 
•=1 • 

.. _, 
X ' 

The numbers P are used for the computation of a number-theoretical 
function [see A~pell (1880)]. 
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00 

l n! 
n=o 

The B ~x) generalize the 13ernoulli numbers [see Chap, l and compare 
with (25)); B (x) is a polynomial in x of degree n and is a special case of 
the polynomi~ls of R. Lagrange ( 1928) [ cf. 19.6(27)), For another gener­
ating function see 19.8(6); theory and applications in Norlund (1920, 
1924). 13y a slight modification [see (58)) the Stirling polynomials are 
obtained from the B (x), 

n 

(

l -t.:\ -x-1 

(58) -: } = l + (x + l) ,! 
0 

The If;, (x) are called Stirling polynomials. They a,·e connected ¥<ith the 
Stirling numbers C (r) and ~ (r) by the relations 

n n 

(r) (n + 1)! 
(59) cn+1 = (n-r)! .P,_1(n) r = l, 2, 3, ,, 

(-1)'+1 (n +r)! 
(60) ~ ,,., = ·'· ( 1) 

n + 1 (n _ 1) ! '+' r -1 - n- • 

II ere, If; 
0 

is defined to be ~ and the Stirling numbers are defined inde­
pendently by 

(61) 
n-1 C (r) t n-r c<o) = 1 (t) n = L 
r= 0 

n n 

1 
00 (-1) r ~ (r) 

(62) --= 2: n ~ (0) = 1 
(t) n tn+r n 

r= o 

n-1 
(63) t" =- L ~ (r) (-t) 

r=o n-r+1 r 

Definition of (t), is as in sec, 2 .l. References: N. Nielsen (1906); 
Noc lund ( 1924). See also (57) and 19.8 (7). 

(64) (1- t)-~ explx[(l- t)-~- l)! = ~ g,(x)t" 
n= 0 
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00 

(66) (1-t)-312 explx[(1-t)- 112 -1]1 = L (2n+1)!pn(x}t"/ (2"n!} 2 

n= 0 

17~ e-x 

(67) pn(x) = 2x r<n+3/2) d ]" --- (x2n+l e"). 
d (x 2 ) 

For applications of the g n, p n in (65), (67) to the theory of hyperbolic 
differential equations, see Courant and Hilbert (1937) pp. 391-398. 

19.8. Logarithms, trigonometric and inverse trigonometric functions. 

(l) 

(2} 

Other elementary functions and their integrals 

1-(l-t)" 

log(1- t) 

g (x) = (n!}- 1 J" u(1-u) ·•· (n-1-u)du. n+l o 

See Appell (1929), Jordan (1929) and comere with 19.6(19) and 19.10(14). 
Applications to the computation of L n- • 

(3) K = 1, 2, 3, "' • 

The asymptotic behavior of the A C:> for n -+ oo was studied by Narumi 
(1929). Here A &,;>(x) ts the coefficient of tK! K! in the expansion of 

f'(n +t +x) 

[' (n + t) 

in powers oft, Application to the proof of theorems about functions which 
are regular in the unit circle lzl < 1 and have exactly one singularity with 
a prescribed I ocation (z = 1) and type on I z I = l. 

(4) 

Rev > 0, 

Here ( >..nx) is the binomial polynomial 19.6 (l9) of degree n in >..x 

(see Lerch (1905)]. 
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00 

(6) [t- 1 log(l+t)] .. = x l B (x +nl t n 
n 

x + n n! 
n= 0 

where the B (xl are defined in 19.7(57); see Norlund (1920, 1924). 
n 

(7) [-t- 1 log(l-t)]x= l +xt ~ rf; (x+n)tn, 
n = 0 n 

The r/; n are the Stirling polynomials; see 19,7 (58) and Nielsen (1906), 

(8) kte"tcsc(kt) = ~ gn(x,k)tn , 
n= 0 

259 

Let [~n] = ~n if n is even and [~n] = ~n - ~ if n is odd. Let the con­
stants b 2n be defined by 

00 

(9) L b
2

n t 2n = t sech t. 
n= 0 

Then 

[l1nJ 
(10) gn(x,k) = l 

•= 0 

k2•xn-2a 

b • 
2

" (n-2m)! 

For this result and for applications to the problem of approximating a 
function for which the mean value of the function and its derivatives are 
given see Leaute (1881). Appell (1897) showed that for-k < x < k 

g
2
,.(x,k)=2(-l)"k 2"TT-2" S (-1) 1-tl-2" cos(lTTX/ k) 

l= t 

m > O 

g
2
,.+

1
(x,k)=2(-l)"k 2•+t77-2•-t ~ (-l) 1-tl-2"- 1 sin(lTTx/ k). 

l= t 

Thegn are connected with the Bernoulli polynomials of 19,7 (23), 

(2k)n (x+k) 
g (x, k) = -- B --

n n! n 2k 

sinh xt 
(11) 

sinh t 

00 

L gn (x) t n 
n = 0 

can be reduced to 19.7 (23) (Dernoulli polynomials), Applications to 
two-point expansions of analytic functions by Whittaker (1933). 
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2" [e"(l+2x) - e"(l-2x \]. g n (x) = (n + l)! f 

cosh (xt) oo 

(12) = L gn(x)t". 
cosh t n = o 

Thegn arc related to Euler polynomials [see 19.7(24) and also \\hittaker 
( 1933)). 

(13) (Y2rrx) -Xcos(x 2 - 2xt) ~ = ~ 
n= 0 

(14) (Xrrx)-X sin(x 2 -2xt)X = ~ 
n = 0 

where Jv(x) is th e I3essel function of the first kind of order v (see 
Chap. 7 for the notations). Reference:Glaisher (1873). 

(15) (cost)"'= ~ c (x)t" 
n= 0 n 

(16) (t-1 sin t)"' = ~ s (x) t". 
n= 0 r 

For applications to the theory of I3ernoulli numbers and other pro­
perties of the c n, s n see Nielsen (1914) and compare with Norlund 
(1920, 1924) and 19.7(57). 

( 
l +it) -)i;ix 

( 17) exp (x tan - 1 t) = -. -.-
1- Lt 

See 19.6 (22). 

00 

( 18) exp (x sin - 1 t) = ~ g n (x) t n 
n= o 

(19) g
0

(x) = l, g
1
(x)=x 
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19.3 (13) with A (t) 1. The This is a generalized Appell set of type 
explicit form of the g (x) can be obtained 
differentiating (18) witl1 respect to ¢• 

by introducing sin <P = t and 

g n (x) t n • 

See f\1itt.c'l.g-L e fflcr ( 1901) and compare wit!. 19.6 (22). 

See f\1ittag-Leffler (1901). 

00 

L g n (x) t n • 
n= 0 

See Hogowski ( 1932), 

(25) n (l+tx 1) = 
l= 1 

~ I{ (x) t n 
n= 0 n 

JxJ < l 

(26) gn(x)=xY,(n+1ln ft (l-x 1)- 1 , 

l= 1 

For results and applications to the theory of probability see Oettinger 
( 1867). 

19.9. Bessel functions. Confluent hypergeometric functions (including 
special cases such as functions of the parabolic cylinder) 

In this section the notations of Cltap. 7 for Bessel functions and of 
Chapters 6 and 8 for confluent ltypergeometric functions and their special 
cases have been used. 

(l) 
n= 0 

Jn(x) t"/ n! 

Sec Chap. 7 and Truesdell 0948). 

(2) 

See Truesdell (1948). 

(3) 

See Truesdell (1948). 

V - Y,a-Y, n J ( ) (- ) "/ 1 - X +X t n. 
n= o a n 

00 1/ l / -:s x,.,a- , n J (x) t"/ n! 
a-n n= 0 
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(4) 

(5) 

llere P n' L n are the Legendre and Laguerre polynomials (see Chap. 
10). References and applications: for (4), (5), (6), Rainville (1945); 
for (7), Bateman (1905). 

~ L ~(x) t n 
(8) e 

1 
0 F, (1+a;-xt) = L (

1
+a) 

n= o n 

The L ~ are the generalized Laguerre polynomials of Chap. 10 ; see 
also Szego (1939). 

(9) 

...,he L~ are the Laguerre polynomials of Chap. 10; see also Truesdell 
( 1948) p. 2. 

(10) e"1 
0
f'. [1+a; ~4 t 2 (x 2 -1)] "' e"1[~t 2 (1-x 2)raJa_[t(1-x 2)~] 

= ~ [(2a+1)]- 1 C a +l{(x)t" 
n= 0 n n 

where C~ is the Gegenbauer polynomial of Chap. 10; see Truesdell 
(1948). 

00 

n= o 

L: (x) t n 

f'(n+a+ 1) 

The L~ are the Laguerre polynomials of Chap. 10 ; see Szego (1939). 

( 12) 
0
F, [1 +a;~ t (x -1)]

0
F

1 
[1 + /3; ~ t (x + 1)] 

"' ['(a+ 1) f' ({3 + 1) (~ t)-l{a- l{.8(1-x) -~a( 1 + x) -~.B 

x J l[2t (1-x)]l{l I 1[2t(x+ 1)] l{ ! 
11 11 

p (a ,.B>(x) t n 

l (ln+ a)n (1+{3)~ 
n= 0 
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The P (a,,B) are the Jacobi polynomials. Consult Chapters 10, 7 and 2 for 
the n~tations and Bateman (1905) for a proof. In the case a "' f3, the 
right-hand side involves Gegenbauer polynomials; for a "' f3 "' 0, the 
P (a,,B) are the Legendre polynomials (compare Chap. 10) and (12) 

n 
becomes (7). 

• 
(13) D • (x+t) exp[~(2xt+t 2)]"' 2 

n-=o 

The D • (m "' 0, 1, 2, ••• ) are parabolic cylinder functions[compare sec. 
8.2 and Prasad (1926)]. 

0 xt ) 200 

(p) La(x) 
(14} (1-t)-p 

1
1'; p; 1+a;- -- "' ( n n) tn. 

1-t 1 +a n==o n 

Here p is arbitrary; the L ~ are the generalized Laguerre polynomials of 
Chap. 10. Reference: Chaundy (1~3). 

( 4x 2 t 2
\ 32ct 3 x 3 

( 5 4x 2t 2\ 
(15) (1+4t2)-c IF; \ c ; ~; 1+4t2)+ 3(l+4t2)c+2 IF; \+1;2; l+4t9 

2xt(l+4t
2
-8ct

2
) ~ 3 4x

2
t

2
) 200 

(c) 1 21 + F. c·-· "' -- 2 H (x)tn 
(1+4t2)c+l I I '2' 1+4t2 n-=o (2l)! n 

where l "' ~n if n is even and l "' ~n - ~ if n is odd. The H n are the 
Hermite polynomials of Chap. 10. Reference: Brafman (1951). 

(16) e-t 
1
1'; (-b,a+1; x+t) 

"' f (a+b + 1)n 

n-=o (a+ 1)n 

(-t) n 

1F; (-b,a+n+l; x) - ­
n! 

See Truesdell (1948). 

19.10. Gamma function. Legendre fmtctlons and Gauss• hypergeometdc 
fUnction. Generalized hypergeometric functions 

The notations in this section are: for 1, (a) n see Chap. l ; for 
F, 21'; see Chap. 2; for P ~see Chap. 3 ; for pFq see Chap. 4, 

(l) 
i(m+x+t) 

i(m+t) 
~ A(n)(x)tn/ n!, 

n c::: 0 • 
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The A <nl are the fun ctions defined in 19,8(3); see also !\arumi (1929), 
m 

(2) (l-2tx+t 2)-X-X 11 fJl. [ x - t , J = ~ 
11 (l - 2 xt + t 2) y, L, 

n=o 
(v-p.+n) I' fJ. (x)t" 

n 11+n 

(3) (1-2xt+t2)Y.11p 1-L r x -t ]= ~ ( v+p. ) P f.J. (x)(- t)" 
11 L(l- 2xt+t 2 )Y, L, n 11 -n 

n=o 

(4) 

(5) 

See Truesdell ( 1948). 

(6) (l +t~ (1-t) R-1 p -- p --
' R II R 

00 

~ Pn(cosx)F)-2n-1)t" 
n= 0 

where 

(7) R=(1-2tcosx+t 2 )Y., F)z)= 3F2 (-v,v+1,~+~z;1,1;l). 

ll ere P 
11 

is Legendre's function; P n (n = 0 , l, 2 , ,,, ) Legendre's poly ­
nomial (see Chapters 3 and 10) ; 

3
F

2 
i s a ge ne ra li zed hypergeometric 

series (see sec. I, l .l). lleferences: Bateman (1934), Rice (1940). 

(8) -
1

- F[C 1 .·p·-4xt(l-t)-2] = ~ 
3

F.2 (-n,n+l,(;l,p;x)t" 
1- t 2 1 - ' _ , ' n= 0 

Here 
2
F,, 

3
F

2 
denote hyper gcomelri c and generalized hypergeometric 

series. References: Rice ( 1940), Fasenmyer (1947); see also 19. 3 (27), 

19.3 (28) and sec . 4.7. 

(9) (1-t)- 1 -a-.B 
2
F, [1h~2 a+ !;d 3, 1+ ~ a+ ~{3; 1+a; 2t(x -1)(1 - t) - 2

] 

L
oo (l+a+ m 

= n p (a , /3 ) (x) t n 

(1 +a) n 
n= C n 

00 

= I 
n= n 
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The P ~a,,B) (x)are the Jacobi polynomials; the 
2

F, is the hypcrgeometric 
series. Consult Chapters 2 and 10 for the notations and Watson (1939) for 
a proof. 

00 

(p) n C a+~ (x) t n 

(2a+1)n n 
= 2: 

n= 0 

where the C"' are the Gegenbauer polynomials of Chap. 10. Reference: 
13rafman (19Sl). The parameter p is arbitrary. For a= 0, the c~ become 
Legendre polynomials. 

(12) 2F, (p, 1+a+,B-p; 1+a; X-Xt-%w) 

X 2F, (p, 1+ a+,B-p; 1+,8; X+ ht-%w) 

(p) ( 1 +a+ ,B - p) 
n n p (a, ,B) (x) t n 

(1+a)n (1+,B)n n ' 
n= 0 

where w = (1- 2xt + t 2)~, P ~,,B) is the Jacobi polynomial of Chap. 
10, and p denotes an arbitrary parameter. Reference: Urafman ( 1951). The 
special cases a= ,B and a= f3 = 0 p;ive p;enerated functions which are 
multiples of the ultraspherical or Gep;enbauer polynomials and of the 
Legendre polynomials (cf. Chap, 10). 

~ x" [2a,2b,a+b,-n; J 
(13) [F(a,b;c;-t)F e"t= f.. -

4
F

2 
x- 1 

n! c,2c-1; 
n= 0 

t n • 

II ere F is the hyper geometric series as in sec. 2 .I; ,,F
2 

is a generalized 
hypergeometric series as in sec. 4 .l. Reference: p, !Iumbert (1924). 

(14) J-" F(a,,B;y;t) da= ~ 
0 n= 0 

( ) ({3) n t n. 
~n+l X -( -)-

Y n 

Ilere F is the hypergeometric series. Consult sec. 2.1 for the nota­
tions and see Appell (1929) for applications. The~ n+l are the functions 
19,8 (2). Let 
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Then for any c 

(c) n n 
-- g (x) t • 
n! n 

n= 0 

see Rainville (1947). Compare with 19.3 (19), 

(17) ex'(l-x 2)~• 2~[m+~,m+~;~,~m+~,~m+l;-~t 2 (l-x 2)) 

2-.. ' TT m. t" 
~ p• (x) ---

n= o •+n (m+n)! ['(m + ~) f' (m + ~) 

The Pn• are the Legendre functions of Chap. 3; see Truesdell (1948). 

(18) (1-t) a- 1 
2

F;, [~a-~; ~a; 4xtb - 1 (l-t)-2) 

"" ~ y (x,a,b)(a-1) tn/ n! 
n= 0 n n 

They n (x, a, b) are the generalized Bessel polynomials. Compare 19.7 (18) 
(Rainville, unpublished). Equation (18) is a special case of (23). 

(19) (l-2xt) - 1 2F0 [1,~;-4t 2 (1-2xt)- 2]"- ~ Hn(x)tn, 
n= 0 

The H n are the Hermite polynomials of Chap. lO, Reference: Rainville 
(1947). 

oo (a) 
(20) (1-2xt) - a 2~[~a,~a+~;-4t 2 (l-2tx)-2] "- L -" H (x)t". 

n= o n! n 

The H n are the Ilermite polynomials of Chap. 10, fieference: Brafman 
( 1951). 

(21) 
1 

1-t [

a 1 ' "' ' ap; 4 xt J 
F ---

P q (1-t)Z 
b1' ... ' bq; 

~ F P 
oo [-n,n+1,a 1 , ••• ,a; 
~ p+2 q+Z I 

n=o ~' 1,b1 , ... ,b
9

; 

Notations are as in sec . 4 . 1 .1. See also 19,3 (27), 19.3 (28) and Fasen­
myer ( 194 7). 
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(22) 

loo (A)n [-n, a1 , ••• , a; J 
= -- F p X t" 

' p+l q (3 (3 (3 n . '' z' •• ., ; n= 0 q 

Chaundy (1943). 

(23) 
[

a" ... , a ; 
(1-4xt)-1{2c-![1+(1-4xt) X] '-c P P 

p q 

(3" ... ' (3 q; 

1-(1-4xt)l{J 

2x J 
00 

- "' F - n~ 0 q+z p 

-n,c+n,1-(3 1 -n, ... , 1-(3 -n; ++I J 
q (-1)P q X A t n 

1-a
1
-n, ... ,1-ap-n; " 

where 

(24) A = (a,)n (a2)n ... (ap)n 1 

n ({3,)n ((32)n "' ((3q)n n! 

Hainville (1947). 

(25) e t F [a" ··· ' ap; -xt] 
pq(3 Q. 

t' ••• ' f-J q' 

Rainville ( 194 7). 

oo . [-n, a,, ... , a ; J t" "' p p X --
:: p+ l q . ' n -0 (3 " ... ,(3q, n. 

(26) F
4 

[y, 8; 1 +a, 1+(3; Xt (x-1), Xt (x+1)] = 

where F 
4 

is Appell's hypergeometric function of two variables (see 
Chap. 5); P (a,J3)is the Jacobi polynomial of Chap. lO. 

n 

19.11. Generated fUnctions of several variables 

(1) 

Thegn (x, y) are called Lagrange's polynomials. 

L
n (a) ({3) 

(2) g (x,y) = r n-r x r yn-r, 
n r! (n -r)! 

r = o 
Applications to statistics and genera l reference: J, L Lagrange (1867). 
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(3) (l+t) A (l+xt) J.L (l+yt) v = I (~) F
1
(-n,-M,-v,.\-n +l;x,y)tn 

n = 0 

where F
1 

is Appell's hypergeometric series in two variables (see Chap, 
5). Reference: Devisme (1932, 1933). 

(4) exp(xt-yt 2 +t 3/3)= ~ Un(x,y)tn. 
n = o 

Explicit (but complicated) expre ssions for the polynomials U n were 
given by Devisme (1932, 1933); also given are applications to 

a 3 V a 3 U a 3 V a 3 U 
--+ --+ ---3 = 0 
ax 3 ay 3 az 3 axayaz ' 

and re Ia ted partial differential equations. 

(5) X oo 
expli[x(l+t 2

) -yt]l= ~ ~n(x,y)tn 
n = 0 

(6) 

where [~~ n] = ~ n if n is even and [~ n] = ~ n - ~ if n is odd, and where 
l/~1~ X is the first llankel function of order k - ~. See llall (1936) and, 
for app lications to a problem in the theory of conduction of heat see 
Green ( 1934), 

(7) 
~t , n = 0 

II' (x,y)t" s n. 
a,n 

Let p = 1- x 2
- y 2 and a > - ~. Then 

(-l)n+m f'(a+l)f' (2a+m+n+l) a•+np a+m+n 
g = P-a -------::--

m,n 2"+nm!n! f'(2a+l) r(a+m+n+l) a x· a yn 
(8) 

consult Koschmi eder ( 1924). 

Put 

(9) cp (x,y) = ax 2 +2bxy+cy 2
, a > 0, 1\ = ac- b 2 > 0, 

/\ tb(x,y) = cx 2 - 2bxy + ay 2 

~=ax+by, Tf = bx+ cy . 
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The polynomials generated by 

00 

(10) exp[te+s.,-);2¢(t,s)]= :£ 
ll,n= 0 

t • S n 

II (x y)- --
.w,n ' m! n! 

oo t• s" 
(ll) exp [tx + sy- ~ tb(t, s)] = L G (x, y)--

.. ,n I I 
m,n = O nt. n. 

are llermite polynomials in two variables. For their properties, and for 
generalizations to several vari ables, see Appell and Kampe de Feriet 
(1926). For generating functions of products of such polynomials see 
Koschmieder (1937 , 1938) and Erdelyi (1938). 

SOME GENERATING FUNCTIONS OF SEVEHAL VAHIABLES 

l.et x 1 , ••• , x 1 be variables and let 

l l 
(12) C

0
(t) : 11 (l-tx )= :£ (-l)rs tr. 

r= 1 r r = o r 

Then s
0 

= l, s 
1 

= x
1 

+ x
2 

+ ·•• + x 1 and s r is the r-th elementary sym­
metric function of x 

1
, ••• , x 1• Let k = 0, l, 2, ... , and let 

( 13) p k = X~ + X; + "' + X~ 

be the sum of the k -th powers of the variables. Then we have 

a oo 
(14) --{logC ) = ::£ pktk-t, at o k= 1 

Multiplying both sides in (14) by G 
0 

and comparing the coefficients of 
the powers of t on both sides gives Newton's recurrence formulas from 
which expressions for the p k in terms of the s r can be obtained. Let 

y k (k = l, 2, 3, ... ) be variables and let 

00 

::£ 
n= 1 

Then 

R t n • 
n 
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where the sum is taken over all non-negative integers a
1

, ... ' an for which 

Now let C
0 

and s ,be defined by (12), and let p k be defined by (13). Then 

00 

~ h n (x 1 ' "• ' X 1 } t n 
n= 0 

where 

( 19) h n (x 1 ' ••• ' X 1) = 8 n (p 1' p 2' "' ' p n) 

(20) s ,(x
1

, ... , x 1) = (-1)' B,(-p
1
,- p

2
, ••• , -p,). 

For r > l, the left-hand side in (20) is identically zero which means that 
then, the right-hand side gives an algebraic relation between the sums 
of powers of x 

1
, ,,, , x 

1
• The proof of these formulas follows from the 

remark that 

(21) exp ( ~ ~ t~\ = exp(-log G) =-
1
-

k~,k ) o Co(t) 

(22) exp (- I ~t k) = G 0 (t). 
k = 1 k 

The functions B n are used in the theory of group characters. See Little­
wood (1940) for other explicit expressions for the B n, With a sli11:ht 
change in the definition, the B n have been thoroughly investigated by 
Bell ( 1934). 

For generating functions in several variables, consult also sections 
11.5, ll.6, and 11.8 where generating functions for spherical and hyper­
spherical harmonic polynomials are given. See Appell and Kampe deFeriet 
(1926) for the harmonic polynomials investigated by these authors. 

19.12. Some generating functions connected with orthogonal polynomials 

In this section, two sets of generating functions are given which were 
constructed from the point of view of the theory of orthogonal polynomials. 

Let gn(x) (n = 0, l, 2, ,., ) be a sequence of polynomials, such that 
g n (x) is of degree n and let a(x) be a function of bounded variation such 
that the Stieltjes integrals 
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(l) J"" g (x) g (x) da(x) =A 
- oo n 11 n,wt 

exist for n, m = 0, l, 2, .... ff A = 0 for n I= m, thegn (x) form an n, .. 
orthogonal system; if also A = 1 for n = 0, l, 2, ••• , the system is n,n 
called orthononl!al (sec Chap. 10). If da/dx = w(x) exists, it is called 
the weight function associated 'with the g • If w is zero outside an 
interval a S x ::; b, we shall '1\rite an integr~l from a to b in (l) and we 

shall call the g nan orthogonal or orthonormal system for (a, b). Watson 
(1933, 1934) has found explicit expressions for the bilinear generating 
functions 

(2) 
n= 0 

.... here the g n are the orthonormal systems derived from the Legendre, 
Gcgenbauer, Jacobi, Laguerre and llermite polynomials of Chap, 10. 
Using the notations of Chap. 10, Watson's results can be summarized 
as follows: 

(3) ~ Cn+r2) P (x) P (y) tn 
n= 0 n n 

For explicit expressions for 

00 

(4) 2: P (x) P (y ) t n 
n= 0 n n 

see \\atson (1933). 

(5) 

Let 

f) ( n ! r (n + a+ .B + 1) 
n = 2n+a+,8+1) ['( 1) I'( .B 1) Ta- .8-', 

n+a+ n+ + 
(6) 

that is, 
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(7) 

Let 

(8) u = ~(l-x)~ (l-y)~, v = Y7(l+x)X (l+y)X, 

(9) k=~:..(t X+ t-X), 

(10) y = l[(k sec w} 2 - u 2 - v 2]2- 4u 2 v 2!X 

(12) Z 2 =(ksecw}2 -u 2 +v 2 +y. 

Then 

00 

(13) [(l-x)(l-y)] Xa [(l + x)(l + y)]X8 L 
n= 0 

e p (a,f3 >(x)P (a,f3 >(y)t n 
n n n 

cos [(a- f3}wl dw} 
y cos 2 w 

-X ( 2 -X [4xyt -(x2+y2) (l+t2)] 
= rr l-t ) exp • 

2(1-t 2 } 

This formula was already derived by ~lehler (1866); see also Erdelyi 
( 1938). 

(15) (xy}Xae-X.r-Xy l 
n= o 

= t-Xa(l-t)-1 exp [.., ~:z(x+y) l+t J Ja[2(xy) X J 
l-t 1-t 

where Ia is the modified I3essel function of Chap. 7. This is the Rille­
Hardy formula; see also Myller-Lebedeff (1907), 



19.12 GENERATING FUNCfiONS 273 

~1eixner (1934) determined all orthogonal polynomials g n (x) which 
possess a generating function of the form 

(16) {(t) exp[xu(t)] = ~ 
n= 0 

g n (x) t n / n! • 

lie shows that there are only five possibilities: 

(i) Polynomials expressible in terms of Hermite polynomials 

(l7) {(t)= exp(-~,Ht 2), u(t)=t, 
da (-x 2

\ 

-;J; = exp \2k} . 
(ii) Polynomials expressible in terms of (generalized) Laguerre 

polynomials 

t 
(18) f(t)=(l-.\t)-k /A.

2
exp[ kt ], 

,\(.\t- l) 
u (t) = ,-----,--­

( l - .\ t) 

da 
(19)- = 0 

dx 

da ,2 
(20) -= (-x + k / .\)-l+k /1\. ex/a 

dx 

X> k / A 

-oo < x < k/ .\. 

(iii) Polynomials expressible m terms of Poisson-Charlier poly­
nomials 

(21) {(t) = (l->.t)k !A.2 e kt!A. 

(22) u (t) = -,\- 1 log(l- ,\t). 

]Jere a(x) is constant except for 

(23) X = Xn=,\- 1k-,\n 

where a(x) has a jump defined by 

l ( k )" (24) a(x + 0)- a(x - 0) = - - • 
n n n! ,\2 

(iv) llypergeometric polynomials; discrete varinble 

(25) f(t) = [(l- 11 tP·"- 1 
(1- .\t)_ "--

1
Jkf (JJ.- A. >, 

u(t) = (.\-11)- 1 [log(l- IJ.l) -log(l- ,\t)] 

n = 0, l, 2, ••• 
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where A and 11 are real and a (x} is constant except for 

(26) x=xn=k/A-(A-11)n 

where a(x) has a jump such that 

(27) a(x.+ 0)- a(x.- 0) '~ ~ )" ( -k:(A,<)) , 

19.12 

n = 0, 1, 2, ... 

(v) IJypergeometric polynomials; continuous variable; we have 
again equations (25) with A and 11 conjugate complex and 

(28) lm A> lm 11· 

Then, for - oo < x < oo 

da ( 11)x/{J.J.- 'A) (29) - = -- r(cu) r (¢) 
dx A 

where 

and where 

(31) I arg (- ~) I < rr. 

In all cases, differential equations or difference equations for the g n (x} 
can be established. 

For references to other cases in which the generated functions involve 
orthogonal functions compare the end of sec. 19.11. 

19.13. Generating functions of certain continuous orthogonal systems 

The Ile=ite, Laguerre, Legendre, Gegenbauer and Jacobi polynomials 
arise from the investigation of certain linear differential equations of 
the Sturm-Liouville type. After multiplication by a weight function, the 
orthogonal functions thus obtained are the eigenfunctions of a Stuml­
I .iouville problem which in these cases has a discrete spectrum. For 
the linear and bilinear generating functions of these systems see sec. 

19.12. 
For another range of the variable, tl•e same differential equation may 

have a continuous spectrum. Let fv(x} be the corresponding system of 
eigenfunctions. Then the integrals 
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ft 11 f)x) dv, ft 11 r )x) f)y)dv, 

taken over an appropriate range of values of v, may be called the linear 
and bilinear generating functions for the {

11 
(x); this agrees with Laplace's 

original definition of a generating function (cf. sec, 19 .l). 
In this section, linear and bilinear generating functions are given for 

the parabolic cylinder functions 0
11 

of Chap. 8; the confluent hyper­

geometric functions MK,JJ. and lf'K, of Chap. 6; the Gegenbauer functions 
C 11 and the hypergeometric funcGons corresponding to the Jacobi poly-

11-
nomials (cf, Cl1apters 2 and 10). 

For proofs and for references to applications of continuous orthogonal 
systems to boundary value problems consult Erdelyi (1941). 

(l) 

(2) 

(3) 

(4) (txy)X exp (- x+y 1-t) 
1+t 2 l+t 

c < 0, largtl < ~.lrr 

-1 < c < 0, 

:-=2.) 
t+ 1 

lc I < •iz + I! e 11• 

J 12(txy)X l 
ZIJ.tl+t j 

largt I < X rr 

largtl < 11 

largtl < 11 

where J
2

11- denotes the Bessel function of the first kind of order 211 (cf. 
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Chap. 7 ), and where L is a path from -i oo to i oo separating the poles of 
1(~ -K+/l) from those off'(~+K+/l). 

~ith the Hankel function fl i~ of the first kind instead of J
2

!-L, (4) 
becomes 

(5) (txy)~ ( x + y l-t) (1) [2(txy)~j 
-- exp --- -- II 
l+t 2 l+t 2 1-L l+t 

= (2rri)- 1 f t Kei1T(K-J.L )(U(K)WK (x)IJ:.K (y) 
L ~ ~ 

+ U(-K)W -K,J.L(-x) W - K ,J.L(-y)]dK 

where 

(6) 

The Gegenbauer functions C v can be defined by 
!-L 

CV(x) = ['(ll+ 
2

v) F(ll+2v,-ll;v+ ~; ~ - ~ x) 
1-L ['(ll+l) ['(2v) 

where F denotes the hypergeometric series of 2.1. For 11 = O, 1, 2, ... , cv 
is the Gegenbauer or ultraspherical polynomial of sec, 11.1.2, Tht 
linear generating function is 

(7) (l+2tx+x 2)-v = -~1c+ioo ti-LC.~(x) d11 -2Rev < c < O. 
2t c-ioo sm(llrr) 

Evaluation of the integral in (7) by means of residues gives 11.1(16). 
The most significant case in which Gegenbauer functions with non­

integer subscript 11 appear in ma th ematical physics is 11 = - ~ + i a, a real ; 
in this case the ex;/ are involved in the definition of the associated 
conal harmonics. The normalized form of these as introduced by \\eyl 
(1910) is 

(8) 
(x2-l) ~ l 

t/;~ 1 (x,¢) =N Y, 
21

l! F(l-ll,l+!l+l; l+l; ~ - ~x)e ± il¢ 

l = 0, 1, 2, ... 

where 

(9) 
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Let 

(10) w = xy- (x 2 -1)X (y 2 -1) X cos(¢- f)). 

Then 

277 

-1 < c < 0. 

For the generalization of the Jacobi polynomials we have the following 
results. Let 

(12) S = [1+2(1-2x)ut 'l.+u 2 t] X 

(13) T = [1+2(1-2y)ut-l{ + u 2 t- 1] '1. 

(14) V = [1+2(1-2x)t + t 2]X, 

Then 

(lS) r(y) (V-t-1\'Y-
1 

(V-t+1)y-a 
V -2 tx ) 2 

Jc +ioo 
= (2rri)- 1 . r(-v) f'(y+v) tV F(-v,a+v; y; x) dv 

c- 100 

0 < -c < Rey 

and 

(16) t u 
(

S-ut 'l. -1 T-ut-'1.-1~ 'Y - 1 
- XaJ"" a-1 

o -2ux -2uy 

x (S-ut '/,+ 1 T-ut-'1.+1)y-a du 

\ 2 2 ST 

J
c + ioo 

=(2rri)- 1 
. <l>(v)tVF(-v,a+v;y;x)F(-v,a+v;y;y)dv 

c- &oo 

0 < -c < Rea, Re(a-y) < -c < Re y 

where 

(17) <l>(v) = r(-v) r(a+v) r(y+v) I '(y-a-v). 
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If the parameter v in (7), or the parameters a, y in (15), (16) do not 
satisfy the respective inequalities, the .path. of integration must be 
indented so as to separate the different groups of poles of the integrands. 
These curved paths may be deformed so as to coincide with the straight 
line from c- ioo to c + ioo. If ~e do so, a number of poles are crossed, 
contributing a sum of residues. Our generating functions are nov. a sum 
plus an integral and represent the eigenfunctions of a "mixed" spectrum. 
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All numbers refer to pages. Numbers in italics refer to the definitions. 

A 

Absolute invariant, 17 ff. 
Accessory parameter, 57 
Algebraic numbers, 167 
Almost all, almost no, 175 
Appell polynomials (see Polynomials) 
Arithmetical differentiation, 172 
Arithmetical functions, 169 

asymptotic behavior of, 174fT. 
explicit expressions for, 169fT. 
general theorems on, 175 
generating functions of, 169 ff, 
properties of, 171fT. 
relations for, 171 ff. 

Arithmetical integration, 172 
Automorphic forms, 30fT. 

mctrization of, 31 
Automorphic functions, 1fT., 7 

Burnside's, 35 
general theorems for, 27 ff. 
of groups of parabolic substitutions, 

12 ff. 
of infinite cyclic groups, 14 ff, 
of several variables, 12, 35 ff. 
of subgroups of the modu Jar group, 

21fT. 
of the icosahedral group, 11 
of the lambda-group, 22 ff. 
of the modular group, 17 
Siegel's, 36 IT. 
simple, 9 
Whittaker's, 34 
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8 

Bernoulli numbers, 189, 241, 252, 
257, 260, 

Bernoulli polynomials (see 
Polynomials) 

Uessel polynomials (see Polynomials) 
Binomial polynomials (see 

Polynomials) 

c 

Character {mod m ), 
imprimitiv<>, 194 
primitive, 194 

Character (mod n ), 193 If. 
principal, 193 ff. 

Charlier polynomials (see Polynomials) 
Circulant, 214 
Confluent hypergeometric functions, 

251, 261 ff., 275 ff. 
Congruence, 175 
Coordinates, 

ellipsoidal, 46 ff., 96fT. 
oblate spheroidal, 95 ff. 
of confocal cones, 48 IT. 
of confocal cyclides of revolution, 

50 ff. 
of confocal elliptic and hyperbolic 

cylinders, 91 ff, 
of confocal quadrics, 44 IT. 
prolate spheroidal, 93 ff. 
sphero-conal, 49 IT., 73 

Coprime, 168 
Cyclides of revolution, 

coordinates of, 50 ff. 
harmonics associated with, 84 If. 
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D 

Darboux 's method, 244 
Decomposition, 175 
Dedekind-Liouville formula (see 

Mobius' inversion formula) 
Discontinuous groups, 5 

classification of, 26 ff. 
fundamental regions of, 5 rr. 
generators of, 5 
limit points of, 6 

Divisors, 
number of, 168 

E 

Eisenstein series, 17 ff. 
Ellipsoidal harmonics, 48, 69, 73, 

81 ff. 
integral represe ntations of, 83 

Ellipsoidal wave functions, 91 ff., 97 
159 ff. (see also Lame' wave 

functions) 
differential equation of (se e 

Lame's wave equation} 
integra l equations for, 162 ff. 

Elliptic fun c tions, 
Jacobian, 45 ff ., 51 

Elliptic modular func tions, 16 ff. 
Euler numbers, 252 
Euler polynomials (see Polynomials) 
Euler product of I. f(n), 169 
Euler's function ¢(n), 168, 193 
Euler's identities, 176 ff. 

F 

Floquct's theorem, 99, 119 
Fuchsian equations, 57, 160 

G 

Gaussian sums, 187 ff. 
Gegenbauer function, 275 ff. 
Gegenbauer polynomials (see 

Polynomials) 
Generalized Besse l polynomial 

(see Polynomials) 

Generating function, 
bilinear, of Gegenbauer 

polynomials, 271 
bilinear, of Hermite 

polynomials, 272 
bilinear, of Jacobi 

polynomials, 272 
bilinear, of Laguerre 

polynomials, 272 
bilinear, of Legendre 

polynomials, 27 
of an Appell set of polynomials, 

236, 255fT., 262 
of Appell polynomials, 256 
of Bernoulli numbers, 241, 252 
of Bernoulli polynomials, 234, 

252 ff. 
of Bessel coefficients, 250, 260 
of Besse I functions, 250, 260 ff. 
of Bessel polynomials, 251, 266 
of Charlier polynomials, 255 
of P.uler numbers, 252 
of Euler polynomials, 252 ff. 
of Gegenbauer polynomials, 246 ff. 

262 ff., 265, 271 
of Hermite polynomials, 242, 249 ff. 

263, 266, 269, 272 
of hypergeometric polynomials, 

247 ff., 251, 255, 264, 266 ff. 
of jacob i polynomials, 247, 262fT. 

267, 272 
of Lagrange's polynomials, 267 
of Laguerre polynomials, 249 ff., 251 ff., 

262 ff .• 272 
of Legendre functions, 264, 266 
of Legendre polynomials, 234, 245 ff. 

261, 264fT., 271 
of parabolic cylinder fun c tidns, 263 
of Poisson-Charlier polynomials, 255 
of Stirling numbers, 257 
of Stirling polynomials, 257, 259 
of T c hebyc heff polynomials, 231, 245 ff. 

Generating functions, 228 ff. 
and asymptotic representations, 243 ff. 
and orthogonal polynomials, 270 ff. 

(see also Gegenbauer, Hermite, 
jacobi, Laguerre, Legendre, 
polynomials} 

and symbolic relations, 240ff. 
bilinear, 271 ff. 
continuous , 274 rr. 
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general theorems for, 235 ff. 
in number theory, 169 ff ., 245 

Group, 167 
alternating, 9 
discontinuous (see Discontinuous 

groups) 
dodecahedral, 9 
finite, 9 
Fuchs ian, 26, 32 ff. 
icosahedral, 9 
Kleinian, 27 
lambda-, 22,34 
modular, 16ff., 34 
modular, Hilbert's, 35 ff. 
modular, of degree n, 37 ff. 
modular, subgroups of the, 21 ff. 
of homographic substitutions, 5 

H 

Harmonic polynomials, 83 
Hermite polynomials (see 

Polynomials) 
Heun functions, 60 ff. 

integral equations for, 72 
Heun polynomials, 62 
Heun's equation, 57ff., 98 
Rille-Hardy formula, 272 
Hill's equation, 133 
Hill's problem, 133 
Homographic substitution, 2 
Homographic transformation, 2 

elliptic, 4 
fixed points of, 3 ff. 
hyperbolic, 4 
loxodromic, 4 
parabolic, 4 

Hyperbolic functions of order n, 
206, 212 ff., 216 

Hypergeometric polynomials (see 
Polynomials) 

Hyper geometric series, 20 ff ., 23, 
236, 238 ff., 259ft., 263 ff., 276 ff. 

J 

Jacobi polynomials (see 
Polynomials) 

jacobi's identities, 177, 182 
jacobsthal's sums, 187 
Jordan's function Jk (n), 168 

K 

Kloosterman's sums, 188 

L 

L- series, 192, 194 ff. 
Lagrange's polynomials (see 

Polynomials) 
Lagrange's theorem on four squares, 

182 
Laguerre polynomials (see 

Polynomials) 
Lame functions, 44 ff ., 61 ff ., 63 ff .• 

97 
algebraic, 62, 68, 71, 88 
coexistence of, 67, 71 
degenerate, 74ff. 
doubly-periodic, 71, ff., 81 
finite (see Laroe-Wangerin 

functions) 
integral equations for, 72 ff. 
Legendre function expansions 

of 67, 69 
of imaginary periods, 69 ff. 
of periods 2K and 4K, 64 ff. 
of real periods, 63 ff ., 68 
of the second kind, 67 ff. 
periodic, 63 ff., 88 
transformation formulas for, 70 
trigonometric expansions of, 

65 ff., 68 
Lame polynomials, 62, 67, 69, 73 ff ., 

81 ff. 
transformation formulas for, 70 

Lame-Wangerin functions, 75 ff ., 84, 
86, 88 
integral equations for, 79 ff. 
power series representing, 77 ff. 
series of exponentials representing, 

78 ff. 
Lame wave functions, 97 

characteristic curves for, 161 
of the first kind, 161 
of the second and third kinds, 163 
orthogonal properties of, 162 

Lame's equation, 47, 52, 55ft., 59, 
61, 86 

algebraic forms, 56 ff. 
asymptotic behavior of the char­

acteristic values of h in, 68 
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characteristic values of h in, 63 IT. 
degenerate cases of, 74 IT. 
imaginary transformation of, 69 IT. 
Jacobian form of, 55 
solutions of, 62 IT. 
trigonometric form of, 56 
Weierstrassian form of, 56 

Lame's wave equation, 97, 1591£. 
power series expansions of 

solutions of, 159 IT. 
solutions of, 159 IT. 
subnormal solutions of, 160 

Laplace's equation, 45fT., 49fT., 
80, 83 

Lattice points, 196 IT. 
Legendre-Jacobi symbol, 183 ff., 

186 If., 193 
Legendre polynomials (see 

Polynomials) 
Legendre's equation, 134, 234 
Liouville's function, .\ (n), 169 

M 

Mathieu functions, 91 If., 93, 97 If., 
99, 108, 111 IT. 
addition theorem of, 132 
approximations to, 125 
asymptotic forms of, 125 IT. 
Bessel function expansions 

of, 1171£. 
characteristic curves for, 111 
expansions in series of, 132 
expansions of, in series of 

parabolic cylinder functions, 
127 ff. 

Fourier expansions of, 115 ff. 
infinite series involving, 128 IT. 
integral equations for, 114 If., 117 
integrals involving, 130, 132 
normalization of, 111 If. 
of fractional order, 114 
of the first kind, 111 ff. 
of the second kind, 119fT. 
orthogonal properties of, 114, 132 
products of,129 If., 133 
symmetry properties of, 113 

Mathieu's equation, 75, 92, 97 If., 134 IT. 
algebraic, 98 
approximations to solutions of, 105 IT. 

associated, 98 
asymptotic forms of solutions 

of, 106 IT. 
characteristic exponent of, 

99ff.,106 
expansions of solutions of, 

100 If., 103 IT. 
integral equations satisfied by 

solutions of, 109fT. 
integral relations for solutions 

of, 107fT., 110 
modified, 92, 120 
solutions of the first kind of, 

99, 108, 129 
solutions of the third kind of, 

99, 129 
stability chart for, 101 
stable and unstable regions of, 

101 
subnormal solutions of, 107 

Meissel's formula, 172 
Mittag-Leffler's function E 

0
(z), 

206 If., 215 
functions related to, 211 If. 
generalizations of, 210 If., 215 

Modified Mathieu functions, 120 IT. 
asymptotic forms of, 122, 125 ff. 
Bessel function expansions of, 

120 ff. 
integral equations for, 124 
integral relations for, 122 IT., 130 
of the first kind, 93, 120 
of the second kind, 120 If. 
of the third kind, 93, 122 

Modular equations, 24 If. 
Modular forms, 18, 30, 36, 39 ff ., 178 
Modular functions (see also Elliptic 

modular functions) 
of the nth degree, 36 If. 

Modular group (see Group, modular) 
Mobius • function 11 (n), 169 
Mobius' inversion formula, 171 If. 

generalizations of, 172 
Multiplicative functions, 169, 171, 185 

completely, 169 
Multiply-periodic functions, 12 If. 
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N 

Non-associative algebra, 230 
Normal solutions, 52 

of Laplace's equation, 47, 49ff., 86 
of the wave equation, 92, 94 ff ., 97, 

150 
Number theory, 

functions of, 167 ff. 

0 

Orthogonal polynomials (see 
Polynomials) 

p 

P-symbol, 57ff., 77ff. 
transformations of, 58 IT. 

Parabolic cylinder functions, 
263, 275 

Part,tio numerorum, 189 
Partitions, 175 IT. 

asymptotic formulas for, 178 IT. 
asymptotic theory of, 211 
congruence properties of, 178 IT. 
enumerating function of, 176 
enumeration of, 176 
generating functions for, 176 
restricted, 175 
theorems on, 178 

Poisson-Char I ier polynomia Is 
(see Polynomials) 

Polynomials, 
Appell, 256 
Appe II set of, 235 IT., 255 IT., 261 
Bernoulli, 234fT., 252ff., 259 
Bessel, 251 
binomial, 248 IT., 258 
Charlier, 255, 273 
Euler, 252 IT., 260 
Gegenbauer, 246ff., 262ff., 265, 

271, 274 
generalized Bessel, 251, 266 
Hermite, 240, 242 IT., 249 ff ., 256, 

263, 266, 267, 269, 271fT., 274 

hypergometric, 247 ff •• 251 

255, 264, 266 ff .• 273fT. 
(see also Gegenbauer, jacobi, 
Legendre polynomials) 

jacobi, 247, 262fT., 267, 271 ff., 
274 

Lagrange's, 267 
Laguerre, 241, 249 ff ., 252, 255, 

262 ff., 271fT., 274 
Legendre, 234, 240fT., 245ff., 262, 

264fT., 271, 274 
orthogonal, 238 

(see also Gcgenbauer, llermite, 
Jacobi, Laguerre, Legendre 
polynomials) 

Poisson-Charlier, 255, 273 
Stir ling, 25 7, 259 
Tchebycheff, 231 ff., 245 IT. 

Prime numbers, 168 
distribution of, 191fT., 195 

Prime number theorem, 192 

Q 

Quadratic law of reciprocity, 186 
Quadratic residue, 186 

R 

Ramanujan 's function T (n ), 184, 198fT., 
Ramanujan 's sums, 188 
Reciprocity, 

quadratrc law of, 186 
Riemann-Schwarz triangle functions, 

(see Triangle functions) 
Riemann's hypothesis, 172, 191fT. 
Hiemann's zeta function (see Zeta 

function) 
Hogers-Ramanujan identities, 177 

s 

Schwarz's function, 34 
Shift operator, 242 



288 SPECIAL FUNCTIONS 

Spherical surface harmonics, 73, 80 ff. 
Sphero-conal harmonics, 84 
Spheroidal wave functions, 91 ff., 94, 96 

134 ff., 145 ff. 
approximations to 143 ff., 151fT. 
asymptotic forms of, 137, 143, 152ff. 
Bessel function expansions of, 135 ff ., 

141 ff., 148 
characteristic exponent of, 135 
differential equation of, 94, 96, 98, 

134 ff . 
integral equations for, 157 
integrals involving, l44ff., 156ff. 
Legendre function series for, 138, 

141 ff ., I47, 149 
modified, of the first kind, 94, 96 
modified, of the third kind, 95 ff. 
normalization of, 137, 147 
oblate, 150 
of the first kind, 137, 139, 146 
of the second kind, 137, 149 
of the third kind, 137, 149 
order of, 134 
orthogonal properties of, 149, 158 
power series expansions of, 141 
products of, 14111. 
prolate, 150 
relations between, 138ff., 148ff. 

Standard form of n (integer) 168, 169fT. 
Stereographic projection, 2 
Stirling numbers, 257 
Stirling polynomials (see Polynomials) 
Sturm-Liouville problem 61, 64, 69, 76, 

82, 111fT., 114, 132, 161, 274 
Symplectic geometry, 36 

T 

Tchebycheff polynomials (see Poly­
nomials) 

Theta functions, 19, 178, 181fT. 
Poincare's, 30fT., 35, 39 

Totient, 168 
Triangle functions, 33fT. 

group of, 34 
Trigonometric functions of order n, 

215 ff. 

u 

Uniformization, 29, 32fT. 
Uniformizing variable, 7, 32, 45 

v 

Valuation, 167 

Waring's problem, 189 
Wave equation, 91, 128, 133 

z 

Zeta function, 
Dedekind's, 192 
Epstein's, 192, 195 ff. 
Riemann's, 170, 189ff. 

approximate functional equa­
tion of, 190 
Euler's product for, 189 
functional equation of, 190 
zeros of, 190ff. 



INDEX OF NOT A TIONS 

A 

a (8) characteristic value of 
n h in Mathieu's equation, 111 

a"' (k
2

) charaBteristic value of 
n h in Lame's equation, 63 

a' "IJc 2
) characteristic value of 

n 

h 'in Lame's equation, 70 

An (x) Appell's polynomial, 256 

8 

b (8) characteristic value of 
n h in Mathieu's equation, 111 

b • (k 
2

) characteristic value of 
n h in Lame's equation, 63 

b '•(Jc 
2

) characteristic value of 
n 

h 'in Lame's equation, 70 

B Bernoulli number, 241 
n 

B n (x) Bernoulli polynomial, 234 

( l) (l) . 
B (x), B (xiw) generalized 

n n 

Bernoulli polynomials, 253 

c 

en (m) Ramanujan's sum, 188 

c • (k 
2

) characteristic value of 
" h in Lame's equation, 75 

C v (x) Gegenbauer polynomials, 
n 246 

C v (z) Gegenbauer function 
IL(see vol. I, 178) 

c =en z, 62 
ce (z, 8) Mathieu function, 111 

n 

en u Jacobi's elliptic function, 
(see vol. II, 322) 

Ce (z, 8) modified Mathieu 
"function, 120 

D 

d (n), d k (n), 168 

D v (x) parabolic cylinder function 
(see vol. II, 117) 

d = dn z, 62 
dn u Jacobi's e lliptic function 

(see vol. II, 322) 

E 

E (n) partition function, 175 
E Euler number, 252 

n 

E (x) Euler polynomial, 252 
n 

E (l)(x), E (l)(xiw) generalized 
n E uler p8lynomials, 253 

E (z) Mittag-Leffler's 
a function, 206 

E f3(z) generalized Mit tag-
a, 

Leffler function, 210 

Ec'"(z, k
2

), Es.(z, k
2

) 

289 

n n 
Lame functions of real 

periods, 63 
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Ec''"(z,k 2
), Es'"(z,k 2

) 
n n 

Lame functions of imaginary 
periods, 70 

F 

F" (z, k
2

) Lame-Wangerin 
"function, 75 

Fey (z, 8), Fek (z, e) 
n n 

modified Mathieu functions, 
120 If. 

G 

g 
2

, g 
3 

invariants of Weierstrass' 

elliptic functions, 17 
G (x, y) Hermite polynomial 

m,n 

in two variables (see vol. II, 
285) 

Gey (z, 8), Gek (z, 8) modified 
n n 

Mathieu functions, 121 If. 

J-1 

h i(x, n) hyperbolic function of 
order n, 212 

11 (x) Hermite polynomial (see 
"vol. II, 193) 

If (x, y) Hermite polynomial 
m,n 

in two variables (see vol. II, 
285) 

Hem (a, (3, y), l-Is m (a, (3, y) 
n n 

ellipsoidal harmonics, 82 

J 

J(z) absolute invariant, 17 If. 
Jk (n) Jordan's function, 168 

J (x) Bessel function of the 
vfirst kind (see vol. II, 4) 

K 

k modulus of Jacobian elliptic 
functions, 45 

k .(x, n) trigonometric 
' function of order n, 215 

k (x), 172 
n 

K (z) modified Bessel function 
v of the third kind (see vol. II, 

5) 

L 

L(s, x> L-series, 194 
Ln (x) Laguerre polynomial, 241 

L a(x) Laguerre polynomial, 249 
n 

M 

M modular group, 16 
M (z) confluent hypergeometric 

K,J.L 
function (see vol. I, 264) 

Me (j)(z, 8) modified Mathieu 
n 

functions, 122 

N 

(i) 
Ne~ (z, 8) modified Mathieu 

functions, 122 

p 

p (n) number of partitions, 175 
p

1
(n), Pz,N (n) numbers of 

restricted partitions, 175 
p (x) Poisson-Charlier polynomial, 

n 255 
P (x) Legendre polynomial (see 
n vol. II, 178) 

p(a,f3)(x) jacobi polynomial, 247 
n 

PJ.L(z) Legendre function (see 
v vol. I, 122) 

PsJ.L(z, 8), PsJ.L(x, 8) spheroidal 
v v 
wave functions, 138 



Q 

Q (n) , 174 

QsJ.L(z, ()), QsJ.L(x, ()) 
v v 
sphero idal wave func tions, 

138 

n 

r k (n ), 180 

s 

s~((1), 137 

S (m, n) Gaussian s um, 187 
S (u, v , n) Kloosterman's 

sum, 188 

si-L (J)(z, 0) spheroidal wave 
vfuncti ons, 135 

s = s n z , 62 

NOTATIONS 

se (z, 0) ~lathieu function, 111 
n 

sn u J acobi ' s e lliptic fun ctions 
(see vo l. II, 322) 

Sc"'(/3, y), Ssm ((-3, y) e llipsoidal 
n n 

s urface harmonics, 81 
Se (z, ()) modified Mathi e u func tion, 

n 120 

T 

T (x) Tchcbycheff polynomial, 23 1 
n 

l l 

U (n) partition function, 175 
l n (.>. ) Tchebycheff polynomial, 246 

w 

lf (z ) conflue nt hype rgeometric 
K, J.L 

function (see vo l. I, 264) 

z 

function, 195 

CREEK LF:TTERS 

y Eul£>r's constant (see vol. I, 
p. I) 

1\ discriminant of We ierstrass ' 
canonica l form, 17 

1\ Laplace's operator, 45 
(

0
=1, fn=2, n=l,2, ... 

((s ), 189 

0' , ... , () Theta func tions o f 
1 

zero a rgum ent, 19 
A.(n) Liouville's function, 169 
,\(z) modular fun c tion, 22 ff. 

291 

,\1-L(O) characteris tic value of 
v sph eroida l wave fun c ti ons , 135 

J\(n) 169 
i\(z) aut omorph ic function of 

M
5

, 24 

Jl(n) Mobius' function, 169 
J1 (x, {3), J1 (x, {3, a), 217 
v(n ), 168 
v(x), v(x, a), 217 
77(x) number of primes, 191 
0 (n ), 0 k (n ), 168 

r(n) Ramanujan's funct ion, 184ff. 
rk(n) kth totient, 168 

cp(n) Euler s fun ction, 168 
¢(a, (3 ; z) LM. Wright's gene ra li zed 

Bessel function, 211 
cpk (n~ 168 

<I> (s) qth Jacobsthal s um, 187 
q 

'II (J)(( ) spherica l Bessel functions, 
v 

135 
f(s ~ 190 

x(m ~ XI (m) c harac te rs , 193 
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MISCELLANEOUS NOTATIONS 

arg z argument (or phase) of complex 
numbe r z 

Im z imaginary part of z (complex) 
Re z real part of z (complex) 
a:b (modn), 175 
(a) = r(a + n)/r(a) 

n 

(: ) Legendre-Jacobi symbol, 186 

min, m ,Yn, 167 

(m, n), 168 

( 

x ) = x (x - l) • •• (x - n + l) 

n n! 

binomial coefficient, 247 
[x] largest integer s; x 

I. , II, II , 168 
(.. , n ) = 1 p dl n 

"' approximate or asymptotic equality 

} Cauchy principal value of an 
integral 

J
(O+) 

loop integral 


