Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 1, 2019 | public
Journal Article

Ultrafast inorganic scintillator-based front imager for Gigahertz Hard X-ray imaging


State-of-the art X-ray imaging cameras using silicon sensors for X-ray detection have demonstrated a frame-rate of 10 MHz and excellent performance for X-ray energies below 20 keV. We proposed a pixelated ultrafast inorganic scintillator-based front imager for GHz hard X-ray imaging. The proposed imager is featured with a total absorption for hard X-ray photons, and provides sub-ns scintillation pulse width crucial for X-ray bunches of a few ns spacing foreseen at the proposed MaRIE facility. We measured temporal response of a dozen ultrafast and fast inorganic scintillators at the 10-ID-B site of the Advanced Photon Source (APS) of ANL. Crystal's response to hybrid X-ray beam of 30 keV, consisting of singlet bunches of 50 ps width and septuplet bunches of 27 ps width with 2.83 ns bunch spacing, was measured. Ultrafast inorganic scintillators, such as BaF_2:Y and ZnO:Ga, show clearly resolved X-ray bunches for septuplets, as well as no degradation of amplitude for continuous eight septuplets, providing a proof of principle for the ultrafast inorganic scintillator-based total absorption front imager for the proposed MaRIE project.

Additional Information

© 2019 Published by Elsevier. Received 15 November 2018, Revised 27 March 2019, Accepted 7 June 2019, Available online 17 June 2019.

Additional details

August 22, 2023
October 20, 2023