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■ Abstract We examine early olfactory processing in the vertebrate and insect
olfactory systems, using a computational perspective. What transformations occur
between the first and second olfactory processing stages? What are the causes and
consequences of these transformations? To answer these questions, we focus on the
functions of olfactory circuit structure and on the role of time in odor-evoked integrative
processes. We argue that early olfactory relays are active and dynamical networks,
whose actions change the format of odor-related information in very specific ways, so
as to refine stimulus identification. Finally, we introduce a new theoretical framework
(“winnerless competition”) for the interpretation of these data.

INTRODUCTION

The olfactory brain converts generally complex air- or water-borne chemical mix-
tures into singular signatures, experienced as vivid percepts. Such transforma-
tions are achieved by way of only a few brain stations—olfactory circuits are
shallower than their visual and auditory counterparts—and are strongly tied to
emotions and to memories acquired through other modalities. Understanding ol-
factory coding is thus an ambitious enterprise whose scope goes much beyond
that of this review. We focus here on the sensory transformations accomplished
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by the first two processing stages, that is, olfactory receptors and postsynaptic
structures.

As with any sense, understanding olfaction first requires defining the problems
it has evolved to solve (Attneave 1954, Barlow 1969): segmenting an odor into
its various constituents, as a chemist might do, does not appear to be one of these
functions (Lawless 1997, Cain & Potts 1996). Rather, olfaction is a synthetic sense
par excellence. Olfaction enables pattern learning, storage, recognition, tracking,
or localization and attaches “meaning” to these patterns. By meaning we imply the
richer set of associations acquired through other senses as well as hedonic (pleas-
ant/unpleasant) and emotional valence—both of which have no physical reality
outside the brain. Each one of these tasks needs to be better defined; recognition,
for example, encompasses at least categorization, identification, and separation.
The abilities to categorize and to identify a priori each imply very different kinds
of processing; for example, categorization disregards small differences, whereas
identification emphasizes them. We show how a single circuit can in fact accom-
plish both, through the use of dynamics.

We should also exploit our understanding of the physics of odors. In vision,
much attention has been given to the statistics of natural images (Field 1987, 1994;
Olshausen & Field 1996; Rudderman 1994). Correlations across space and time
make natural images highly nonstochastic. Also, the spatial-frequency (f ) content
of a natural image, be it a face or a landscape, obeys a 1/f α distribution (at any
scale), implying large areas of low contrast cut by edges whose frequency of occur-
rence decreases as sharpness increases. Knowing these rules helps us understand
or predict the existence of specific spatial filters in early vision. Have equivalent
rules been extracted from our knowledge of natural odors? It seems not. Many
natural odors (such as families of flower fragrances) consist of similar combina-
tions of compounds, implying the existence of natural correlations across volatile
molecules; however, it seems as well that many unnatural combinations concocted
in the laboratory evoke odors that are just as real or learnable. This impression
remains anecdotal; we do not know of systematic investigations of odor statistics
or of an animal’s ability to learn and recognize composite odors. Help may eventu-
ally come from studies of olfactory receptor functional “specificity” (Buck 1995),
although the complexity of chemical space may preclude such simple analysis.
Some physical features of odors, however, are well known. Odor plumes, for in-
stance, discretize stimulus delivery (Murlis et al 1992). This temporal structure
is reinforced by odor-sampling behavior, which is usually repetitive (e.g. sniff-
ing, appendage flicking, and casting behavior [Mellon 1997, Murlis et al 1992]).
We examine the consequences of such intermittency on odor representations and
their implications for olfactory codes. Finally, whereas sounds and images are
typically updated rapidly, thus conveying information at potentially high rates that
are exploitable for high-throughput communication, odors change more slowly.
Olfaction is generally a low-temporal (and often spatial)-bandwidth sense. This
means that time can be used as a coding dimension for the representation of non-
temporal features of odors (Laurent 1999).
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GOALS AND CONCEPTUAL FRAMEWORK

The cloning of odorant receptors and the structure and mapping of early olfactory
circuits have been comprehensively reviewed over the last decade (Axel 1995;
Boeckh & Tolbert 1993; Buck 1996; Hildebrand & Shepherd 1997; Mombaerts
et al 1996b; Satou 1990; Scott et al 1993; Shepherd 1993, 1994; Shipley &
Ennis 1996). We here focus on a computational view of odor encoding within
the vertebrate main olfactory bulb (OB) and the analogous circuit in insects, the
main antennal lobe (AL), excluding macroglomerular or specialized pheromonal
centers (Dulac 1997, Keverne 1999). The OB and AL are organized according to
similar anatomical principles (Hildebrand & Shepherd 1997); these similarities
are only reinforced by physiological observations. Our approach thus tends to
emphasize potential principles rather than peculiarities.

The foundation of this review is that early olfactory circuits should be studied
as a system. The OB and AL form richly interconnected circuits whose global
mode of action is captured accurately by neither static nor isolated samples (e.g.
neither anatomical studies nor single-cell recordings); these circuits cannot be
viewed as passive relays of odor-related information. Because olfactory-neuron
responses are complex and correlated across space, a study of odor encoding must
take into account these interactions and their distributed consequences. These
consequences unfold over time; the early olfactory system behaves as an active
nonstationary system; its dynamics occur on multiple time scales. Hence, the
transfer to olfaction of functional models developed with other sensory systems is
often inappropriate.

For example, analyses of visual, auditory, or somatosensory physiology rely
heavily on the concept of the tuning curve, applied to single-neuron studies (e.g.
Hubel & Wiesel 1968). This approach implies a scalar description of the stimulus
(e.g. position or frequency; i.e. in a space with one or a few independent dimen-
sions) and a one-dimensional scoring of a neuron’s response (usually mean firing
rate). While empirically powerful, both descriptions are ill adapted to much of ol-
factory physiology. One reason is that the relevant olfactory stimulus dimensions
are likely to be numerous and difficult to order in relation to one another; a second
reason is that neuronal response profiles are usually temporally complex, and the
information they carry is not conveyed fully by firing rates. Moreover, because
most “classical” studies focused, for technical reasons, on unitary recordings, their
significance is always examined in a framework in which the single neuron is the
relevant informational entity: the unspoken implication is that “whoever” reads
activity within the brain does it either one neuron at a time or by simple spatial or
temporal averaging of a population’s activity (Shadlen & Newsome 1995), disre-
garding interneuronal correlations. Our results indicate that this is not appropriate
for olfactory codes (Laurent 1996, Laurent et al 1996, MacLeod et al 1998, Stopfer
et al 1997, Wehr & Laurent 1996). We argue that understanding olfactory coding
requires a shift to a different framework, in which relevance is measured globally
and over time.
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Walter Freeman’s many seminal contributions to the development of a dynami-
cal perspective on olfaction (Freeman 1978, 1992, 2000; Freeman & Skarda 1985)
must be recognized here. Our approach and interpretations, however, differ from
Freeman’s in at least three important ways. The first lies in the nature of the data.
While we recognize the importance of macro- or mesoscopic signals (e.g. EEGs
and field potentials) as experimental tools, we believe that they are not of the appro-
priate scale for analysis. The spatiotemporal phenomena that cause recognizable
features in field potentials (e.g. local synchronization and nonstationary behav-
ior) are indeed functionally relevant; but field potentials are only “shadows” of
underlying distributed but precise neural-activity patterns, which need to be deci-
phered. The second difference lies in our theoretical model of population behavior.
“Winnerless competition,” introduced later, depends to a significant extent on a
neuron-resolution-mechanistic understanding of odor signal processing. The third
difference is that our experimental approach, using small olfactory systems (in-
sects and fish), tries to separate stimulus-evoked activity from centrifugal “higher”
influences providing contextual information. Our goal, illustrated here, is to un-
derstand the “unsupervised” sensory formatting of odor representations by early
olfactory circuits first, although we agree that expectation influences odor-evoked
neural activity (Pager 1983, Kay & Freeman 1998, Kay & Laurent 1999).

DISTRIBUTED, CLUSTERED REPRESENTATIONS
BY AFFERENT ARRAYS

Olfactory-Receptor-Neuron Tuning and Combinatorial Codes

Odor encoding is a spatially distributed process. Since the classical work of Adrian
(1942, 1950, 1953), it has been shown repeatedly and with increasing clarity
that single odorants activate neural activity over a wide area of the nasal epithe-
lium and its postsynaptic target neuropils (Cinelli & Kauer 1992, Duchamp 1982,
Duchamp-Viret & Duchamp 1997, Friedrich & Korsching 1997, Joerges et al
1997, Kauer 1987, Leveteau & MacLeod 1966, Moulton 1967, Rubin & Katz
1999, Stewart et al 1979). Such broad activation is now, through remarkable ad-
vances in the molecular biology of odorant receptors (Buck & Axel 1991, Buck
1996), understandable in terms of olfactory receptor neuron (ORN) tuning and
axon projections; single ORNs express a limited number of odorant receptor types
(probably a single one in mammals), and all ORNs expressing the same receptor
type converge to one or a few glomeruli in their target areas (Bozza & Kauer
1997, Malnic et al 1999, Mombaerts et al 1996a, Ressler et al 1993, Vassar et al
1994, Wang et al 1998). Because single odors can activate broad overlapping
regions, it is clear that individual neurons—and thus possibly the receptor proteins
themselves—can be activated by many odorants, including ones that belong to
different chemical families, underlying different odor qualities. Calcium imag-
ing on dissociated ORNs (Bozza & Kauer 1997, Malnic et al 1999) and older
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studies in situ (Duchamp et al 1974, Getchell 1986, Kang & Caprio 1995) are
consistent with such results. The molecular/structural mechanisms underlying
receptor-ligand recognition remain poorly understood. In conclusion, odors, be
they mono- or multimolecular, generally activate an array of receptor types and,
hence, a distributed population of glomeruli. Different odors activate different
combinations of glomeruli; the odor identity code across ORNs thus has a critical
combinatorial component.

Clustering Within Odor Representations by Olfactory
Receptor Neurons

Many studies have illustrated the distributed nature of odor-evoked activity (Buck
1996); the clearest demonstration of distributed representations across ORNs, how-
ever, comes from recent calcium- and voltage-sensitive imaging experiments in
zebrafish (Friedrich & Korsching 1997, 1998). Indeed, while glomeruli are gen-
erally described as the functional units of the early olfactory system, often over-
looked is that they contain projections from afferent fibers (ORNs), intrinsic neu-
rons (periglomerular cells), and output neurons (mitral and tufted cells [M/TCs]).
Describing glomerular activity without assessing the respective contributions of
pre- and postsynaptic elements precludes any understanding of the computations
carried out there. Friedrich & Korsching’s (1997) studies are significant in that
only ORNs were labeled, ensuring that patterns of glomerular activation reported
only ORN activity (although the possible contribution of presynaptic inhibition
and thus of intrinsic neurons cannot be excluded). They showed that natural amino
acid odorants activate overlapping combinations of glomeruli (i.e. ORN popula-
tions) and that odors represented by similar combinations share chemical features
(e.g. acidic, basic, or long-chain neutral). Hence, the molecular underpinnings
of olfactory transduction result in redundant (overlapping) odor representations
(representation clusters) by afferent arrays (see also Duchamp-Viret & Duchamp
1997). Less direct evidence suggests that this is true also for other species (Bozza
& Kauer 1997, Imamura et al 1992, Joerges et al 1997, Katoh et al 1993). Note
that such clustering might provide a physical substrate for perceptual odor catego-
rization. We see later that dynamical processing within the OB alters this initial
clustered format.

OLFACTORY-RECEPTOR-NEURON SCATTERING,
AXONAL CONVERGENCE, AND NOISE REDUCTION

ORNs that express the same receptor are, at least in fish and rodents (Ngai et al
1993, Ressler et al 1993, Weth et al 1996), distributed randomly within wide and
overlapping zones across the nasal epithelium. Much interest is now focused on
how the axons of these ORNs converge on the same glomeruli in the OB (or AL)
during development (Lin et al 2000, Zheng et al 2000). This distributed structure
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itself, however, raises an important question: Are there computational gains in
scattering rather than grouping idiotypic ORNs? One advantage might be noise
reduction. The reasoning is twofold. First, scattering ORNs across the receptive
sheet ensures that global activity across the ORN array is minimally affected
by local fluctuations; because air (or water) flow along turbinates is turbulent,
noisy fluctuations in odor concentration affecting some receptors are unlikely to
be correlated across the entire ORN array. Second, ORN-to-OB/AL output neuron
convergence ratios are generally very large (∼1000:1 in mammals and 100:1 in
many insects). A mitral cell or its insect analog (projection neuron [PN]) thus
forms its responses to odors from very large numbers of converging inputs. These
two conditions (uncorrelated noise and convergence) should ensure that postsy-
naptic averaging increases signal-to-noise ratios. Amphibian ORNs can display
periodic synchronization, independent of downstream activity (Dorries & Kauer
2000, Ottoson 1959). Although indicating correlated modulation of ORN input,
this does not contradict the above hypothesis, provided that noise from external
sources remains uncorrelated across the ORN population. We shall see below that
stimulus-noise reduction is highly desirable if further processing seeks to amplify
the differences between overlapping representations (within-cluster patterns) for
fine odor discrimination.

LATERAL CONNECTIONS WITHIN THE OLFACTORY
BULB/ANTENNAL LOBE

Connections

Olfactory-Receptor-Neuron Output Once odors activate groups of ORNs and
their corresponding glomerular targets, information does not simply flow through
the OB/AL, channeled directly by projection neurons to downstream areas. Rather,
glomerular target sites and projection neurons form widespread lateral connections
within the OB/AL. In the vertebrate OB, for example, M/TCs sometimes possess
dendrites in several glomeruli (e.g. rabbit and turtle [Mori et al 1981, 1983]) and
thus combine inputs with different chemical sources. Such patterns are common in
lower vertebrates (Dryer & Graziadei 1994, Nieuwenhuys 1967) and in the AL of
many insects (e.g. locusts and wasps) (Laurent 1996, Masson & Mustaparta 1990).

Local Inhibition Local inhibitory neurons (granule cells [GCs] and periglomeru-
lar cells in vertebrates and local neurons [LNs] in insects) interconnect excitatory
projection cells via excitatory inhibitory pathways. Resulting interactions can be
very local, such as those mediated by periglomerular cells between neighbor-
ing glomeruli in the mammalian OB, or widespread, such as those mediated by
GCs between M/TCs with deep secondary dendrites in the external plexiform
layer (Dryer & Graziadei 1994). GC-mediated pathways may indeed link M/TCs
whose somata and input glomeruli lie millimeters apart (Shipley & Ennis 1996).
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The strength of this functional linkage, however, may vary with distance, owing
to biophysical properties of M/TC secondary dendrites (Chen et al 1997). Note
also that, in rodents at least, ORN projections bifurcate to two hemi-OBs; it is not
clear yet whether the glomerular topology is identical in both. If local glomerular
neighborhoods differ between the two halves, yet more combinations of lateral in-
teractions between different input types can be created. If hemi-OBs are identical,
GC-mediated interactions across the border between the hemi-OBs should allow
interglomerular interactions that are different from those between the glomeruli
within each hemi-OB. Insect inhibitory LNs often (and in certain species, always)
have widespread arborizations, giving them access, in principle, to almost any
neuron in the system, e.g. inDrosophila melanogaster(Heisenberg et al 1985)
and in locusts (Laurent 1996).

Other Pathways Interactions between projection cells or between LNs allow
for more complex polysynaptic pathways. In the turtle and mammalian OB for
example, evidence exists for lateral long-lasting excitatory interactions between
M/TCs (Aroniadou-Anderjaska et al 1999, Isaacson 1999, Nicoll 1971a, Nicoll
& Jahr 1982). In insects, PN-PN synaptic connections have been directly observed
(Leitch & Laurent 1996; Malun 1991a, 1991b). Similarly, GCs or LNs can inhibit
each other (Leitch & Laurent 1996, Shipley & Ennis 1996), enabling disinhibi-
tion, that is, context-dependent excitation. Finally, output neurons may send axonal
collaterals within the OB/AL, thus influencing other neurons directly or polysy-
naptically (Nicoll 1971b, Nicoll & Jahr 1982, Gray & Skinner 1988). In short,
ORNs affect neurons other than their immediate targets in glomeruli, even if the
underlying lateral circuits vary across species (Dryer & Graziadei 1994). The OB
(like the AL) is not a simple point-to-point relay (Kauer 1991). This observation
underlies the dynamical framework introduced below.

Functions

The existence of GC-mediated lateral inhibition has been known for many decades;
inhibitory neurons unquestionably make lateral contacts. We question, however,
the common functional interpretation that these contacts serve to sharpen single-
M/TC tuning through a process akin to retinal “lateral inhibition” (DeVries &
Baylor 1993, Mori & Shepherd 1994). We find unconvincing the physiological
evidence for such single-cell “sharpening” and the rationale for these connections’
role (Imamura et al 1992, Katoh et al 1993, Mori et al 1992, Yokoi et al 1995) (see
Laurent 1999). A “retinal” understanding of lateral inhibition, for example, predicts
that cells “best tuned” to a given odor should be selected at the expense of subopti-
mally activated neurons (winner take all) over the duration of a stimulus. We found
no evidence for such trends (RW Friedrich & G Laurent, submitted manuscript). We
also observe that an individual neuron often responds to many odors (hindering the
fusion of anatomical and functional lateral inhibitions) and that responses are not
stationary (see below). We thus propose a different interpretation—that contacts
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mediated by GCs and other neurons contribute together to a global reformatting of
odor representations, in the form of a stimulus-dependent, temporal redistribution
of activity across the OB/AL. One can thus think of lateral interactions as a means
to sharpen odor representations by the population in a manner often not assessable
from single-neuron data. We now review the supporting evidence.

TEMPORAL FEATURES OF OLFACTORY RESPONSES

Historical Background

Oscillations Adrian (1942, 1950) first reported the existence of oscillatory ac-
tivity in the olfactory systems of anaesthetized mammals. Later studies (Freeman
2000, Freeman & Skarda 1985, Gray & Skinner 1988) showed that spontaneous or
odor-driven oscillatory activity could contain complex frequency spectra. Recent
physiological and imaging studies also revealed that the spatial coherence of oscil-
latory activity across or between olfactory areas can be complex (Lam et al 1999)
and, in behaving animals, context dependent (Kay & Freeman 1998). Odor-evoked
oscillatory activity has since been observed in most animal classes, including mol-
lusks (Gelperin & Tank 1990), insects (Laurent & Naraghi 1994), fish (Satou
1990), amphibians (Ottoson 1959), reptiles (Beuerman 1975), and mammals, in-
cluding primates (Hughes & Mazurowski 1962). Early computational studies in-
dicated that lateral and reciprocal synapses between mitral cells (MCs) and GCs
could generate the oscillatory patterning observed experimentally (Rall &
Shepherd 1968). Other studies predicted also that such connections should im-
pose a 90◦ average phase shift between MC and GC activity (Freeman 1975). The
precise synaptic and biophysical mechanisms underlying or participating in os-
cillatory synchronization vary, and yet, odor-driven oscillations are ubiquitous in
olfactory systems, including downstream areas, such as piriform and entorhinal
cortices in mammals (Haberly 1990). As with other brain areas where stimulus-
evoked oscillations occur (Gray 1994, Singer & Gray 1995), a major question
emerges: Is oscillatory synchrony functionally relevant?

Slow Single-Unit Patterning Following Adrian’s pioneering observations, many
single-unit studies on mammals, fish, and amphibians revealed that MC responses
to odors are not fully described by firing rates (Hamilton & Kauer 1989, Kauer &
Moulton 1974, Macrides & Chorover 1972, Meredith 1986, Wellis et al 1989). Ex-
tracellular recordings of OB units in anaesthetized rodents, for example, showed
that neurons exhibit odor-dependent temporal discharge patterns relative to an
imposed inhalation rhythm (Macrides & Chorover 1972). The structure of the
patterns evoked by one odor appeared to be more stable over the duration of an
experiment than firing rates and was largely independent of the imposed inhala-
tion schedule or the concentration. Intracellular recordings from salamander MCs
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documented the deep sculpting of their responses by phasic inhibition (Kauer
& Moulton 1974). Later intracellular studies on the insect pheromonal system
(Burrows et al 1982) described similar features. Finally, voltage-sensitive dye
imaging in salamanders provided macroscopic evidence for spatiotemporal pat-
terns evoked by odors over large areas of the OB (Cinelli & Kauer 1992, Cinelli
et al 1995). As anticipated (Kauer 1991), “presumably,. . . this spatio-temporal
array [of MCs] now carries re-encoded information about the stimulus to the next
level of integration, the olfactory cortices”. . . Our recent work in insects and fish
builds on these seminal studies. It links together many past and some new obser-
vations, attempts to provide a functional understanding of this re-encoding, and
tests its relevance.

The Locust Model System

Insects provide an accessible model for forms of odor processing observed through-
out a broad range of animals (Hildebrand & Shepherd 1997).

Circuits The insect main AL contains the processes of three main neuron pop-
ulations: ORN axon terminals, LNs, and PNs. LNs are inhibitory, although their
population is, in some species, heterogeneous. PNs are excitatory and project to two
areas: the mushroom body, an area involved in multimodal processing (Heisenberg
1998, Strausfeld et al 1998) and associative memory (including olfactory; Heisen-
berg et al 1985, Menzel 1987), and the lateral protocerebral lobe. Details about
these pathways vary somewhat with species (Masson & Mustaparta 1990). In ad-
dition, the AL contains the terminals of aminergic or peptidergic neuromodulatory
neurons, whose projections are generally widespread within the brain (Hammer
1993, Sun et al 1993) and whose effects on associative learning can be critical
(Hammer & Menzel 1995). The AL has a glomerular architecture, but the num-
ber of glomeruli varies (e.g.∼50 in D. melanogasterand∼1000 in locusts or
wasps). Species with few large glomeruli are described as macroglomerular; the
others are microglomerular. Accordingly, PN projections can be uniglomerular
(as in macroglomerular species, e.g.D. melanogaster, bees, and cockroaches) or
multiglomerular (e.g. wasps and locusts). These morphological subtypes are not
correlated with categories of physiological output: PN oscillatory synchroniza-
tion and slow response patterning (see below) are observed equally in micro- and
macroglomerular species (Heinbockel et al 1998, Laurent & Naraghi 1994, Stopfer
et al 1997). In locusts, the AL contains the terminals of∼90,000 ORNs,∼300
LNs, and 830 PNs. LN projections are axonless and extend over the entire AL.
Each PN has a planar dendritic tree with 10–20 radial dendrites each ending in
one or two glomeruli (Laurent et al 1996). Neither LNs nor PNs appear to ex-
press intrinsic oscillatory properties (Laurent & Davidowitz 1994). Upon natural
stimulation, odor-specific subgroups of LNs and PNs become activated. Their
responses contain several interlocked features, reviewed below.
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Figure 1 Intracellular recording from one locust antennal lobe projection neuron illus-
trating the subthreshold oscillatory activity (50-ms cycles) giving rise to periodic spiking
superimposed on slower, odor-specific temporal-response patterns. All three recordings are
from the same PN (see Laurent & Davidowitz 1994, Laurent et al 1996).

Oscillations A typical LN or PN intracellular record shows odor-evoked sub-
threshold oscillations in the 20- to 30-Hz band (Figure 1). Paired intracellular
recordings show that coactive neurons within either population are phase-locked
with 0◦ mean phase, whereas LNs and PNs are phase shifted relative to each other
by 90◦ (Laurent & Davidowitz 1994). Oscillation frequency is independent of
odor identity, and air alone evokes no oscillatory activity. Because PNs project to a
layered structure (the mushroom body calyx), PN coherence can be measured from
local field potential (LFP) oscillations recorded there (Laurent & Naraghi 1994).
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Whereas insect ORNs do not show odor-evoked oscillatory synchronization, sus-
tained electrical stimulation of ORN axons causes oscillatory activity within and
across PNs (Wehr & Laurent 1999). Oscillatory synchronization of LNs and PNs
is therefore the result of AL circuit dynamics, driven by ORN-evoked excitation.
At rest, low-level spontaneous oscillatory activity can be detected from spectral
analysis of mushroom body LFPs. Upon transsection of ORN axons, however,
this spectral peak disappears. Baseline ORN activity thus sets AL dynamics on
the threshold of coherent oscillatory behavior, even though basal PN activity is
generally low (1–5 Hz).

Slow Patterning The odor-evoked responses of LNs and PNs also contain pro-
longed and successive periods of increased and decreased activity (Laurent 1996,
Laurent & Davidowitz 1994) shaped, in part at least, by slow, picrotoxin-insensitive
synaptic inhibition (MacLeod & Laurent 1996). These patterns are cell and odor
specific (Figure 1) and are stable from trial to trial; a given odor thus evokes
activity in a PN assembly whose composition changes reliably throughout the re-
sponse. In addition, the action potentials produced by a PN during its odor-specific
phases of activity are not necessarily all phase-locked to the LFP (Laurent et al
1996). For each odor-PN combination, however, precise and consistent epochs
of phase-locked or non-phase-locked activity can usually be identified. Hence,
pairwise oscillatory synchronization of PNs is generally transient (Laurent 1996,
Laurent & Davidowitz 1994), while the LFP, which reflects a larger fraction of
the population’s coherent activity, usually shows continuous oscillatory activity
throughout the stimulus. When phase-locked, PN spikes occur within a±5-ms
window around the ensemble mean. Hence, oscillatory synchronization and slow
patterning together shape a complex, distributed representation in which odor-
specific information appears both in the identity and in the time of recruitment and
phase-locking of PNs. None of these features can be deciphered from LFPs or
single-cell recordings alone.

Substrate for Odor Encoding Upon odor stimulation, large-amplitude oscilla-
tions appear in the LFP. The time scale of PN update during a response is the
oscillation cycle (Wehr & Laurent 1996). Using multiple trials with the same
odor, one can assign a firing probability to each responding PN for each one of the
successive cycles of the population oscillation. For a given odor, PN, and cycle,
this probability can be close to 1; that is, each cycle of the population response
contains one spike from each of several reliable PNs and less reliable spikes from
many PNs with intermediate firing probabilities. The latter group is interesting
because it allows one to estimate the functional coupling of PNs by measuring con-
ditional firing probabilities. Take the example of two simultaneously recorded PNs
of which one (PN1) fired one action potential during cycle 5 in only 16 of 25 trials.
Given this, what was the output of PN2 during or around cycle 5 over the nine tri-
als when PN1 did not fire? Firing probabilities were often significantly correlated
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(positively or negatively) across PNs, so that the firing of a given PN in one trial
would predict an increased or decreased firing probability in the other PN, during
the same or even a different cycle of that trial (Wehr & Laurent 1996). This indi-
cates that each PN’s firing is correlated with the present and past behavior of other
PNs in the network. It does not, however, identify the causes of this correlation.

Over the few seconds that an odor response can be sustained (before ORN
adaptation sets in), these patterns rarely settle or repeat themselves. Using the
terminology of dynamical systems, an odor representation by PNs can be thought
of as a complex trajectory through phase space (with an uncertainty given by the
limited reliability of many participating PNs) with no fixed-point or limit-cycle
attractor (see theory below). When the stimulus stops, PNs return to baseline firing
levels either immediately or, in some instances, after a short period of deep inhibi-
tion or rapid desynchronized firing. In conclusion, specific odors at a given con-
centration activate odor-specific PN assemblies whose components are recruited
during precise and sometimes multiple epochs of the response. Odor-specific
differences can be resolved at the temporal scale of one oscillation cycle (∼50
ms). No evidence was ever obtained for a within-cycle phase code, suggested
for this or other sensory systems (Hopfield 1995, von der Malsburg & Schneider
1986).

FUNCTIONAL RELEVANCE OF OSCILLATORY
SYNCHRONIZATION

The functional relevance of these patterns was recently tested, exploiting the
knowledge that oscillatory synchronization results from LN-mediated fast inhi-
bition (MacLeod & Laurent 1996).

Selective Projection Neuron De-synchronization
by Disruption of Fast Local Inhibition

LNs makeγ -aminobutyric acid-immunoreactive contacts onto both LNs and
PNs (Leitch & Laurent 1996, Malun 1991b). Among several Cl-channel or
γ -aminobutyric acid receptor antagonists tested, picrotoxin was found to block
selectively the oscillatory synchronization of AL neurons while sparing the slow
inhibition responsible for slow patterning (MacLeod et al 1998, MacLeod &
Laurent 1996); the slow odor response patterns of individual PNs remained un-
changed, except for the introduced temporal jitter of their spikes. Odor identi-
fication using temporal information contained in individual PN spike trains, for
example, was not affected by desynchronization (MacLeod et al 1998). Similarly,
picrotoxin never caused the appearance of PN responses to new odors (neither
in locusts [MacLeod et al 1998, MacLeod & Laurent 1996] nor in honey bees
[Stopfer et al 1997]).
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Behavioral Assay: Projection Neuron Synchronization
and Odor Discrimination

Evaluating the functional significance of oscillatory synchronization requires a
behavioral measure of perception. Honeybees can be trained to recognize odors
in a well-defined proboscis extension behavioral paradigm; after associative pair-
ing(s) of an odor with a reward (sucrose solution or nectar), bees can predict the
delivery of the reward upon presentation of the conditioned odor alone (Kuwabara
1957, Bitterman et al 1983, Smith & Menzel 1989, Hammer & Menzel 1995).
Conditioning strength is assayed by the probability of proboscis extension during
single extinction trials, carried out over a population of individuals. Because the
physiological responses of bee AL neurons closely resemble those described in
locusts (odor-activated oscillating neural assemblies and picrotoxin-sensitive os-
cillatory coherence [Stopfer et al 1997]), we could assess the putative role of PN
synchronization on odor perception.

One group of bees (controls) received an application of saline into (or at the
surface of) each AL; the second (picrotoxin group) received similar treatments
with picrotoxin. Odor-sucrose pairing started 10 min after treatment, using an
aliphatic alcohol as the conditioning stimulus (C). Both groups learned to respond
to C equally well. Each bee’s discrimination was then tested using three odorants:
C, the alcohol used for training;S, a similar aliphatic alcohol; andD, a chemically
dissimilar odorant (a terpene). These odors were chosen because bees generalize
partly across the alcohols but very little from either alcohol to the terpene; this
triple test thus enabled us to better assess the effects of desynchronization on odor
discrimination. The control animals responded vigorously toC, but significantly
less toS andD, indicating that they could readily discriminate each odor. The
picrotoxin group responded vigorously toC but hardly at all toD, indicating that
picrotoxin had not affected the animals’ ability to memorize the association ofC
with a reward; picrotoxin did not cause widespread generalization. This group,
however, could not perform the more difficult discrimination task betweenC and
S. In a further study, honeybees were given two successive injections of saline or
picrotoxin, one before each of the conditioning and testing periods; there were thus
four groups: saline-saline, saline-picrotoxin, picrotoxin-saline, and picrotoxin-
picrotoxin groups. All groups were tested with odorsC, S, andD. The results were
identical to those obtained previously (Stopfer et al 1997); all groups discriminated
C andD, but only the saline-saline group could distinguishC from S(Hosler et al
2000). We conclude that oscillatory synchronization of AL neurons is functionally
relevant for tasks that require fine, but not coarse, odor discrimination (Hosler et al
2000, Stopfer et al 1997). Synchronization thus seems to enable the use of an
additional coding dimension, time, which becomes important when recognition
requires fine discrimination between overlapping assemblies.

Recent results obtained in mollusks support these conclusions. InLimaxodors
modulate the coherence of ongoing, slow (∼1 Hz) LFP oscillations in its procere-
bral lobe (Gelperin & Tank 1990). These oscillations can be reversibly suppressed
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by the NO-synthase inhibitor L-NAME (Gelperin 1994). By scoring the inten-
sity of the neural correlate of an odor-elicited behavior (tentacle positioning),
odor discrimination could be assessed upon pharmacological desynchronization of
procerebral-lobe networks. Saline-treated preparations were able to discriminate
between similar odorants; L-NAME-treated preparations could not. The ability
to recognize conditioned odorants per se, however, was not impaired by desyn-
chronization (Teyke & Gelperin 1999). Thus, in honeybees, AL neurons were
desynchronized by blocking fastγ -aminobutyric acid-mediated inhibition; in
Limax, procerebral-lobe neurons were desynchronized by blocking an NO-
mediated pathway. In both species, network desynchronization led to the same
specific deficit—a loss of precise olfactory discrimination.

Physiological Assay: Projection Neuron Synchronization
and Tuning of Downstream Decoders

The above experiments suggested that some individual neurons or groups of neu-
rons downstream of the AL PNs are sensitive to the presence (or absence) of
synchronized inputs. We identified in locusts a population of odor-sensitive neu-
rons downstream of the AL. Rather than focus on neurons postsynaptic to PNs
(e.g. the Kenyon cells of the mushroom body), we chose neurons postsynaptic to
these—a subgroup of mushroom body extrinsic neurons called beta-lobe neurons
(β-LNs [MacLeod et al 1998]). The rationale was that PNs are greatly outnumbered
by Kenyon cells, whereas Kenyon cells converge to many fewerβ-LNs, imply-
ing the existence of a bottleneck, potentially useful as a physiological read-out of
distributed PN activity.

β-Lobe Neuron Detuning by Input Desynchronization We comparedβ-LN
odor responses recorded before and after picrotoxin injection into the AL (MacLeod
et al 1998). PN de-synchronization caused, inβ-LNs, the appearance of responses
to odors to which they had been unresponsive before treatment. Conversely, how-
ever, desynchronization never led to the disappearance ofβ-LN odor responses
observed before treatment. PN desynchronization also caused a loss of odor speci-
ficity in the temporal response patterns observed in controls. Hence,β-LN odor
selectivity depends on PN synchronization. This shows that high-order neurons
decode temporal correlations between their inputs and use them to fine-tune their
sensory properties; information is contained in interneuronal temporal correlations,
which cannot be deciphered from serial sampling of neurons within a population.
These results also imply that some aspects at least of the information distributed
across PNs eventually converge to single neurons (although it does not exclude
the possibility that still more information could be retrieved from correlations
acrossβ-LNs—such tests have yet to be carried out). Finally, these data provide
physiological support for the behavioral experiments in bees (Stopfer et al 1997).
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Possible Mechanisms of Coincidence DetectionBecause optimal odor tuning in
β-LNs depends on PN synchronization,β-LNs or the neurons interposed between
them and the PNs—the Kenyon cells—should possess biophysical mechanisms
that favor coincident inputs (in the 20-Hz range) over noncoincident ones. While no
information exists on putative mechanisms inβ-LNs, in vivo intracellular Kenyon
cell recordings revealed subthreshold, voltage-dependent, tetrodotoxin-resistant
properties, able to amplify PN-evoked excitatory postsynaptic potentials (EPSPs;
Laurent & Naraghi 1994). The time constant of the active EPSPs was considerably
shorter than the oscillation period (due to as-yet-uncharacterized active repolariz-
ing conductances). A Kenyon cell intracellular response to an appropriate odor
thus typically contains, over its consecutive oscillation cycles, some passive (low-
amplitude) EPSPs, some active (sharp, high-amplitude) EPSPs, and some action
potentials, at an instantaneous frequency generally lower than the oscillation’s
20 Hz (Laurent & Naraghi 1994). The dendrites of Kenyon cells, by virtue of this
boosting nonlinearity, could thus act as coincidence detectors of synchronized PN
inputs.

SHARPENING OF TEMPORAL STRUCTURE
THROUGH EXPERIENCE

Response Strength and Information

Much of sensory neurobiology depends on assuming a positive correlation between
firing rate and stimulus “preference.” The following study in locusts indicated that
this need not be the case. Under most environmental conditions, turbulence (Murlis
et al 1992) and olfactory behavior (Mellon 1997) discretize odor sampling. We
found that the neural representations of odors in the AL change reliably when an
animal so experiences a stimulus. By delivering odors using discrete pulses and
starting from a naive state, we found that, while the response to the first pulse
was the most intense, it lacked the fine temporal definition described above; nei-
ther PNs nor LNs showed periodic subthreshold activity; the LFP contained very
little power in the 20- to 30-Hz band; and oscillatory coherence between PNs or
LNs was low. In summary, the synchronized, evolving ensemble response could
not be identified. As odor exposures ensued, however, the ensemble response
changed (Figure 2A). PN firing rates declined by half, and strong subthreshold
oscillatory ripples appeared in the membrane potentials of PNs and LNs; a sharp
20- to 30-Hz spectral peak emerged in the LFP; the odor-elicited PN spikes, al-
though sparser, became increasingly locked to the LFP; the temporal patterns of
relative PN firing (Wehr & Laurent 1996) appeared and stabilized (Figure 2B).
Within the delivery of 5 to 10 stimuli, the ensemble responses ceased to evolve
further. These changes did not depend on any associative pairing of the odor
with a reinforcer. They could also result from a variety of stimulation regimes
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Figure 2 Nonstationarity of network dynamics. Repeated exposure to an odor causes a
decrease in response intensity but an increase in oscillatory coherence and spike time preci-
sion. (A) Simultaneous local field potential (LFP) and intracellular recordings from a local
(LN) and projection (PN) neurons during early (1–2) and later (9–10) trials. Horizontal bar
indicates odor delivery. Calibration: horizontal, 300 ms; vertical (mV), .8 (LFP), 10 (LN),
and 40 (PN). (B) From a separate experiment, odor-elicited responses in two simultaneously
recorded PNs illustrate increasing spike time precision over successive stimulus trials. Cal-
ibration: horizontal, 200 ms; vertical: top trace, 70 mV; bottom trace, 40 mV. (C) Putative
mechanisms for use-dependent changes in network dynamics; when the na¨ıve AL receives
repeated stimulations, only the activated neurons and/or their interconnections undergo (as
yet uncharacterized) modifications (training) that endure for several minutes in the absence
of further odor stimulation and spontaneously returns to the na¨ıve state (recovery) once
stimulation ends (see Stopfer & Laurent 1999).

(e.g. interstimulus intervals of≤20 s, variable consecutive interstimulus inter-
vals, or fewer but longer individual stimuli). Once established, the state change
persisted for several minutes in the absence of further stimulation or even in the
presence of interposed stimulation with other odors (Stopfer & Laurent 1999).
Thus, this evolution of olfactory network dynamics is the expression of a form
of short-term memory, with a time constant of∼5 to 10 min. A similar phe-
nomenon was observed also in zebrafish (RW Friedrich & G Laurent, manuscript
in preparation).
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Specificity

This memory was odor specific, carrying over to chemically related, but not to
chemically distinct odorants. If, for example, oscillatory synchrony had been es-
tablished by presentations of 1-hexanol, then 1-octanol would immediately elicit
a synchronized (although not identical) ensemble response. If, however, the new
odorant were geraniol (a terpene), then a naive (strong, unsynchronized) response
immediately appeared. If the new odorant were a blend containing the familiar
odor, the oscillatory power fell between those of the na¨ıve and established states.
This specificity indicates that the cellular or synaptic modifications underlying the
phenomenon occur only within the subset of olfactory neurons repeatedly activated
by the odor used during training (Figure 2C).

Sites of Changes

In locusts, ORNs are distributed along the lengths of the antennae; we could there-
fore stimulate separate populations of receptors by selective odor delivery. Once
strong network oscillations had been established by repeatedly stimulating one
set of receptors with one odor, the same stimulus delivered to naive ORNs gave
rise to a trained (sparse and coherent) response pattern (Stopfer & Laurent 1999).
Thus, the neural modifications underlying the evolution to a coherent population
state must reside, at least in part, within the AL. Finally, this evolution of circuit
dynamics from na¨ıve to coherent state itself defined a consistent trajectory: two
training sessions with the same odor separated by a long enough interval both
produced similar “trained” PN response patterns. This self-organizing network
evolution is thus deterministic and likely depends on the network’s “basal” con-
nectivity matrix (Figure 2C). The mechanisms underlying this evolution are so far
unknown.

Functions

Is this sharpening of distributed odor representations relevant? Our previous work
showed that the relative timing of individual PN action potentials contains in-
formation about odor identity and that oscillatory synchronization is required for
refined olfactory discrimination. Because the network dynamics necessary to gain
access to this relational information emerge only after some initial exposure, we
predict that repeated sampling should improve behavioral odor discrimination;
repeated (naturalistic) experience provides downstream decoders with more in-
formative patterns (individual or corelational) of PN activity. Then, one might
ask, why not ensure coherent and temporally precise activity at all times? We
suspect that there is a trade-off between quantitative and qualitative sensitivity;
unsupervised learning allows a system to have a low detectability threshold for all
odors while na¨ıve (at the expense of precision) and to have high discriminability
once self-trained. When classification has been made (i.e. once the subcircuits
likely to be challenged again by the next sample have been primed), all of the
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computational resources can be used to refine identification within this limited
region of coding space. In the vocabulary of dynamical systems, the orbits rep-
resenting individual odors progressively increase their relative distances from one
another. Finally, because the effects last only a few minutes in the absence of
continued stimulation, this short-term memory can be seen as a “working” fea-
ture, useful only while the animal either forms a memory or attempts to match an
ongoing experience to a stored memory. What representations (early and coarse,
late and refined, or possibly all) a brain ends up storing for future use remain
unknown. This question probably depends primarily on associative mechanisms
(Hammer & Menzel 1995, Heisenberg et al 1985, Smith 1998) and, thus, on the
precise time of pairing between odor-evoked activity and reinforcer. It would also
be interesting to see whether the time constant of this memory is in any way related
to the statistics of odor pulsing experienced by the animal.

Multiple Time Scales of Circuit Dynamics and Consequences

We have identified at least three time scales that are relevant for our understand-
ing of olfactory dynamics in insects and fish (see below): a fast, periodic one
(40- to 50-ms time scale) for 20- to 30-Hz oscillations; an intermediate, aperi-
odic one (hundreds of milliseconds) for slow response patterning; and a slow one
(seconds to tens of seconds) for repeated or prolonged odor sampling. The first
two are useful to characterize any individual odor response (although oscillatory
power will be absent from na¨ıve responses). The third one is useful to describe
response sharpening during familiarization. This slow familiarization has several
practical consequences for the experimenter. First, it suggests that multiple-trial
averaging may often be inappropriate. Second, because of the nature of in vivo
physiology, an experimenter usually spends much time searching for a match be-
tween neuron and stimulus; this inevitably leads to a modification of the system
under study. The degree to which this search time biases the results towards a
“familiarized state,” not necessarily representative of a natural stimulation se-
quence, may thus need to be assessed. Third, it is also traditional to interleave
trials while studying a neuron’s response to a family of stimuli. Given that the
refinement of a representation depends on frequent enough samples, some ex-
periments may, contrary to point two above, fail to evoke the natural response
evolution.

DYNAMIC DECOMPOSITION OF
REPRESENTATION CLUSTERS

Our analyses of odor representations by AL PNs in insects showed that useful in-
formation is contained in individual neuron’s temporal response patterns as well as
in temporal correlations among them. Assume that downstream targets decode this
distributed information over some limited time. Could early and late portions of a
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single response contain different information about the stimulus? Would decoders
profit from reading an early or a late segment of the population response? We
addressed these possibilities in zebrafish, by first comparing the global structure
of amino acid odor representations by MCs, the OB’s output, to those carried by
their inputs, the ORNs (Friedrich & Korsching 1997, 1998). (Given the nonsta-
tionary behavior described above and observed in fish also, we focus here on the
changes that occur during single responses to familiar odors.)

Dynamic Declustering of Odor Representations
by Mitral-Cell Assemblies

Amino acid representations by zebrafish ORNs are clustered: related odors evoke
overlapping patterns of glomerular activity (Friedrich & Korsching 1997), impos-
ing that fine discrimination rely on small differences between within-cluster repre-
sentations. We first examined whether clustering was found also among amino acid
representations by MCs. We characterized the responses of 50 MCs to 16 amino
acids and represented each odor by a 50-dimensional vector, constructed using
mean response rates. Whereas small clusters could be found, they were fewer and
much less distinct than those observed among the afferent representations (RW
Friedrich & G Laurent, submitted manuscript). We then examined whether time
played a role in the observed cluster reduction.

MC responses to amino acids are temporally structured (Figure 3A); while each
neuron usually responds to several odors, it often responds to many with different
patterns. As in the insect AL, therefore, odor-encoding neuron assemblies in the
fish OB evolve over the stimulus duration. Clustering of odor representations by
MCs was thus now analyzed over the response duration; each odor was repre-
sented by a sequence of 50-dimensional vectors, with each vector in the sequence
constructed from MC firing rates calculated over a short window (e.g. 400 ms),
scrolled in 50- or 100-ms steps. Potential changes in odor representations by MCs
could thus be examined by following the grouping of those vectors over the du-
ration of a response (Figure 3B). This procedure revealed a dramatic evolution;
initial MC responses were markedly clustered, with odor groupings identical to
those observed using afferent data. Over the first 800 ms of the response, however,
clusters disappeared; representations that were initially similar became decorre-
lated while dissimilar ones became slightly more correlated. Odor representations
by MC assemblies are therefore more distinct from one another than those across
ORNs, but only if the response patterns are given enough time to evolve (several
hundred milliseconds); time thus seems to underlie a self-organized transforma-
tion of odor representations in the OB (RW Friedrich & G Laurent, submitted
manuscript).

Functions

Declustering did not result simply from an increase in MC response variabil-
ity over time; the standard deviation of MC responses over trials decreased, if
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anything, from beginning to end of a response. In addition, odor identification by
matching single-trial odor vectors to templates constructed from other single trials
became more reliable as the response progressed. This improvement matched the
temporal progress of declustering. Hence, representation declustering facilitates
fine odor discrimination, given the uncertainties introduced by noise, by making
each distributed pattern less similar to any of those evoked by other odors, in-
cluding chemically related ones. In other words, redundancy is reduced by better
occupying coding space. Concurrently, however, useful information about odor
classes (clusters) is lost as a response progresses. The OB thus appears to solve
two antagonistic problems of pattern recognition, using circuit dynamics: early
responses, based (passively) on the afferents’ responses, provide information rel-
evant for perceptual grouping; later responses, resulting from afferent input and
active reformatting by the OB, provide information relevant for fine identifica-
tion (RW Friedrich & G Laurent, submitted manuscript). These results reinforce
three key points introduced earlier: first, stimulus representations should be stud-
ied over cell assemblies rather than single cells; second, the resolution needed
to uncover these phenomena in the OB/AL is the single neuron; third, responses
are not stationary and their odor-driven evolution is not random; rather, it ap-
pears to be optimized to facilitate recognition, without complete loss of grouping
information.

Interesting studies in the frog OB (Duchamp & Sicard 1984) seem, at first
glance, to contradict our results. In these accounts, clustering of odor represen-
tations by ORNs was less than that observed across MCs. This study, however,
did not use natural odor stimuli (for which each system may have been optimized)
and did not analyze representations as a function of time. In addition, the clusters
found each corresponded to very different chemical classes; the clusters found by
us, by contrast, might be seen as subgroups within one of their clusters (amino
acids). Declustering might thus be confined to representations within such larger
classes, which, in fish at least, are processed within specialized subregions of the
OB (Friedrich & Korsching 1998). Indeed, in the frog, representations within a
cluster appear to be less similar across MCs than across ORNs, whereas the clusters
to which they belong are better defined across MCs than ORNs (Duchamp-Viret &
Duchamp 1997). It would be interesting to see these data reanalyzed over response
time.

Dynamic transformations of stimulus representations occur also in other sensory
systems. In monkey inferotemporal cortex, the information content of responses
of face-selective neurons changes over time (Sugase et al 1999). Early response
phases contain information mainly about stimulus categories (e.g. distinguishing
monkey faces from human faces or abstract objects), whereas later phases contain
more information about details (e.g. individual monkey faces and facial expres-
sions). Although responses were analyzed in single neurons only, these results
support the contention that circuit dynamics underlies a refinement in stimulus
identification.
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Mechanisms

Noise Reduction Because this temporal declustering process was not observed
among the afferents, it must result from OB circuit dynamics. Because the evo-
lution of a representation is stimulus specific, it must rely also specifically on
the stimulus. Overall, this phenomenon appears to amplify, through OB-driven
processes, the small differences between odor representations first formed by af-
ferent arrays. This suggests that stimulus noise must be efficiently controlled so
as to amplify the signal preferentially. Hence, efficient noise-reducing mecha-
nisms, possibly including the spatial averaging hypothesized earlier and chemical
low-pass filters (Pelosi 1996), must exist at the earliest levels of odor processing.

Oscillatory Synchronization Zebrafish MC responses to odors also caused 20-
Hz LFP oscillations. Oscillatory synchronization, however, generally lagged the
odor-induced population firing rate increase by∼500 ms. Hence, the earliest
phase of odor-evoked MC activity, that for which odor clusters could be defined,
was desynchronized (RW Friedrich & G Laurent, submitted manuscript). The
process of cluster dissolution, by contrast, was accompanied by the progressive
development of oscillatory synchronization. Because oscillatory synchronization
results from local feedback within the OB (Gray & Skinner 1988), we conclude
that the reformatting of odor representations is correlated with the development
of OB circuit dynamics shaped by lateral interactions. Whether this correlation is
causal remains to be determined.

Lateral Inhibition vs Redistribution One form of lateral interaction that might
underlie both synchronization and declustering is GC-mediated lateral inhibition,
in its classical sense (i.e. as a means to sharpen MC tuning, DeVries & Baylor
1993, Mori & Shepherd 1994). This hypothesis was tested in two ways. First,
we assessed the sparseness (Rolls & Tovee 1995, Vinje & Gallant 2000) of odor
representations as a function of time, over single responses. If classical lateral
inhibition were responsible for declustering, one would predict (a) that the aver-
age representation sparseness across MCs would be more than across ORNs (MC
representations should be “sharper” than across ORNs) and (b) that the sparseness
of MC representations should increase over response duration (as the better-tuned
MCs inhibit those less well tuned). Neither of the two predictions was met (RW
Friedrich & G Laurent, submitted manuscript). Second, we examined the repre-
sentation of all amino acids across five MCs, selected because of their similar early
responses to three related amino acids; these five MCs, therefore, defined an early
cluster. By simply following the “tuning” of these five cells to all 16 amino acids
over the response duration, we observed no systematic sharpening or strengthen-
ing of initial responses. Rather, we noted a clear redistribution of activity of all
five MCs across all 16 odors, in ways that could not be predicted from the odors’
structures. The only clear trend was for a disappearance of the initial cluster,
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contradicting a prediction of the “lateral-inhibition” hypothesis. We conclude that
classical lateral inhibition, the evidence for which is lacking, does not underlie
declustering. To be very explicit, we do not hereby deny the existence of GC-
mediated inhibition; rather we mean that such inhibition does not, as far as we can
assess, mediate the sharpening of single-MC odor tuning, as is usually proposed.

In short, the declustering of odor representations involves odor-induced OB
activity, including lateral interactions between MCs and other neurons. The con-
sequences of this activity are not to sharpen MC response profiles but rather to
redistribute activity within the OB. This redistribution is odor specific and such that
late phases of the response contain the activity of more unique (i.e. more specific)
MC assemblies. Response sharpness indeed increases, but only when measured
over the cell population. The OB’s internal circuits thus exploit stimulus-driven
dynamics so as to optimize odor encoding during a response.

THEORETICAL FRAMEWORK: WINNERLESS
COMPETITION

Physiological and imaging data show that odor encoding in the OB/AL is a com-
plex, distributed dynamical process occurring over several time scales. We intro-
duce here a theoretical framework for these observations but limit our description,
for brevity’s sake, to the slow evolution of OB/AL networks upon stimulation
with a familiar odor (i.e. addressing deterministic, stimulus-specific slow-firing
patterns in PNs and MCs, odor-specific intercell firing correlations, sustained evo-
lution of the network during an odor, spontaneous return to baseline upon stimulus
termination, and pattern reliability over multiple trials, but excluding cycle-by-
cycle network update and unsupervised learning over repeated presentations of a
new odor).

Introduction to the Language of Nonlinear Dynamics

Nonlinear dynamics (NLD) is useful to describe neuronal-network function be-
cause it can often explain much of the observed complexity with simple models
and few assumptions. It also provides a qualitative, geometric view of the behav-
ior of a system of interdependent parts, reducing it to only a few dimensions, in
which one’s intuition can be trained and applied (Figure 4). The critical aspect
of NLD models is that they present a theoretical foundation in which instabilities,
such as those in which small changes in state are amplified rapidly, are permit-
ted. Critically, dissipation and saturation (see below) constrain a system’s motions
such that a return to the starting regions of state space is possible. Consequently,
a system’s motion can remain within compact regions of state space and yet re-
tain an unstable flavor. This aspect, characteristic of nonlinear systems only and
well suited for olfactory processing, is central to the formal description proposed
below.
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The language of dynamical systems is that of differential equations or discrete
time maps. The idea of instability is easily explained with a one-dimensional
differential equation in a variablexi (t) > 0,

dxi /dt = aSnxi (t)− x2
i (t)+ Ss

i , 1

wherexi (t), Ss
i , andSn represent, respectively, the firing rate of neuroni, the

stimulus current provided to neuroni, and a trigger function for neuroni. Consider
the simple case whereSs

i = 0 (no external stimulus, i.e. an “autonomous” system)
andSn = 1. If a< 0, the time derivative ofxi is negative, andxi (t) rapidly goes to
0, whatever its initial value. Ifa> 0, however, the statexi (t) = 0 is unstable; any
state starting nearxi = 0 moves away from it, grows exponentially rapidly towards
xi = a, and stops there.x2(t), a very simple nonlinearity, shows that instabilities
in nonlinear systems can lead to change without disaster. This example illustrates
a second important point: Ifa> 0 and the starting state isx(0)>a, the system
also moves tox(t) = a. This is the simplest example of a dynamical system with
an attractor which depends on one parameter: Ifa< 0, the attractor is the origin;
if a> 0, the attractor isx=a. In both cases, the attractors are fixed points.

The single dynamic variablex(t) is not adequate to describe or understand
how complex neuron assemblies might work. With more dynamical variables
or degrees of freedom—that is, higher dimensional differential equations—richer
behaviors may arise. For example, with three or more dynamical variables,
[x(t), y(t), z(t), . . .], in addition to time-independent states(x= 0 or x=a in the
above example) and periodic oscillations{[x(t + T), y(t + T), z(t + T), . . .] =
[x(t), y(t), z(t), . . .]}, nonperiodic behaviors become possible; these characterize
chaotic motions of a system. In each of these cases, instabilities in some region of
state space (e.g.x= 0 whena> 0) play a central role. With chaotic oscillations,
for example, there is an infinite set of unstable points, and the system evolves from
one unstable region of state space to another. We can classify these instabilities
by an exponent, indicative of how rapidly two nearby states move away from each
other. In our simple example, nearx= 0 and whena> 0, the solution to the state
evolution equation isx(t)≈ x(0)eat. The growth indexa is called a Lyapunov or in-
stability exponent. In a multidimensional system, there is an index for each dimen-
sion of state space. In chaotic, dissipative, and long-term motions, one or more of
these exponents is positive, some are negative, and the sum of all is always negative.

Olfactory Networks as Dissipative and Active Systems

Plasticity notwithstanding, we observe that, to be useful to the animal, odor repre-
sentation should be reproducible, that is, by and large insensitive to the network’s
initial state (internal noise). In the language of NLD, this is possible only if the
system is strongly dissipative, in other words, if it can rapidly forget its initial state.
In dissipative systems, the initial phase volume is rapidly compressed and all tra-
jectories converge to attractors (fixed points, closed trajectories or limit cycles,
strange attractors, or other specific trajectories such as homoclinic/heteroclinic
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trajectories). On the other hand, a useful olfactory system should be sensitive to
small variations in the inputs, so that fine discriminations between similar but not
identical stimuli are possible. How can both conditions coexist? This is only
possible if a system is active; an active system uses external sources of energy to
increase a small distance between initial states (representations) caused by sim-
ilar stimuli, independent of the initial state of the network. Because the system
is active, small initial differences between representations can grow rapidly over
time. Time thus plays a critical role in separating representations. The OB/AL
should therefore behave as active, nonlinear, dissipative systems. Although many
existing models of early olfactory systems satisfy these conditions, these models
present limitations, briefly examined below.

Coding with Attractors

The most common nonlinear dynamical models of early olfactory processing (rep-
resentation and recognition) lead to the idea of “coding with attractors” (“Hopfield
nets” [Cohen & Grossberg 1982, Hopfield 1982]). In these models, each stimulus
or odor is represented by a specific behavior (attractor) of the neural network. The
behavior expressed depends on the connections among the network’s elements.
The number of different attractors determines the number of different stimuli that
the system can represent or recognize. Because many stable states must coex-
ist, the system is called multistable (Figure 4a). Each attractor possesses its own
basin of attraction, and different basins are separated from each other by boundaries
whose shapes can be complex (usually fractal). The main idea behind a Hopfield
network is that, during a learning stage, a long-acting stimulus is used to modify
specific sets of connections until a steady-state behavior (attractor) specific for
that stimulus is obtained. Through training, each stimulus thus generates its own
attractor. After learning, this trained, autonomous system becomes multistable
(the unstimulated system possesses several basins of attraction); for recognition,
future incoming stimuli will simply play the role of initial conditions. Hence,
although a Hopfield network is a dynamical system, it is static (or stationary) after
convergence. Time does not play an intrinsic role in the encoding or decoding
of the input. This appears to conflict with experimental results on early olfactory
processing, as reported above.

A very important feature of such a network is that, during recognition, the
evolution of the system within a basin of attraction is resistant to corruption of the
input (noise or missing features). Conversely, however, the numberm of stimuli
(attractors) allowed in a system ofN neurons is relatively limited:m< 0.14N
(Hertz et al 1991). This limit is due to increasingly complex boundaries between
basins of attraction as the number of desired stimuli rises; small mistakes, such as
ones resulting from noise in the initial conditions, lead to increasing error rates.
Such systems therefore have hard capacity limits. For these reasons, we think that
such models, although very important from a conceptual point of view, do not
capture some essential features of biological olfactory systems.
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Population Models and Chaos

Walter Freeman and collaborators have, over the years, followed a different ap-
proach, merging experiments and NLD theory. They developed dynamical models
that simulate the global behavior of neuron population (Freeman 1975, 1992, 2000)
as manifested in EEG recordings from the mammalian OB. These models of popu-
lation dynamics (called “mesoscopic” models because of their intermediate scale)
reproduce several important aspects of EEG data. For example, at rest, the models
produce irregular oscillations whose origin lies in dynamical chaos. The mathe-
matical signature of this behavior is called a strange attractor. There is now much
experimental evidence that EEG time series can indeed sometimes be interpreted
as expressions of dynamical chaos (e.g. Elbert et al 1994). In addition, Freeman’s
models generate transient and reproducible waveforms that uniquely depend on the
stimulus; they can thus be used for recognition. These models therefore have a true
temporal component. On the other hand, they do not explicitly model individual
neurons, groups of synchronized neurons, or network topology (Freeman 1987,
Yao & Freeman 1990). They propose to explain macroscopic signals (as indicated
by EEG) whose functional relevance per se is debatable and, in any case, difficult
to assess without explicit description of their underlying causes. Hence, we find
it difficult to transpose these spatiotemporal models into the biological realm.

A New Theoretical Framework: “Winnerless Competition”

The simple model in Equation 1 embodies part of what is needed for a dynamical
system with input-specific behavior. Ifxi (t) anda, respectively, represent neuron
i’s firing rate and the state of the input (a≤ 0, stimulus off;a≥ 0, stimulus on), then
the neuron can move between 0 (stimulus off) anda (stimulus on). This system,
however, has a very limited capacity. To encode many stimuli, the dynamics
should allow stimulus-specific trajectoriesxi (t) in state space. We introduce the
conditions required for such dynamics.

First, many neurons are required. For the sake of simplicity,xi (t)will represent
the firing rate of theith neuron or, collectively, that of theith group of synchronized
neurons. The functional unit of the network is thus either the neuron or a small
group of coactive, synchronized neurons. The identity of the elements of a group
may change over time, in which case the identity of the group will similarly evolve.
The mechanisms underlying this evolution will become clear as we proceed.

Second, these neurons (or groups) must interact at least in part through in-
hibitory connections. Ifxi (t) andxj (t) characterize the activities of groupsi and
j, respectively, the system’s behavior can be described by

dxi

dt
= xi (t)

[
1−

N∑
j=1

ρi j x j (t)

]
+ Ss

i , 2

whereρi j > 0 characterizes the strength of inhibition ofi by j and Ss
i is the in-

put current contributed by stimuluss to i. The simplest dynamics arise if these
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inhibitory connections are symmetrical(ρi j = ρ j i ). In this case, the autonomous
system(Ss

i = 0) is “potential” or gradient, and Equation 2 can be rewritten as

dxi

dt
= − ∂F

∂xi
3

and

d F

dt
≤ 0, 4

whereF is the free energy or Lyapunov function. Equation 4 implies that the system
cannot generate complex temporal patterns; rather, free energy must decrease
monotonically along any trajectory in state space or remain constant; the system
can only move to a local minimum and stay there. Ifρi j >ρi i , the free-energy
landscape for a system withN neurons (or groups) hasN or fewer minima and
behaves as a multistable Hopfield network. Ifρi j <ρi i , the system has only one
global attractor, corresponding to simultaneous activity of all N elements (“weak
competition”) (Figure 4b).

If connections are not symmetrical, two cases arise, depending on the nature of
the asymmetries. If the asymmetry is only partial (e.g. forN= 3, ρ12∼ ρ21> 1;
ρ13, ρ23 > 1; ρ31, ρ32< 1), only one attractor, corresponding to the activity of one
neuron, will result (Figure 4c). This is a “winner-take-all” circuit (e.g. Yuille &
Grzywacs 1989). These and Hopfield-like networks are well studied in dynamical
systems theory (Morse-Smale systems [e.g. see Guckenheimer & Holmes 1983])
and generally display behaviors too simple to account for experimental data. If
the asymmetries are cyclic(ρi j >ρi i , butρ j i <ρi i ; e.g. forN= 3, ρ12, ρ23, and
ρ31> 1, andρ21, ρ32, andρ13< 1) however, more interesting behaviors arise in
which activity “bounces off” between neurons (groups), in a stimulus-dependent
manner (Figure 4d). We call this behavior “winnerless competition”. Its geomet-
rical description is a heteroclinic orbit, that is, a trajectory linking quasi-stationary
states within phase space (Figure 5). One critical point, developed further below,
is that heteroclinic orbits are very sensitive to the stimulus. Consequently, each
orbit can be associated with a stimulus and thus “encode” it. A second (related)
critical point is that the state space of the system is enlarged upon reception of
the input. We propose that this form of nonlinear dynamical behavior best de-
scribes odor-evoked activity in the early olfactory system. How and why does it
work?

Closed Topology

An important condition for this form of dynamical behavior is that the network
topology (connectivity) be closed. This condition is fulfilled by AL and OB cir-
cuits, whose synaptology is well known (Masson & Mustaparta 1990, Scott 1986,
Shipley & Ennis 1996); a mitral cell, for example, will excite other mitral or
granule cells which in turn will feed back onto it through mono- or polysynaptic
pathways. In addition, if reciprocal connections exist between local inhibitory
neurons and the principal neurons that excite them, those inhibitory connections
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should not be so powerful as to cause, on their own, an immediate silencing of the
principal neurons. This condition appears to be fulfilled in the locust AL, where
no evidence for functional reciprocal inhibitory connections has been found either
morphologically (Leitch & Laurent 1996) or physiologically from recordings of
connected pairs (MacLeod & Laurent 1996; G Laurent, personal observation). In
the vertebrate OB, well-documented reciprocal inhibition via granule cells never
prevents prolonged MC firing caused either by an odor stimulus or by direct de-
polarizing current injection (Isaacson 1999, Isaacson & Strowbridge 1998, Nicoll
& Jahr 1982). These features are important because they act to disperse activity
across the neural assembly once a few elements have been activated by a stimulus.

Activity thus proceeds across parts of the network by sequentially activating
and deactivating subgroups of neurons. Individual neurons can belong to several
subgroups recruited at different times during the stimulation, and different sub-
groups join and depart over successive, sometimes overlapping epochs. Hence, at
any time during the stimulation, each neuron may receive inputs from the afferents
or from other neurons in the network and thereby contribute, by its own activity
combined with that of the afferents, to the excitation and inhibition of other neu-
rons. This activation path within the network (or, correspondingly, this heteroclinic
orbit in the state space that describes it) is determined by and thus “represents” the
stimulus. Once the stimulus ceases (either because it was withdrawn or because of
receptor adaptation), each active neuron returns to its baseline activity, controlled
by intrinsic properties, basal-connection strengths, and noise; correspondingly, the
system returns to the neighborhood of the origin in state space. A stimulus can thus
be thought of as a perturbational or informational signal that reorganizes the global
attractor in a stimulus-specific manner, forcing the system to evolve through state
space along a complex, but deterministic path joining unstable “saddle states.”
Once the stimulus disappears, the system resets itself autonomously, because no
stable attractor other than the resting state could be found. Hence, the system’s
only attractors are the stimulus-evoked heteroclinic orbits (one for each stimulus)
or, when no stimulus is present, the origin.

Advantages of Winnerless Competition

This dynamical-systems description of early olfactory processing took shape as a
means to explain experimental data (Laurent et al 1996, Wehr & Laurent 1996;
RW Friedrich & G Laurent, submitted manuscript). Although its global features
appear to match the data, our description should also provide insights as to what
is gained by such dynamical behavior.

Global Stability Winnerless competition provides global stability to the repre-
sentation. Although each neuron or subgroup participating in the representation
might, left to its own devices, wander during a response, the effect of the population
behavior is to provide local and temporary stability to each, by attracting them to
the neighborhood of a succession of quasi-stable saddle states. Each neuron’s
local activity thus inherits the global stability of the heteroclinic orbit defined by
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the system. This stability can be verified by examining the reproducibility of
stimulus-evoked trajectories in model networks of simplified LNs and PNs (MI
Rabinovich, R Huerta, A Volkovskii, HDI Abarbanel, G Laurent, in preparation)
or in experimental data (Laurent et al 1996, Wehr & Laurent 1996).

Sensitivity Such dynamics are very sensitive to the forcing stimulus. This is
because the heteroclinic linking of a specific set of saddle points is always unique.
Two like stimuli, activating greatly overlapping subsets of a network, may thus
become easily separated because small initial differences will become amplified
in time. This feature is central to our experimental observations (RW Friedrich &
G Laurent, submitted manuscript; Stopfer & Laurent 1999) and is characteristic of
an active, dissipative, nonlinear dynamical system. We do not know yet, however,
whether divergence can be optimized by fine-tuning of the internal connectivity.
Intermittent-stimulation experiments indeed suggest that short-term changes can
increase the separability of odor representations (Stopfer & Laurent 1999). The
rules for such unsupervised improvements are so far unknown.

Capacity A heteroclinic (spatiotemporal) representation provides greatly in-
creased capacity to the system. Because sequences of activity are combinatorial
across neurons and time, overlap between representations can be reduced, and
the distance in phase space between orbits can be increased, thus reducing the
effects of noise. This feature, given by a dynamic representation, is absent from a
Hopfield-like network, where the intricacy of the boundaries between neighboring
basins of attraction can easily lead to classification errors.

Implementation Details Finally, does the expression of such dynamics depend
on the details of the network or neuron implementation? Indeed, to be general,
this theory should accommodate the many idiosyncrasies of OBs, ALs, and other
equivalent circuits and rely on broad organizational principles (Hildebrand &
Shepherd 1997). Preliminary tests indicate that this is indeed the case; winner-
less competition arises from a few simple and biologically relevant rules.

GENERAL CONCLUSIONS

The thrust of this review is that the transfer of odor-evoked signals from receptors
to OB/AL circuits is accompanied by a fundamental reformatting of odor repre-
sentations. This reshaping of odor codes results from the internal connectivity
of early olfactory circuits and from the global dynamics that these connections
produce. This reshaping is useful in that it removes ambiguities about stimulus
identity, exploiting time as an additional coding dimension. We do not mean to
suggest, however, that time is the only coding dimension for olfaction. Rather we
tried to explain that neural identity and temporal recruitment of neurons are, in
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these circuits at least, two sides of the same coin; because the OB/ALs are networks
of interacting neurons and because odor stimuli are usually sustained, the structure
of odor-encoding neural assemblies is shaped both by the stimulus and by the
distributed patterns forced by the stimulus. We propose that odor-encoding neural
assemblies in the OB/AL are dynamical, by virtue of the physical laws that govern
such systems’ behavior (winnerless competition).

This perspective has several practical correlates. First, it suggests that, because
information is distributed across neural assemblies, traditional measures such as
single-neuron tuning should be appropriately weighted. By analogy, take a sym-
phonic piece in which the piccolo plays one measure only, but one whose role is
critical to the melodic line that emerges from the orchestra. The relevance of the
piccolo to the global output is accurately conveyed not by the strength of its contri-
bution but by its relation to the other instruments’ output. Melodic representation
is, in this context, a property of the ensemble. Second, this perspective (and our
results) casts doubts on the traditional (“single-neuron”) functional interpretation
of lateral inhibitory contacts. Third, our results demonstrate the importance of
system nonstationarity at several time scales. The critical observation is that, over
time and without supervision, olfactory networks become increasingly attuned to
a stimulus’s precise identity.

Finally, we must emphasize that many important aspects (e.g. intensity coding,
decoding mechanisms, and the role of high-level features such as expectation)
remain to be studied in detail, incorporated, and tested within this framework.
Similarly, physiological studies on larger vertebrates such as reptiles and mammals
show a greater phenomenological complexity. These features will eventually also
need to be accounted for. Our hope is that a computational/theoretical perspective
combined with experiments on small and tractable systems can help both in framing
questions of general relevance and in designing more direct experimental tests.
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Figure 3 Temporal declustering of odor representations by MC assemblies in the ze-
brafish olfactory bulb. (A) Responses of one MC to 2 of 16 amino acids tested.Top, LFP;
middle, spike raster;bottom, peristimulus time histogram.Gray shadow, odor stimula-
tion. Note the odor-specific temporal-firing patterns and the late onset of LFP oscillations.
(B) Quantification of declustering over time.i, correlation matrix plotting similarity between
odor representations, as measured from a 50-mitral-cell assembly (see RW Friedrich &
G Laurent, submitted manuscript). Each matrix is constructed from firing rates measured
over a 400-ms-long epoch, starting at odor onset. Times above matrices indicate middle of
each epoch (corresponding to∗ in ii ). Note clear odor clusters along diagonal in leftmost
matrix and their progressive dissolution.ii , clustering indices (see above reference for de-
tails) as functions of time throughout odor response; declustering reaches steady-state after
∼800 ms.iii , principal component analysis of same data. Projection of odor representations
in the space defined by first three principal components for four epochs (t in part ii ). Note
dissolution of vector groups.
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Figure 4 Competitive systems dynamics. Schematic illustrations of four types of behavior.
(a) Multistability, (b) weak competition, (c) winner take all, (d) winnerless competition.

Figure 5 Heteroclinic loop for a simple network of three oscillating projection neurons
(PNs), activated by a given input pattern. Each axis maps the activity of one PN through
a state variableξ . The sequence connecting saddle limit cycles and the intervals between
them are functions of the stimulus. A different stimulus would thus be represented by a
different orbit and thus, a different temporal pattern of activation of the PNs.
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