Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2013 | Submitted
Book Section - Chapter Open

Convex optimal uncertainty quantification: Algorithms and a case study in energy storage placement for power grids


How does one evaluate the performance of a stochastic system in the absence of a perfect model (i.e. probability distribution)? We address this question under the framework of optimal uncertainty quantification (OUQ), which is an information-based approach for worst-case analysis of stochastic systems. We are able to generalize previous results and show that the OUQ problem can be solved using convex optimization when the function under evaluation can be expressed in a polytopic canonical form (PCF). We also propose iterative methods for scaling the convex formulation to larger systems. As an application, we study the problem of storage placement in power grids with renewable generation. Numerical simulation results for simple artificial examples as well as an example using the IEEE 14-bus test case with real wind generation data are presented to demonstrate the usage of OUQ analysis.

Additional Information

© 2013 AACC. The authors would like to thank Steven H. Low for helpful discussions on power systems. This work is supported by the National Science Foundation (NSF) grant CNS-0931746.

Attached Files

Submitted - 2012-report-ouq_storage.pdf


Files (486.9 kB)
Name Size Download all
486.9 kB Preview Download

Additional details

August 19, 2023
October 19, 2023