Published August 1, 1995 | Version public
Journal Article Open

Computing global combine operations in the multiport postal model

Abstract

Consider a message-passing system of n processors, in which each processor holds one piece of data initially. The goal is to compute an associative and commutative reduction function on the n pieces of data and to make the result known to all the n processors. This operation is frequently used in many message-passing systems and is typically referred to as global combine, census computation, or gossiping. This paper explores the problem of global combine in the multiport postal model. This model is characterized by three parameters: n-the number of processors, k-the number of ports per processor, and λ-the communication latency. In this model, in every round r, each processor can send k distinct messages to k other processors, and it can receive k messages that were sent from k other processors λ-1 rounds earlier. This paper provides an optimal algorithm for the global combine problem that requires the least number of communication rounds and minimizes the time spent by any processor in sending and receiving messages

Additional Information

© Copyright 1995 IEEE. Reprinted with permission. Manuscript received June 8, 1994; revised Oct. 19, 1994. Jehoshua Bruck was supported in part by the National Science Foundation Young Investigator Award CCR-9457811; by the Sloan Research Fellowship; by a grant from the IBM Almaden Research Center, San Jose, California; and by a grant from the AT&T Foundation.

Files

BARieeetpds95.pdf

Files (531.6 kB)

Name Size Download all
md5:99d5e972dc19990016a36b02586ccaed
531.6 kB Preview Download

Additional details

Identifiers

Eprint ID
5556
Resolver ID
CaltechAUTHORS:BARieeetpds95

Dates

Created
2006-10-25
Created from EPrint's datestamp field
Updated
2021-11-08
Created from EPrint's last_modified field