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Constitutive models for linear compressible viscoelastic
flows of simple liquids at nanometer length scales
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Simple bulk liquids such as water are commonly assumed to be Newtonian. While this
assumption holds widely, the fluid-structure interaction of mechanical devices at nano-
meter scales can probe the intrinsic molecular relaxation processes in a surrounding
liquid. This was recently demonstrated through measurement of the high frequency
(20 GHz) linear mechanical vibrations of bipyramidal nanoparticles in simple liquids
[Pelton et al., “Viscoelastic flows in simple liquids generated by vibrating nanostruc-
tures,” Phys. Rev. Lett. 111, 244502 (2013)]. In this article, we review and critically
assess the available constitutive equations for compressible viscoelastic flows in their
linear limits—such models are required for analysis of the above-mentioned measure-
ments. We show that previous models, with the exception of a very recent proposal,
do not reproduce the required response at high frequency. We explain the physical
origin of this recent model and show that it recovers all required features of a linear
viscoelastic flow. This constitutive equation thus provides a rigorous foundation for
the analysis of vibrating nanostructures in simple liquids. The utility of this model is
demonstrated by solving the fluid-structure interaction of two common problems: (1) a
sphere executing radial oscillations in liquid, which depends strongly on the liquid
compressibility and (2) the extensional mode vibration of bipyramidal nanoparticles
in liquid, where the effects of liquid compressibility are negligible. This highlights
the importance of shear and compressional relaxation processes, as a function of
flow geometry, and the impact of the shear and bulk viscosities on nanometer scale
flows. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4919620]

I. INTRODUCTION

Miniaturization of mechanical sensors to nanometer length scales affords a tremendous enhance-
ment in their responsivity to environmental effects.1–14 For example, a 10-fold reduction in the size of
the sensor yields a 10 000-fold increase in the responsivity of its resonant frequency to mass adsorp-
tion. This strong scaling law underpins the recent demonstration of atomic-scale mass measurements
using nanomechanical sensors.15–18 Importantly, such measurements monitor the resonance prop-
erties of the sensor, which can be directly affected by any surrounding fluid. This is particularly rele-
vant to biological applications that are inherently conducted in a fluid environment. Consequently,
an ability to theoretically predict and model the performance of such fluid-structure interactions is
essential for their proper design and application.

The dynamic response of mechanical structures can be strongly modified by their immersion in
fluid. It is known that macroscopic structures are weakly affected by the viscosity of the surrounding
fluid, with structural and acoustic radiation damping being dominant.19 Miniaturization to micron
length scales increases the resonant frequency of these devices. Scaling analysis then reveals that
such a size reduction strongly enhances the effects of viscosity—this typically dominates all other
damping mechanisms, especially for microelectromechanical systems and atomic force microscope
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cantilevers.20–22 Calculations of such fluid-structure interactions have been performed widely and
display excellent agreement with measurements in both gas and liquid.20,23

Miniaturization of mechanical devices to nanometer length scales can dramatically change
the nature of the flows they generate. Because the mean free path of a gas is at the 10-100 nm
scale, immersion of nanomechanical devices in gases can intrinsically generate non-continuum
flows—this property obviates use of the Navier-Stokes equations.24 Immersion of such devices in
liquid, however, does not produce non-continuum flows because the molecular length scales of
liquids are orders-of-magnitude smaller than the device dimensions. This would appear to indi-
cate that the Navier-Stokes equations are widely applicable to such small-scale flows. However,
recent measurements of the vibration of gold nanoparticles (∼30 nm in diameter) immersed in
simple liquids (glycerol-water mixtures) have shown distinct differences with the predictions of
the Navier-Stokes equations. Specifically, as the liquid viscosity was systematically increased, the
quality factor (scaled inverse damping) of the resonating nanoparticles was observed to initially
decrease but then plateau to a near constant value (and even increase slightly); numerical simula-
tions based on the Navier-Stokes equations predict a strong monotonic decrease in quality factor
with increasing viscosity, which was not observed. These observations were found to quantitatively
agree with independent calculations that include the intrinsic viscoelastic nature of these simple
liquids, with the short time scale of vibration (∼50 ps) being comparable to the molecular relaxa-
tion time of the liquid. The viscoelastic properties of simple liquids must therefore be included in
theoretical/experimental design and characterization of nanometer sized mechanical devices.

Flow generated by the extensional mode vibrations of the nanoparticles in Ref. 25 was well
modeled using an incompressible linear Maxwell model. Justification for this choice of an incom-
pressible constitutive equation is given by the shear-dominated nature of the flow. On the other
hand, fluid compressibility is expected to play a significant role for breathing mode vibrations,
which spheres exhibit predominantly.17,26–28 It is thus critically important to include the effects of
both liquid compressibility and their viscoelastic nature in the simulation of their dynamic response
in simple liquids, like water.

The simplest constitutive equation for an incompressible viscoelastic fluid is the linear Maxwell
model,29

S + λ
∂S
∂t
= 2µD, (1)

where S is the deviatoric stress tensor, µ is the fluid shear viscosity, λ is the relaxation time, and D is
the rate-of-strain tensor. The linear limit is considered because the above-mentioned measurements
operate in this regime.25,30 A more general linear incompressible constitutive equation is Jeffreys’
model (linear limit of the Oldroyd-B model),31

S + λ1
∂S
∂t
= 2µ0

(
D + λ2

∂D
∂t

)
, (2a)

where λ1 is the relaxation time, λ2 is the retardation time, and µ0 is the zero shear-rate viscosity
of the fluid. These models are often used to characterize the behavior of complex fluids, such as
polymeric liquids, for which it is a common practice to separate the contributions of the Newtonian
solvent and polymer in the fluid solution.31 Following this theoretical framework, we thus recast
Eq. (2a) as

S = 2µsD + SP and SP + λ1
∂SP

∂t
= 2µPD, (2b)

where µs = λ2µ0/λ1 and µp = (1 − λ2/λ1) µ0, with µ0 = µs + µp.
Again drawing on the polymeric liquid literature, we note that several constitutive models for

compressible viscoelastic liquids have been proposed.32–38 These models exhibit different math-
ematical forms, and thus, it is currently unclear which model should be used to analyze the
above-mentioned nanoscale flows. A primary aim of this article is to assess the relative merits of
these constitutive equations and thus to identify which model should be used in this context.

Some of these models implicitly assume a zero bulk viscosity and only include the appropriate
compressible term in the rate-of-deformation tensor.33,36 In contrast, other models include a nonzero
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bulk viscosity term in the solvent contribution, which is neglected in the polymeric component.34,37

Removal of the bulk viscosity in the polymeric equation has been related to the restriction imposed by
nonequilibrium thermodynamics.32 Strikingly, none of the models in Refs. 32–37 capture the required
response in the high frequency limit, as we shall discuss. Furthermore, these models do not consider
the compressional relaxation spectrum of the fluid, which in general will differ from the shear relax-
ation properties.36,37 Both the shear and compressional relaxation processes collectively influence
the mechanical response of a pressure wave in a viscoelastic medium. In a very recent work,38 a
mathematical modification to the incompressible linear Maxwell model was proposed to account for
fluid compressibility—a primary focus of that study was to mathematically prove that the proposed
constitutive equation is compatible with the Newtonian flow. However, the physical origin of the
model, its derivation and connection to classical thermodynamic results were not discussed.

In this article, we elucidate the underlying physical picture and derive the constitutive equa-
tion of Ref. 38. We also show that it recovers (i) the required classical thermodynamic results39

and (ii) the correct response in the high frequency limit—this is in direct contrast to all other
available models for compressible viscoelastic flows.32–37 Consequently, the constitutive equation
of Ref. 38 provides a rigorous foundation to simulate the compressible fluid-structure interaction
of nanomechanical devices in simple liquids25 which intrinsically probe the viscoelastic nature of
these liquids. We apply this compressible constitutive equation38 to two examples: (i) the breathing
mode vibration of a sphere,30 which generates a highly compressible flow and (ii) the extensional
vibration of the bipyramidal rod-like particle,26 which is expected to give a predominantly incom-
pressible flow, to show the general utility of this formulation. These fluid-structure examples are
commonly measured in practice,30 and the solutions given here provide a foundation for interpreta-
tion of these measurements.

II. CONSTITUTIVE EQUATIONS FOR A COMPRESSIBLE VISCOELASTIC FLUID

We begin by briefly reviewing the conservation equations for a general fluid. Throughout,
we assume that the flow exhibits small-amplitude oscillations so that all convective terms can be
ignored.21 This is the practical case30 and enables linearization of the equations of motion.21,40 The
required linear conservation equations are

∂ρ

∂t
+ ∇ · (ρv) = 0, ρ

∂v
∂t
= ∇ · T, (3)

where v is the fluid velocity field and ρ is the fluid density. The Cauchy stress tensor is T = −pI + S,
where S is the deviatoric stress tensor, p is the thermodynamic pressure, and I is the identity tensor.
The dilatation of a fluid element, ∇ · v, together with the bulk viscosity relates the mechanical
pressure, pm, to the thermodynamic pressure, pm = p − µB (∇ · v), where µB is the fluid bulk viscos-
ity.41 For an incompressible fluid, ∇ · v = 0, thus the mechanical and thermodynamic pressures are
identical.

Thermodynamic pressure and fluid density are related by the equation-of-state for the fluid,
which in its linear form is39

ρ = ρ0 (1 + κp) , (4)

where κ = ρ−1
0 (∂ρ/∂p) is the fluid compressibility and ρ0 is the fluid density at equilibrium. Substi-

tuting Eq. (4) into Eq. (3), we obtain the following linearized governing equations:

∂p
∂t
+ κ−1

∇ · v = 0, ρ0
∂v
∂t
= ∇ · T. (5)

For a compressible Newtonian fluid,42 the Cauchy stress tensor is T = −pI + Ssh + Scomp, where
Ssh = 2µ {D − (tr D) I/3} and Scomp = µB (tr D) I are the shear and compressional contributions to
the deviatoric stress tensor, respectively, µ is the fluid shear viscosity, and D =

(
∇v + (∇v)T) /2

is the rate-of-strain tensor. This standard Newtonian constitutive equation is easily generalized to
account for both the shear and compressional relaxation behaviors of a linear viscoelastic fluid.
Considering the physical model of a spring-dashpot connected in series, for each of the shear and
compressional contributions, as illustrated in Fig. 1, immediately leads to the following generalization
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FIG. 1. Schematic of (a) viscoelastic compressional and shear components of the fluid stress acting on a vibrating solid
spherical particle and (b) a bipyramidal particle.

to the Newtonian model:

Ssh + λsh
∂Ssh

∂t
= 2µ

(
D − tr D

3
I
)
, Scomp + λcomp

∂Scomp

∂t
= µB (tr D) I, (6)

where λsh is the shear relaxation time of the fluid and λcomp is its compressional relaxation time.
Equation (6) is identical to the model of Ref. 38 and is the required result that implicitly accounts
for both shear and compressional relaxation effects, while giving a purely Newtonian result in the
low frequency limit and a purely elastic response in the corresponding high frequency limit; see
below. Use of Eqs. (5) and (6), together with the appropriate fluid boundary conditions, allows for
characterization of the compressible viscoelastic response of simple liquids.

A. Comparison to classical thermodynamic result

Throughout, we assume the implicit time dependence of e−iωt for all variables, where ω is
the angular frequency. According to Landau and Lifshitz,39 a slow process that tends to establish
equilibrium displays a frequency dependent relationship between the mechanical and thermody-
namic pressures, i.e., pm = p −

�
c2
∞ − c2

0

�
ρ0λ (∇ · v) / (1 − iωλ), where λ is the relaxation time,

c0 = 1/
√
ρ0κ is the speed of sound in the fluid at thermodynamic equilibrium, and c∞ is the speed

of sound at very high frequency. The bulk viscosity of the fluid at thermodynamic equilibrium is
related by µB =

�
c2
∞ − c2

0

�
ρ0λ. Critically, we find precisely the same expression upon taking the

trace of the stress tensor in Eq. (6), i.e., pm = p − µB (∇ · v) / �1 − iωλcomp
�
.

Landau and Lifshitz39 derived this relation between the thermodynamic and mechanical pres-
sures to illustrate the importance of slow processes. However, they did not derive a general consti-
tutive equation for a compressible viscoelastic fluid. The above analysis shows that the constitutive
model in Eq. (6) is entirely consistent with this classical thermodynamic result of Landau and
Lifshitz39 and correctly identifies the compressional relaxation time.

It is common in experiments to report a frequency dependent speed of sound in a fluid medium.43

This can also be derived using Eq. (6). Considering an adiabatic process, this leads to the following
expression for the frequency dependent speed of sound: c∗ = c0

�
1 − iωµB/

�
c2

0ρ0
�
1 − iωλcomp

�	�1/2.
Again, this is in precise agreement with Landau and Lifshitz39 for the speed of sound for slow com-
pressible processes, thus also supporting the validity of the constitutive equation in Eq. (6). Other
constitutive models in Table I do not yield these thermodynamic results, as we now discuss.

A comparison of the constitutive equation, Eq. (6),38 to those proposed in Refs. 32–37 for
compressible viscoelastic flows is given in Table I. This shows that the constitutive models exhibit
significantly different mathematical forms. To gain insight into their various properties, in Table II,
we provide their asymptotic behavior in the limits of low and high normalized frequencies, ωλ,
corresponding to expected fluid-like and solid-like behaviors. At low frequency, we observe that
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TABLE I. List of available constitutive models for linear compressible viscoelastic fluid flows.

Model Deviatoric stress tensor Additional stress tensors

Reference 32 S=SP− tr(SP)
3 I SP+λ1

∂SP

∂t = 2µD
References 33 and 36 S= 2µs

(
D− tr D

3 I
)
+SP SP+λ1

∂SP

∂t = 2µP
(
D− tr D

3 I
)

Reference 34 S= 2µs
(
D− tr D

3 I
)
+ µB(tr D)I+SP SP= 2µPD

Reference 35 S=−2µ tr D
3 I+SP SP+λ1

∂SP

∂t = 2µD
Reference 37 S= 2µs

(
D− tr D

3 I
)
+ µB(tr D)I+SP SP+λ1

∂SP

∂t = 2µPD

Equation (6) and Ref. 38 S=Ssh+Scomp
Ssh+λsh

∂Ssh
∂t = 2µ

(
D− tr D

3 I
)

Scomp+λcomp
∂Scomp

∂t = µB(tr D)I

all models display a linear dependence on the rate-of-strain tensor, but some assume a zero bulk
viscosity (models in Refs. 33 and 36). Interestingly, the models in Refs. 32–37 all implicitly set
the compressional relaxation time of the fluid to zero. This contrasts to Eq. (6) for which both
shear and compressional relaxations exist, as does the bulk fluid viscosity. In the high frequency
limit, stronger deviations are evident, where a pure elastic solid response is required. All models in
Refs. 32–37 predict “fluid-like” behavior with the deviatoric stress tensor remaining proportional
to the rate-of-strain—or equivalently out-of-phase with the strain tensor. This is certainly not indic-
ative of the response of an elastic solid. In striking contrast, Eq. (6) intrinsically predicts that the
stress is proportional to and in-phase with the strain in the fluid—precisely the required behavior of
an elastic solid. More so, the asymptotic result in Table II is immediately recognizable as Hooke’s
law for a linearly elastic solid with the bulk and shear moduli evident.

Table II also lists the difference between the thermodynamic and mechanical pressures pre-
dicted by the different models. Models that use a zero bulk viscosity implicitly assume no difference
between these pressures. All other models correctly exhibit the required low frequency behavior.
However, only the model in Eq. (6) correctly captures the required thermodynamic result of Landau
and Lifshitz39 at all frequencies. In the high frequency limit, Eq. (6) again correctly predicts that
pm − p is in-phase with the fluid displacement, not the velocity. Equation (6) also captures the cor-
rect complex speed as a function of frequency, as discussed above, in contrast to all other models.
The model in Ref. 34 is derived for steady flow only.

This comparison shows that the constitutive equations in Refs. 32–37 are unable to describe the
expected and pertinent features of linear compressible viscoelastic flows at high frequency, which is
critical for analyzing fluid-structure interactions at nanometer scales. The only model that captures
the correct behavior is Eq. (6).38

TABLE II. Comparison of features of linear constitutive models in Table I at low and high normalized frequencies, with bulk
elastic modulus, K = µB/λcomp and shear elastic modulus, G = µ/λsh. The rate-of-strain tensor, D, and the strain tensor, E,
are related by D=−iωE. Note that all models in Refs. 32–37 assume a zero compressional relaxation time, i.e., λcomp= 0,
whereas Refs. 33 and 36 also assume a zero bulk viscosity, µB. The models in Refs. 33, 34, 36, and 37 define µ = µs+ µp,
where µs and µp are the viscosities of the Newtonian solvent and the polymer, respectively.

Model Newtonian limit (ωλ→ 0) High frequency limit (ωλ→ ∞) pm− p

Reference 32 S= 2µ
(
D− tr D

3 I
)

S= 2µ
λ1

(
E− tr E

3 I
)

0

References 33
and 36

S= 2µ
(
D− tr D

3 I
)

S=
(

2µp
λ1
−2iωµs

) (
E− tr E

3 I
)

0

Reference 34 S= 2µD+
(
µB− 2µs

3

) (tr D)I N/A −
(
µB+

2µp
3

)
(∇ ·v)

Reference 35 S= 2µ
(
D− tr D

3 I
)

S= 2µ
λ1

E+ 2iωµ
3 (tr E)I 2µ

3

(
1− 1

1−iωλ1

) (∇ ·v)
Reference 37 S= 2µD+

(
µB− 2µs

3

) (tr D)I S=
(

2µp
λ1
−2iωµs

)
E+ iω

( 2µs
3 − µB

) (tr E)I −
(
µB+

2µp
3(1−iωλ1)

)
(∇ ·v)

Equation (6)
and Ref. 38

S= 2µD+
(
µB− 2µ

3

) (tr D)I S= 2GE+
(
K − 2G

3

) (tr E)I −µB∇·v
1−iωλcomp
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III. APPLICATION OF CONSTITUTIVE EQUATION TO SPHERICAL AND BIPYRAMIDAL
PARTICLES IMMERSED IN FLUID

In this section, we use the constitutive equation for a compressible viscoelastic fluid in Eq. (6)
to examine the fluid-structure interaction of two example flows: (i) a spherical particle executing
breathing mode oscillations in a fluid17,26–28 and (ii) a bipyramidal particle undergoing extensional
oscillations,25 see schematic of particles in Fig. 1. The aim here is to demonstrate how mode shape
and particle geometry affect the resulting flow dynamics. These solutions also find direct application
in practice, because these particles are often measured using ultrafast laser spectroscopy to probe
their dynamics.17,25–28

It has been established that nanometer-sized solid particles obey the continuum hypothesis18,30

with their dynamics being governed by Navier’s equation,

ρs
∂2u
∂t2 =

E
2 (1 + σ)


∇

2u +
1

(1 − 2σ)∇ (∇ · u)

, (7)

where u is the displacement field, ρs is the solid density, E is the Young’s modulus of the solid, and
σ is the Poisson ratio. As before, we assume that the particle undergoes small-amplitude oscilla-
tions, and thus the usual assumption of linear elasticity is applicable. At the interface between the
fluid domain and the solid particle, the conditions of continuity of stress, velocity, and displace-
ment are imposed. This provides direct coupling between the linear compressible viscoelastic fluid,
Eqs. (5) and (6), and Navier’s equation for the solid, Eq. (7). At large distances from the particle, we
require that all generated waves are outgoing.

Because the motion is oscillatory, all time-dependent variables, such as the solid displacement,
fluid velocity, and fluid pressure, are expressed in terms of the explicit time dependence e−iωt,

X (r, t) = X̃ (r|ω) e−iωt, (8)

where i is the usual imaginary unit, r is the position, ω is the angular frequency, and X denotes any
time-dependent quantity. For simplicity, we henceforth omit the superfluous “∼” notation, noting
that the above relation holds universally for harmonic oscillations.

A. Spherical particles

An analytical solution can be found for the breathing mode oscillations of a sphere in an
unbounded linear compressible viscoelastic fluid. Throughout, we assume that the deformation of
the solid particle obeys the linear theory of elasticity. The breathing modes exhibit a pure radial
displacement, i.e., u (r) = ur(r)r̂, where r is the usual radial coordinate in spherical coordinates, r̂ is
its corresponding basis vector, and ur(r) is the radial component. Therefore, the governing equation
for the radial displacement of a sphere is

d2ur

dr2 +
2
r

dur

dr
− 2ur

r2 + τ2ur = 0, (9)

where τ = ω

ρs (1 + σ) (1 − 2σ) /E (1 − σ). The general solution to Eq. (9) yielding a finite solu-

tion at the origin is ur (r) = Aj1 (τr), where j1 (τr) is the spherical Bessel function of first kind and
A is a constant. Since the particle executes breathing mode oscillations, the resulting velocity field
in the fluid is

vr = −iωur |r=R
k1
�
−iα r

R

�

k1 (−iα) , (10)

where R is the particle radius and k1 is the modified spherical Bessel function of second kind. The
parameter α is defined as

α2 =
βς2 (1 − iDesh)

β (1 − iDesh) − iς2
(

4
3 + θ

1−iDesh
1−iDecomp

) , (11)
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where β = ρ0ωR2/µ, ς = ω R
√
ρ0κ, θ = µB/µ, Desh = λshω, and Decomp = λcompω; De is the

Deborah number.
Continuity of stress and velocity is then imposed at the particle-fluid interface, at r = R, giving

E (1 − σ)
(1 + σ) (1 − 2σ)


dur

dr
+

2σ
(1 − σ)

ur

r



r=R

=


−p + 2

µ

(1 − iλshω)
dvr
dr
− *
,

2µ
3 (1 − iλshω) −

µB�
1 − iλcompω

� +
-

(
dvr
dr
+

2vr
r

) r=R. (12)

Substituting the above-calculated displacement field for the solid, ur (r), and Eq. (10) into Eq. (12)
yields the required eigenvalue equation for the complex eigenfrequency, ω. The angular resonant
frequency, ωf, in fluid is determined from this eigenfrequency,40

ωf =


ω2

r + ω
2
i , (13)

where ωr and ωi are the real and imaginary components of ω, respectively.
The quality factor Qfluid, which is a scaled rate of energy dissipation, is defined as the ratio

of the maximum energy stored, Estored, in the particle to the energy dissipated per cycle, Ediss,
i.e., Qfluid = 2π (Estored/Ediss)|ω=ωf

. Its value can also be directly evaluated from ω,

Qfluid = −
ωf

2ωi
, (14)

where the subscript “fluid” indicates the contribution from the fluid only.
Following a similar approach to that adopted for a compressible viscoelastic fluid, an analyt-

ical solution can be derived for incompressible flow. However, the fluid velocity differs from the
compressible solution and can be expressed as vr = −iωur |r=R(R/r)2. Through continuity of stress
and velocity at the solid-fluid interface, we arrive at the required complex eigenfrequency equation
for the breathing modes in the incompressible fluid limit,

τR

1 +

4i
β (1 − iDesh)


j1 (τR) = ρs

ρ


j0 (τR) − 2 (1 − 2σ)

(1 − σ) τR
j1 (τR)


, (15)

where jn (τR) is the spherical Bessel function of first kind and ω is the complex eigenfrequency.

1. Numerical results

We now present the numerical results for the fundamental breathing mode vibration of a sphere
immersed in a compressible viscoelastic fluid. The problem depends on several dimensionless
variables as follows:

i. The effects of compressibility and viscoelasticity are controlled by separate dimensionless
parameters: the normalized wave number ς and the Deborah numbers Desh and Decomp, respec-
tively. The latter indicate the strength of shear and compressional elasticities. Small values for
all these parameters indicate a negligible effect of fluid compressibility and fluid elasticity.

ii. The normalized frequency β dictates the effect of shear viscosity, whereas the ratio of the bulk-
to-shear viscosities is θ ≡ µB/µ.

iii. The density ratio ρs/ρ specifies the relative strength of solid-to-fluid inertia and thus the
strength of the fluid loading.

We consider solid-to-fluid density ratios, ρs/ρ, in the range 3–1000; the lower limit of this
range is typical for semiconductor nanoparticles, whereas materials such as gold exhibit a density
ratio of approximately 20—the upper limit of 1000 is studied to illustrate behavior in the high
density ratio limit. For simplicity, Deborah numbers with Decomp = Desh and a viscosity ratio,
µB/µ = 1, which are the good approximations for some real fluids, see Appendix A. Poisson’s ratio
is set to σ = 0.44, typical for gold. Throughout, a variable with subscript “f” refers to the variable
evaluated at the resonant frequency in fluid, ωf.
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A Knudsen number can be defined from the above dimensionless parameters, Kn = ς2/β. For
gases, this is proportional to the ratio of the gas mean free path and acoustic wavelength. The con-
tinuum approximation is observed when Kn ≪ 1. Importantly, ς2 ≪ β implies that the time scale
for vorticity diffusion is far smaller than the time scale for sound propagation. This is true regardless
of the nature of the fluid. Therefore, ς2 ≪ β must be satisfied in both gases and liquids for the
continuum approximation to hold. Flows with β < 10 require ς2 ≪ 10 and are thus incompressible.
As a result, the effects of fluid compressibility are expected in the high-β regime; this does not
eliminate its effects for moderate or small β, as we shall discuss.

a. Effect of shear relaxation time. It is informative to isolate the effects of fluid compress-
ibility and viscoelasticity in this numerical study. As such, the compressible viscoelastic solution
is compared to the corresponding incompressible result at identical Deborah numbers. We first
examine the effect of the Deborah number on the resonant frequency of the sphere. This is per-
formed for a density ratio of ρs/ρ = 20, which is typical for gold nanoparticles.30

Figure 2(a) shows the resonant frequency as a function of normalized frequency, βf ≡ ρωfR2/µ,
for various Deborah numbers, De. Reducing βf increases the fluid stress, which ultimately becomes
comparable to the stress in the solid. This can strongly affect the mode shape and thus complicate
mode identification, especially for the incompressible solution; results are given for large values of
βf only in these cases. As expected, the incompressible and compressible results coincide for low
βf, where significant departures from the Newtonian solution are observed. For large values of βf,
the compressible and incompressible results differ, in agreement with the scaling analysis above.
This verifies that fluid compressibility is critical in the high βf regime but produces a weak effect for
small βf.

Corresponding results for the quality factor are given in Fig. 2(b). Compressible and incom-
pressible Newtonian theory (De = 0) predicts that the quality factor decreases monotonically with
decreasing βf. Again, we observe a difference between the compressible and incompressible results
for large βf, but coincidence for βf . 1. The situation changes dramatically for finite De. First, re-
sults in Fig. 2(b) show that elasticity results in qualitatively different behavior in the low βf-regime.
Rather than a reduction in quality factor with decreasing βf, the quality factor now increases mono-
tonically; this is discussed further below. Interestingly, the value of βf, where the compressible and
incompressible results coincide, decreases with increasing De; this value of βf is seen to be approx-
imately given by Min(1/De,1). This is not surprising because Desh = Decomp, and thus, increasing
De simultaneously enhances the effects of compressional elasticity; since Desh ≈ Decomp for some
real fluids,25 this effect should be observable experimentally.

The situation for βf > 1 is strikingly different, with fluid compressibility producing a constant
value in the quality factor as βf increases while the incompressible solution gives a monotonically

FIG. 2. Breathing mode vibration of a sphere immersed in a compressible viscoelastic fluid—effect of viscoelasticity and
fluid compressibility. (a) Resonant frequency and (b) quality factor. Deborah number, De= 0 (red), 1 (blue), 10 (green), 100
(black), and 1000 (magenta). Results for density ratio ρs/ρ = 20, Poisson ratio σ = 0.44, viscosity ratio θ ≡ µB/µ = 1, and
Deborah numbers are chosen so that Decomp=Desh and a normalized wavenumber ς = 1. Compressible fluids (solid lines);
Incompressible fluids (dashed lines).
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increasing quality factor. This difference is due to the radiation of sound waves in the compressible
result, which restricts the upper value of the quality factor in the inviscid limit, i.e., βf → ∞.

b. Relation to the elasticity number. The elasticity number, El ≡ De/β = µλ/
�
ρR2�, is often

used in rheology because it depends only on the fluid material properties and the device geometry—
the excitation frequency, ωf, is eliminated. A higher value for this parameter denotes a stronger
viscoelastic effect. Use of this parameter, rather than the Deborah number, is particularly advan-
tageous in conventional rheology because the device geometry is often fixed and the excitation
frequency is adjusted independently. For a vibrating nanoparticle, however, this is not possible
because its resonant frequency is directly connected to its size; the frequency can only be adjusted
by changing the particle size (radius R for a sphere)—varying βf immediately results in a change
in El. Nonetheless, we note that results in Fig. 2, when plotted as a function of El rather than De,
display near identical behavior.

c. Effect of density ratio. Next, we examine the effect of the density ratio, ρs/ρ, and normalized
frequency, βf, on the dynamic response. The normalized frequency, βf, is the squared ratio of
the particle radius to the viscous penetration depth and therefore, dictates the effect of the shear
viscosity. The density ratio, ρs/ρ, specifies the relative strength of solid and fluid inertia. Increasing
both parameters, βf and ρs/ρ, reduces the effect of fluid viscosity and fluid inertia—in the binary
limit, βf → ∞ and ρs/ρ → ∞, energy dissipation and fluid inertia are eliminated, with the resonant
frequency matching the result in vacuum, ωvac, and the quality factor rising unboundedly. This
removes the effect of the surrounding fluid.

In Fig. 3, we present results for the resonant frequency and quality factor of a sphere in a
compressible Newtonian (Desh = Decomp = 0) and a viscoelastic fluid. Results in Fig. 3(a) clearly
show that viscoelasticity dramatically affects the resonant frequency, especially for small βf. In
contrast to the Newtonian result for small βf, shear elasticity in the fluid can strongly enhance the
resonant frequency. The underlying physical mechanism lies in storage of elastic energy in the fluid,
which adds directly to the energy stored in the solid particle. This stiffens the particle/fluid system,
resulting in the observed resonant frequency increase. Interestingly, we find that in the asymptotic
limit of infinite viscosity (zero inertia), i.e., βf → 0, the resonant frequency enhancement plateaus
to a constant value of ωf/ωvac = 1.5. This feature should be observable experimentally and may
provide a useful experimental route to identifying the presence of fluid viscoelasticity. At high βf,
fluid loading is dominated by a compressible inviscid contribution—a reduction in ρs/ρ enhances
the effect of the surrounding fluid on the particle dynamics, leading to a decrease in the resonant
frequency.

Behavior strikingly different from the Newtonian result is again observed for the quality factor,
in the low inertia limit. While Newtonian considerations would indicate that the quality factor
should predominantly decrease with a reduction in βf, the complete viscoelastic results show the

FIG. 3. Breathing mode vibration of a sphere immersed in a compressible viscoelastic fluid—effect of density ratio ρs/ρ.
(a) Resonant frequency and (b) quality factor. Density ratios ρs/ρ = 3 (black), 10 (blue), 100 (green), and 1000 (red).
Desh= 1 (solid lines) and Desh= 0 (dashed lines). Poisson ratio σ = 0.44, viscosity ratio θ ≡ µB/µ = 1, Deborah numbers
Decomp=Desh, and a normalized wavenumber ς = 1.
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opposite trend. For low βf, the quality factor increases with an enhancement in viscosity, follow-
ing an asymptotic trend: Qfluid ∝ 1/βf. The mechanism for this seemingly unintuitive behavior is
identical to that observed for the resonant frequency: enhancement in energy dissipation, as βf is
reduced, is overly compensated by greater energy storage in the particle/fluid system—this leads
to the observed increase in the quality factor with decreasing βf. For high βf, the predominantly
compressible inviscid flow gives a reduction in quality factor with decreasing ρs/ρ.

d. Implications to mass sensing using nanomechanical sensors. The results in Fig. 3(b) show that
operation at lower ρs/ρ can result in higher quality factors at low βf. This is contrary to current
thinking and has significant implications in practice. For example, mechanical sensors are presently
being used widely to detect minute masses with molecular and atomic resolutions in vacuum.
Operation in liquid remains a significant challenge. Importantly, a reduction in βf coincides with
a uniform reduction in device size. The presented results therefore indicate that miniaturization of
low-density solid particles may provide an ideal platform for such sensing applications in liquid,
allowing for improved mass sensitivity through reduction in device mass and enhancement in
quality factor. This suggests that the natural viscoelastic response of simple liquids may be used
advantageously to perform such highly sensitive measurements at nanometer scales.

e. Effect of fluid compressibility and bulk viscosity. The effect of the fluid bulk viscosity is
controlled predominantly by the normalized wavenumber ς. The flow is incompressible and the
bulk viscosity has no effect, if ς ≪ 1. Operation at finite ς can lead to a rich interplay between the
bulk viscosity and the elastic relaxation properties of the fluid. This is especially the case for high
βf, where the effects of fluid compressibility are strong. Varying the ratio of Decomp and Desh also
modifies the behavior, as expected (data not shown). Operation at high Deborah number increases
the effect of fluid compressibility and bulk viscosity, leading to enhanced compressibility effects at
low βf, similar to that observed in Fig. 2.

The presented results and discussion show that the combined effects of fluid compressibility
and viscoelasticity can critically affect the dynamics of spherical nanoparticles immersed in simple
liquids.

B. Bipyramidal particles

The impact of fluid compressibility is strongly controlled by the particle geometry and vibra-
tion mode. To illustrate this aspect, we now examine the extensional mode vibrations of bipyramidal
particles in fluid, which were reported in Ref. 25. This previous study measured the dynamic
response of gold bipyramidal nanoparticles immersed in glycerol-water mixtures as a function of
glycerol-water mass fraction. Increasing the glycerol mass fraction simultaneously enhances the
viscosity, µ, and relaxation time, λ, of the liquid, resulting in a multiplicative enhancement in
the elasticity number, El = µλ/

�
ρR2�—and thus liquid elasticity; R refers to the maximum radius

of the bypyramid here.25 These measurements were compared to a theoretical model based on
an incompressible linear viscoelastic fluid model, for which excellent agreement was observed.
Incompressible flow is expected because the particle extensional mode predominantly generates
shear waves in the surrounding fluid. Here, we provide complementary theoretical results that
rigorously include the effects of fluid compressibility, using Eq. (6), to assess the validity of this
assumption. Material properties of the gold nanoparticle and glycerol-water mixtures are reported
in Appendix A. The fluid-structure problem, defined in Eqs. (5)–(7), is solved using a fully coupled
finite-element (FE) fluid-structure simulation;44 validation of this finite-element solution using the
analytical solution for a spherical particle is given in Appendix B.

Figure 4 shows the results of this numerical simulation for both incompressible25 and compress-
ible flows. From these results, it is clear that fluid compressibility exerts a weak effect on both the
resonant frequency and quality factor of the particle. This comparison verifies that fluid compress-
ibility does not significantly affect the dynamics of bipyramidal particles undergoing extensional
mode vibrations, in contrast to the case of a spherical particle executing breathing mode oscilla-
tions, presented above. As such, the compressible model in Eq. (6) encompasses the general case

 11 O
ctober 2023 21:08:47



052002-11 D. Chakraborty and J. E. Sader Phys. Fluids 27, 052002 (2015)

FIG. 4. Bipyramidal particle undergoing extensional model vibrations in glycerol-water mixtures.25 (a) Resonant frequency
and (b) Quality factor. Experimental data (black circles with error bars);25 incompressible viscoelastic FE calculations (red
circles);25 Compressible viscoelastic FE calculations (green diamonds). FE calculations assume a quality factor due to
intrinsic damping, Qint= 50. The total quality factor due to the fluid and intrinsic damping is given, 1/Q = 1/Qfluid+1/Qint.

and can be used to calculate the flows generated by arbitrarily shaped nanoscale devices immersed
in simple liquids.

IV. CONCLUSIONS

We have examined the available constitutive equations for linear compressible viscoelastic
fluids, and showed that only Eq. (6) is consistent with classical thermodynamic results. The underly-
ing physical mechanisms of this model were discussed. This model exhibits all the required features
of a linear viscoelastic flow, with fluid-like behavior at frequencies well below the characteristic
relaxation times and solid-like behavior at high frequencies. This is in direct contrast to other consti-
tutive models for compressible viscoelastic flows,32–37 which do not possess the correct limiting
behavior at high frequency. Exploration of the validity of these constitutive equations is motivated
by recent measurements showing that the natural viscoelastic response of simple liquids critically
affects the dynamic response of vibrating nanostructures.

The utility of the constitutive equation in Eq. (6) was demonstrated by analyzing the fluid-
structure interaction of particles with different geometries and mode shapes: spherical and bipyra-
midal particles. These particles are commonly measured in practice. Spherical particles executing
breathing mode oscillations were found to generate compressible flows, with strong interplay be-
tween the effects of fluid compressibility, bulk viscosity, and fluid relaxation processes. In contrast,
the extensional mode vibrations of bipyramidal particles inherently generate incompressible visco-
elastic flows. The constitutive equation in Eq. (6) handles both cases naturally and thus, provides a
general formalism with which to characterize the fluid-structure interaction of nanoscale mechan-
ical devices vibrating in simple liquids. This is expected to be particularly useful in interpreting
current measurements that interrogate the picosecond dynamics of vibrating nanoparticles using
ultrafast laser spectroscopy.30
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APPENDIX A: MATERIAL PROPERTIES

1. Gold nanoparticles

Gold nanoparticles are considered to have bulk material properties: density of 19 320 kg/m3,
Young’s modulus of 79 GPa, and a Poisson’s ratio of 0.44.
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FIG. 5. Shear and compressional (bulk) components of (a) viscosity and (b) relaxation time, as a function of glycerol mass
fraction, for glycerol/water mixtures at 25 ◦C.

2. Glycerol-water mixtures

A standard temperature dependent empirical formula45 is used to calculate the low-frequency
shear viscosities of water-glycerol mixtures. Both shear and compression relaxation times are speci-
fied by the ultrasonic measurements of Slie et al.46 These two relaxation times are given by

λsh =
µ

G∞
, λcomp =

µB

K2
, (A1)

where G∞ is the high-frequency shear modulus, K2 is the difference between the high-frequency
bulk modulus, K∞, and the low-frequency or static bulk modulus, K0. Slie et al.46 show that both G∞
and K2 vary linearly with glycerol concentration and temperature. Performing a linear regression on
these parameters gives

G∞ = (2.6787 − 0.9929 cm) − (0.0276 − 0.0154 cm)T [GPa] , (A2)
K∞ − K0 = (3.0528 + 0.6244 cm) − (0.0339 − 0.0133 cm)T [GPa] , (A3)

where cm is the mole fraction of water and T is the temperature in ◦C. Figure 5 shows the resulting
dependence of the shear and bulk viscosities, µ and µB, and relaxation times, λsh and λcomp, on the
mass fraction of glycerol, for water-glycerol mixtures at 25 ◦C.

The limiting values for the shear and compression relaxation times predicted by Eqs. (A2) and
(A3) agree with independent reports for water and pure glycerol.47,48

APPENDIX B: VALIDATION OF FINITE-ELEMENT CALCULATIONS

In this Appendix, we validate the finite-element fluid structure calculations using the exact
solution for a spherical particle undergoing breathing mode oscillations in a compressible visco-
elastic fluid (Sec. III A).

The coupled system of equations, Eqs. (5)–(7), is solved using the commercial finite-element
software COMSOL Multiphysics, using its eigenfrequency solver.44 Equations (5) and (7) are im-
plemented by modifying the weak form of COMSOL’s fluid-structure interaction module. Because
equations for the extra viscoelastic stresses, i.e., shear and compression, are not readily available
in this software, weak forms of Eq. (6) are implemented using its partial differential equation
(PDE-mode) solver. We use the same boundary conditions as in the analytical model for the spher-
ical particles described in Sec. III A. At boundaries far from the particle, the outgoing boundary
condition for a generated wave is applied. A schematic of the computational domain is given in
Fig. 6. Because the flow and particle deformations are axisymmetric, the domain is restricted to
the r-z plane. The fluid is chosen to be a glycerol-water mixture, and the particle material is gold,
whose material properties are given in Appendix A. The reported results are independent of mesh
size and domain size to within 0.1%.
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FIG. 6. Schematic of a spherical particle immersed in fluid, showing the computational domain and particle dimension. Fluid
region (blue) and solid region (gold). Radial extent of fluid computational domain is R f .

FIG. 7. Spherical particle of diameter 50 nm immersed in glycerol/water mixtures at 20 ◦C. Particle is undergoing breathing
mode oscillations. (a) Resonant frequency and (b) Quality factor. Analytical solutions (lines) pass precisely through the
corresponding finite-element results (symbols). Newtonian (red circles); viscoelastic (blue squares); incompressible (filled
symbols); and compressible (open symbols).

Figure 7 shows a comparison between the exact analytical solution and results of the FE
analysis. Excellent agreement is found over the entire parameter range considered, with the results
obtained of these independent approaches being indistinguishable. This validates the FE simulations
that are used to calculate the dynamics of the bipyramidal particles in Sec. III B.
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