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ABSTRACT 11 

CRISPRi screening has become a powerful approach for functional genomic research. However, the off-target 12 

effects resulting from the mismatch tolerance between sgRNAs and their intended targets is a primary concern 13 

in CRISPRi applications. To address this issue, we introduce Guide Library Designer (GLiDe), a web-based tool 14 

specifically created for the genome-scale design of sgRNA libraries tailored for CRISPRi screening in 15 

prokaryotic organisms. GLiDe incorporates a robust quality control framework, rooted in prior experimental 16 

knowledge, ensuring the accurate identification of off-target hits. It boasts an extensive built-in database, 17 

encompassing 1,397 common prokaryotic species as a comprehensive design resource. In addition, GLiDe 18 

provides the capability to design sgRNAs for newly discovered organisms. We further demonstrated that GLiDe 19 

exhibits enhanced precision in identifying off-target binding sites for the CRISPRi system. 20 

Availability and Implementation: Freely available on the web at: https://www.thu-big.net/sgRNA_design/. 21 

AUTHOR SUMMARY 22 

CRISPRi screening is a powerful strategy for functional genomic study in prokaryotes. However, its 23 

applicability has been hindered by false positive results arising from off-target binding of sgRNAs. To tackle 24 

this challenge head-on, we present GLiDe, a web-based tool meticulously crafted for the genome-scale 25 

CRISPRi sgRNA library design in prokaryotes. GLiDe integrates a stringent quality control mechanism 26 

grounded in prior experimental insights. It has a built-in database and accepts uploaded reference files for new 27 

organisms. Moreover, we have demonstrated that our tool outperforms existing tools in CRISPRi sgRNA design 28 

for prokaryotes through cytometry assay. In summary, GLiDe emerges as a robust solution for sgRNA library 29 

design, poised to significantly advance functional genomic studies. 30 

INTRODUCTION 31 

As the number of bacterial genomes continues to grow, genotype-phenotype mapping is emerging as a potent 32 

approach in functional genomics research. It yields valuable insights into the microbiology and engineering of 33 
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microorganisms [1–3]. To investigate the function of a specific gene, the most straightforward strategy is to 1 

perturb the gene and then observe the resulting changes in phenotype [4]. In recent years, CRISPR system 2 

originates from bacterial immune system has provided an extraordinary tool for genome editing, which is 3 

programmable and applicable in a wide range of organisms [5–7]. By inactivating the endonuclease activity of 4 

Cas9 through mutations (D10A and H840A), nuclease-dead Cas9 (dCas9) is generated [8]. This can be adapted 5 

for transcriptional regulation, giving rise to the CRISPR interference (CRISPRi) system [9]. This innovative 6 

approach facilitates CRISPRi screening [10], a technique for genome-wide gene perturbation. This method 7 

employs a pooled library of single-guide RNA (sgRNA), where each sgRNA is meticulously designed to guide 8 

dCas9 protein to a specific genetic locus flanked by 3’-NGG protospacer adjacent motif (PAM) via Watson-9 

Crick base pairing [8], resulting in the inhibition of transcription of the target gene. Following the introduction 10 

of the sgRNA library, high-throughput screening techniques such as fluorescence-activated cell sorting [11,12] 11 

or fitness screening [13,14] are used to assess how cells with different sgRNAs behave. These behaviors are 12 

subsequently identified through next-generation sequencing. However, false positive results may arise 13 

occasionally in CRISPRi screening, primarily due to unexpected binding, a phenomenon commonly known as 14 

“off-targeting.” This can occur due to the tolerance of mismatches between sgRNAs and their intended targets 15 

[15]. Consequently, off-target binding may lead to the unintended inhibition of additional genes beyond the 16 

originally targeted one. Hence, ensuring highly reliable sgRNA design is of paramount importance. 17 

To date, a variety of tools have been established for sgRNA design [16–22]. It’s worth noting that these 18 

applications are predominantly tailored for the CRISPR/Cas9 system, where target DNA cleavage typically 19 

takes place following a conformational gating process [23]. This process requires sufficient base pairing 20 

between the sgRNA and the target DNA. In contrast, the CRISPRi system, which we are focusing on, involves 21 

inhibiting gene expression rather than cleaving DNA. In CRISPRi, off-target binding is more prone to occur 22 

compared to off-target cleavage [24], presenting challenges in accurately pinpointing off-target binding 23 

occurrences. Additionally, it’s crucial to consider the context of prokaryotic genomes when discussing sgRNA 24 

design tools. Prokaryotic genomes differ fundamentally from eukaryotic genomes in terms of genome 25 

accessibility due to a less organized chromosome structure [25,26] and variations in intracellular conditions. 26 

These unique characteristics may impact the applicability of existing sgRNA design tools to prokaryotic 27 

systems. 28 

To tackle the challenges outlined above, our research focuses on the development of an accurate off-target 29 

identification algorithm tailored specifically for the CRISPRi system in prokaryotes. Drawing upon insights 30 

gained from extensive pooled screening assays evaluating binding affinities of diverse sequences in prokaryotes 31 

[10,27], we have conducted a comprehensive analysis to discern the impact of mismatches on binding affinity. 32 

From these derived principles, we have developed CRISPRi Guide Library Designer (GLiDe), a web-based tool 33 

that allows users to easily and rapidly design genome-scale sgRNA libraries for CRISPRi screening in 34 

prokaryotes. GLiDe offers a built-in database of 1,397 common microorganisms and accepts uploaded reference 35 

files for less common species. Additionally, we illustrated that sgRNAs generated by GLiDe display a reduced 36 

propensity for off-target binding. Our in-depth analysis, supported by quantitative data, unequivocally 37 

demonstrated that GLiDe showcased substantial performance improvement in designing sgRNA libraries for 38 

CRISPRi screening. Consequently, through rigorous design principles and meticulous experimentation, we have 39 
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firmly established GLiDe as a highly promising tool poised to substantially promote functional genomic studies 1 

in prokaryotes. 2 

RESULTS 3 

Implementation of the GLiDe web tool 4 

We have developed GLiDe, a web-based tool for genome-scale CRISPRi sgRNA library design in prokaryotes, 5 

which is available at https://www.thu-big.net/sgRNA_design/. It employs a powerful algorithm for identifying 6 

off-target hits and outputs the results on an interactive page (Figure 1A). This result can also be easily 7 

downloaded from the website in tabular format (Figure 1B, C). 8 

Input and configuration 9 

GLiDe includes an extensive built-in database harboring over 1,397 prokaryotic organisms and allows users to 10 

upload their reference files (see Materials and Methods). To optimize sgRNA design, five essential parameters 11 

are required: (i) design target, which can be either coding sequence (CDS) or RNA coding genes (RNA); (ii) off-12 

target threshold, which is the penalty score used in the sgRNA quality control (see Materials and Methods); 13 

(iii) GC limits, which represent the upper and lower boundaries for the GC content of each sgRNA; (iv) spacer 14 

length, which defines the length of the sgRNA being designed; and (v) target strand, which can be either 15 

template or non-template, referring to the strand that the sgRNAs target. It’s important to note that, although for 16 

common CRISPRi systems, the non-template strand is the preferred choice to ensure effective gene silencing 17 

[9], we offer the alternative option for other applications, such as genome editing, base editing [28,29], or 18 

dynamic imaging [30], where there may be less strand preference. 19 

GLiDe can also design library for multi-contig sequences, such as strains containing plasmids. For the 20 

second and subsequent contigs, the sequence file is necessary, while the annotation file is optional. This feature 21 

is designed for contigs where there is no need for sgRNA design, but the prevention of sgRNAs targeting these 22 

specific contigs is desired, like plasmid vectors used in experiments. If users choose to upload the annotation file 23 

for these additional contigs, GLiDe will design sgRNAs accordingly. 24 

Process and output 25 

Upon configuration, a server request is initiated to commence the workflow (Figure 2). Anticipated processing 26 

time for a standard genome-scale library design range from 5 to 20 minutes, varying based on the size of the 27 

genome. The result sgRNA library is thoughtfully presented in a tabular format, where sgRNAs are meticulously 28 

organized by their respective targeted genes and annotated with their corresponding start positions (see 29 

Materials and Methods). Additionally, an interactive page is generated using the D3GB genome browser [31], 30 

offering an intuitive visualization of the sgRNA library. This page accurately maps all genes and sgRNAs to 31 

their natural positions within the genome. 32 

GLiDe is capable of designing CRISPRi sgRNA libraries 33 
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It is important to note that instead of CRISPR/Cas9 system that existing sgRNA design tools are focusing on, 1 

GLiDe is specially tailored for CRISPRi system. CRISPR/Cas9 system requires conformational gating process 2 

for formatting an R-loop structure before DNA cleavage [23], which requires sufficient base pairing between the 3 

sgRNA and the target DNA, reducing the likelihood of off-target cleavage. Consequently, sgRNAs without off-4 

target cleavage may have potential off-target binding effects. GLiDe implements a more rigorous off-target 5 

selection principle, enabling the identification of these sgRNAs. To illustrate this capability, we compared 6 

sgRNA library of Corynebacterium glutamicum ATCC 13032 designed by GLiDe and sgRNA libraries 7 

generated by two widely used tools: CHOPCHOP [19] and Synthego (https://design.synthego.com/). We 8 

discovered that some of the highly ranked sgRNAs intended for CRISPR/Cas9 systems were indeed identified 9 

as having the potential for off-target binding. Among these identified off-target sequences, we randomly chose 10 

four (R1–R4, Table 1) for further validation. 11 

To quantitatively assay the off-target binding effects, we applied a reporter system to connect binding 12 

affinity with mCherry expression [27]. In this system, we inserted the GLiDe identified off-target hit (N20 13 

sequence) upstream of the mcherry promoter. Upon binding of the dCas9-sgRNA complex to the N20 sequence, 14 

the expression of mcherry would be repressed, resulting in altered fluorescence intensity. For each sgRNA 15 

(EXP) and its potential off-target hit, two additional sgRNAs were designed as positive (PC) and negative 16 

control (NC). The PC was the reverse-complement of the N20 sequence and was used to represent full 17 

repression; meanwhile, the NC had no binding affinity with the N20 sequence and was used to represent the 18 

fluorescence intensity without repression (Figure 3A). Since sgRNAs may bind to the endogenous genome to 19 

impact fluorescence intensity, experiments were conducted in Escherichia coli MCm, and all sgRNAs were 20 

cross-referenced with the bacterial genome to ensure the absence of potential off-target hits. Moreover, a blank 21 

control N20 sequence (blank) was designed, which had no binding affinity to any sgRNA, to assess whether the 22 

sgRNAs themselves had any influence on mCherry fluorescence. The sgRNA and N20 sequences used in all 23 

experiment groups are listed in Table 2. 24 

The results revealed that all four sgRNAs bound to the off-target hits identified by GLiDe, leading to 25 

reduced fluorescence intensity compared to the negative control groups (Figure 3B, P < 1.36 × 10-5 for all 26 

groups, two-tailed t-test; Figure S1). The repression rates ranged from 51.12% (R2) to 90.70% (R4), with an 27 

average of 69.47% (see Materials and Methods). This rate is capable of causing unexpected outcomes and 28 

potentially result in false positives in the screening experiment [11]. The blank control groups exhibited similar 29 

mCherry fluorescence intensities (Figure 3C), indicating that the observed repressions were primarily attributed 30 

to off-target effects. These findings provide strong evidence that GLiDe excels in the design of CRISPRi sgRNA 31 

libraries. 32 

DISCUSSION 33 

GLiDe presents several distinctive advantages. Firstly, it concentrates on designing genome-scale CRISPRi 34 

sgRNA libraries, a focus notably lacking in prior web-based platforms like CHOPCHOP [19] and synthego 35 

(https://design.synthego.com/). Secondly, in contrast to existing scripts for bacterial CRISPRi sgRNA design 36 
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[14,32,33], GLiDe provides a more convenient and flexible way for a wide range of user groups. As a web-1 

based tool, the entire calculation process occurs online, eliminating the need for installation or local 2 

dependencies. Its compact, user-friendly interface simplifies the process, requiring researchers to set only a few 3 

parameters and optionally submit the sequence and annotation of the genome of interest. Finally, GLiDe’s 4 

quality control mechanism is built on a solid theoretical foundation. Two key design rules, the seed region rule 5 

(not yet considered by existing tools) and the penalty scoring rule, have been introduced based on extensive 6 

experimental evidence. This robust theoretical underpinning enhances the reliability of GLiDe, contributing to 7 

the accuracy and effectiveness of the tool. Our further experiments have demonstrated GLiDe’s superiority over 8 

existing tools when employed to design CRISPRi sgRNA libraries. Therefore, we believe GLiDe has extensive 9 

applicability in functional genomic studies such as essential genes study [34,35], bioprocesses optimization in 10 

industrially relevant microorganisms [36,37], or identification of complex genetic interactions [38]. 11 

The quality control methodology employed by GLiDe is based on the strand invasion model. During 12 

binding, mismatches in PAM-proximal region, particularly when there are two mismatches in seed region, could 13 

create a substantial energy barrier that cannot be adequately compensated. This barrier effectively impedes the 14 

strand invasion from the beginning, increasing the likelihood of dCas9 disengaging from the target. However, 15 

there is still potential limitation in the estimation of the impact of PAM-proximal mismatches. The current 16 

penalty scoring system primarily relies on experimental data, lacking a robust theoretical explanation. 17 

Furthermore, the current model assumes equal contributions from different mismatched nucleotide pairs, yet 18 

variations in stability exist among these mismatches [39]. Certain mismatches, such as rU/dG, rG/dT, and 19 

rG/dG, exhibit stabilities similar to Watson-Crick pairs [40]. One potential avenue for improvement is to 20 

incorporate thermodynamics. By treating the combination process as a Markov chain model, we can 21 

quantitatively calculate the thermodynamics of the sgRNA/DNA binding process based on fundamental 22 

thermodynamic parameters (nearest-neighbor parameters) [27]. We have further gathered nearest-neighbor 23 

parameters for the remaining 12 RNA/DNA single internal mismatches [41] and incorporated these data into the 24 

quantitative CRISPRi design tool we previously introduced (https://www.thu-25 

big.net/sgRNA_design/Quantitative_CRISPRi_Design/). Nevertheless, the current tool faces limitations in 26 

computing binding activities when mismatches are adjacent or located at the ends due to a lack of corresponding 27 

thermodynamic parameters. The challenge arises because adjacent mismatches are too numerous to be directly 28 

measured by experiments. Substantial work is still needed to complete the thermodynamic data for these 29 

scenarios. 30 

Additionally, in the current off-target hits identification process of GLiDe, hits in different locations are 31 

treated equally. However, it has been observed that the knock-down efficiency decreases when the sgRNA 32 

binding site is located far from the TSS [9]. Therefore, there is a possibility of ruling out sgRNAs that may not 33 

significantly impact downstream CRISPRi screening experiments. Despite this, the impact is considered 34 

acceptable due to the ample size of the designed library for CRISPRi selection. In addition, the optimal window 35 

for active sgRNA positioning relative to the transcription start site in a CRISPRi system varies across different 36 

organisms [42,43]. Consequently, the development of a unified approach for evaluating downstream effects 37 

becomes challenging due to these organism-specific differences. Overall, owing to the usability, solid basis, and 38 
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high precision, we believe GLiDe can serve as a powerful tool that provides a wide range of novel research 1 

opportunities. 2 

MATERIALS AND METHODS 3 

Data prerequisites for the design of sgRNA library 4 

To Design an sgRNA library, GLiDe requires two types of files: a FASTA file containing the entire DNA 5 

sequence, and an annotation file offering comprehensive details including genomic names, coding types, 6 

locations, strands, phases, and functional attributes. Regarding the annotation file, two formats are acceptable: 7 

(i) generic feature format files (GFF) and (ii) protein/RNA table files (PTT/RNT). These files can be easily 8 

obtained from a variety of publicly available databases such as NCBI [44], EMBL [45], DDBJ [46], etc. In the 9 

case of a newly sequenced organism, they can also be generated using genome annotation pipeline like PGAP 10 

[47]. 11 

sgRNA library design workflow 12 

As shown in Figure 2A, upon receiving the files, GLiDe constructs a coding list that connect each gene feature 13 

with its corresponding sequence. Genes with high similarity are considered as the same function [48,49] and are 14 

grouped into a cluster. This is achieved by employing BLASTN [50] with default parameters for sequence 15 

alignment, applying a strict threshold (< 0.001 evalue, > 95% identity, > 95% hit coverage, and > 95% query 16 

coverage). Each cluster may encompass one or more genes, and genes within the same cluster are considered to 17 

be multiple copies of the same gene. Consequently, potential hits across the cluster are not considered as off-18 

target. For example, Table S1 provides a list of all clusters of multi-copy coding genes in E. coli MG1655. 19 

Candidate sgRNAs are identified using regular expressions, targeting two categories of guides: N20NGG and 20 

N20NAG (N= A, T , C or G), corresponding to canonical and non-canonical PAM sequences [9]. These 21 

candidate sgRNAs are categorized into three groups: (i) sgRNAs with an NGG PAM targeting the non-template 22 

strand; (ii) sgRNAs with an NGG PAM targeting the template strand; and (iii) sgRNAs with an NAG PAM. 23 

Three FASTA files (FASTA1, FASTA2, and FASTA3) are generated, corresponding to group (i), (ii), and (iii), 24 

respectively. These files contain the PAM-proximal 12-bp regions (seed regions) of all candidate sgRNAs, as 25 

these regions are pivotal for binding [14]. An illustrative example is presented in Figure S2. Following this, 26 

candidate sgRNAs undergo a rigorous quality control process to eliminate those with potential off-target hits 27 

(see “Quality control of sgRNA library” section). Subsequently, only sgRNAs adhering to the user-specified 28 

upper and lower limits for GC content are retained. Finally, the designed library is presented to the user, as 29 

detailed in the “Visualization of results” section. 30 

Quality control of sgRNA library 31 

To improve the accuracy of off-target hit identification, our approach relies on the strand invasion model, which 32 

is grounded in the natural binding process [51–53] and extensive experimental data [8,54]. The fundamental 33 

concept involves identifying sequences that are less likely to result in off-target hits, with a focus on those 34 

exhibiting fewer mismatches in the PAM-proximal region compared to the target sequence. This process 35 
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involves three alignments according to the user defined target strand (template or non-template) using SeqMap 1 

[55]. For instance, if the non-template strand is selected, FASTA1 would be aligned with FASTA1, FASTA2, 2 

and FASTA3. We implement two general rules to evaluate the impact of each off-target hit (Figure 2B). 3 

One is seed region rule, where the seed region refers to the PAM-proximal 7–12 bp region. Mismatches 4 

within the seed region exert a notable impact on the binding affinity [14,56]. Our previous study revealed that 5 

two mismatches in the seed region substantially weaken binding affinity [27]. Despite its effectiveness, this 6 

principle has not been integrated into existing tools. Consequently, in our design, off-target binding is not 7 

deemed to occur when there are more than two mismatches within the 12 bp PAM-proximal region. 8 

The second rule is the penalty scoring rule, which considers the influence of mismatches based on their 9 

distance to the PAM, considering that mismatches are generally better tolerated at the 5’ end of the sgRNA than 10 

at the 3’ end [18]. The sgRNA regions are categorized from the 3’ end to the 5’ end as region I (7 nt), region II (5 11 

nt), and region III (the remaining sgRNA sequence). This division is informed by the experimental findings 12 

[15,24,57]. The mismatch penalties for region I, II, and III are 8, 4.5, and 2.5 (for NGG PAM), and 10, 7, and 3 13 

(for NAG PAM), respectively (Figure S3). The effectiveness of this strategy has been demonstrated in a 14 

previous study [10]. An off-target site is identified when the penalty score falls below the user-defined threshold, 15 

with a recommended range of 18–21 for designing genome-scale libraries. 16 

Design of negative control sgRNAs 17 

Negative control sgRNAs are designed to have no specific targets across the genome, which can be used to 18 

assess the influence of external factors on cellular phenotype. GLiDe designs these sgRNAs by generating 19 

random N20 sequences and subsequently removing those with notable target sites. For both NGG and NAG 20 

PAMs, a penalty score of 25 is applied, and the GC content limits match those of the sgRNA library. 21 

Additionally, GLiDe ensures that there are no five or more consecutive identical bases in these negative control 22 

sgRNAs. 23 

Visualization of results 24 

GLiDe provides the final sgRNA library in a table, where each sgRNA is associated with its target gene and 25 

ranked according to its proximity to the start codon. This ranking is because sgRNAs targeting closer to 26 

transcription start site (TSS) have shown higher knock-down activity [9]. In addition to the table, GLiDe also 27 

generates an interactive graphical interface using D3GB [31]. This interface provides users with a 28 

comprehensive overview of the entire genome and the designed sgRNA library. 29 

DNA manipulation and reagents 30 

Plasmid extraction and DNA purification procedures were carried out employing kits provided by Vazyme. PCR 31 

reactions were performed utilizing KOD OneTM PCR Master Mix from TOYBO Life Science. The PCR primers 32 

were ordered from Azenta (Table S2). Plasmids were constructed by Gibson Assembly, with a mixture 33 

comprising 10 U/μL T5 exonuclease, 2 U/μL Phusion High-Fidelity DNA polymerase, and 40 U/μL Taq DNA 34 
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ligase, all sourced from New England Biolabs. The antibiotic concentrations for kanamycin and ampicillin were 1 

maintained at 50 and 100 mg/L, respectively. A comprehensive list of all strains and plasmids utilized in this 2 

study can be found in Table S3. 3 

Plasmid construction 4 

The reporting system was established using two separate plasmids: one harbored dCas9, named pdCas9-J23111, 5 

was previously constructed as described in prior work [10]. The other plasmid was derived from pN20test-6 

114mCherry-r0-m1 [27], which was responsible for the expression of sgRNA and mcherry. In this particular 7 

plasmid, sgRNA expression was regulated by the J23119 promoter, while the N20 sequence was inserted 8 

upstream of the −35 region of the J23114 promoter, controlling mcherry expression. A total of 21 distinct 9 

pN20test-114mCherry plasmids were constructed (Figure S4). The plasmids were assembled using the Gibson 10 

Assembly method from PCR products (primers listed in Table S2), using the original pN20test-114mCherry-r0-11 

m1 plasmid as the template. All constructed plasmids were confirmed through Sanger sequencing. 12 

Cell cultivation 13 

Strains were initially cultured overnight at 37°C and 220 rpm in a 48-well deep-well plate, each contained 1 mL 14 

of LB medium with kanamycin and ampicillin. The grown cells were transferred to fresh LB medium with a 15 

0.5% dilution and grown again under the same conditions as above for 10 hours. This subculture process was 16 

repeated to ensure the stability of mCherry expression and avoid cell adhesion. In preparation for cytometry 17 

assays, cultures were next diluted in fresh LB medium with antibiotics to OD600 = 0.02 and then grown for 4 18 

hours to the logarithmic phase. After cultivation, 5 μL of culture medium from each well was diluted into 200 19 

μL of phosphate-buffered saline. Three independent biological replicates were prepared for each strain. 20 

Flow cytometry assay and data processing 21 

The flow cytometry assay was performed on an LSRFortessa flow cytometer (BD Biosciences) using a 96-well 22 

plate. Gating based on the FSC area and SSC area was carried out to exclude non-cell particles. To ensure 23 

accurate measurements, autofluorescence was quantified using the MCm/PdCas9-J23111 strain and 24 

subsequently subtracted during the data analysis process. 25 

In the cytometry analysis, the fluorescence intensity distribution was log10-transformed and fitted to a two-26 

component Gaussian mixture model [58] with parameters (𝜆, 𝜇1, 𝜇2, 𝜎1, 𝜎2) through the expectation-27 

maximization algorithm. Here, 𝜆 and 1 − 𝜆 represent the mixing coefficients of the two Gaussian 28 

components, 𝜇1, 𝜇2, 𝜎1 and 𝜎2 represent the mean and standard deviation of the first and second Gaussian 29 

component, respectively (Equation 1). 30 

𝑓(𝑥) = 𝜆𝑁(𝜇1, 𝜎1
2) + (1 − 𝜆)𝑁(𝜇2, 𝜎2

2)    (1) 31 

The mean expression strength was calculated with Equation 2. 32 

𝑀𝑒𝑎𝑛 = 𝑀𝑒𝑎𝑛1 × 𝑀𝑒𝑎𝑛2 = 𝑒𝑥𝑝(𝑚1 + 𝑉1/2) × 𝑒𝑥𝑝(𝑚2 + 𝑉2/2)    (2) 33 

where 𝑚1 = 𝜆𝑖𝜇1𝑖 𝑙𝑜𝑔(10), 𝑉1 = (𝜆𝑖𝜎1𝑖 𝑙𝑜𝑔(10))2, 𝑚2 = (1 − 𝜆𝑖)𝜇2𝑖 𝑙𝑜𝑔(10) and 𝑉2 =34 

((1 − 𝜆𝑖)𝜎2𝑖 𝑙𝑜𝑔(10))2. 35 
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The repression rate of each group was calculated using Equation 3. 1 

𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 1 −
𝑀𝑒𝑎𝑛𝑅𝑖 − 𝑀𝑒𝑎𝑛𝑅𝑖−𝑃𝐶

𝑀𝑒𝑎𝑛𝑅𝑖−𝑁𝐶 − 𝑀𝑒𝑎𝑛𝑅𝑖−𝑃𝐶

    (3) 2 

where i = 1–4. 3 
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 1 

Figure 1. Workflow and results of a GLiDe query. (A) The main design process starts when a “start calculation” 2 

request is received, and the website automatically redirects to the progress page that displays the real-time 3 

progress of the calculation. After the calculation is complete, GLiDe redirects again to the results page. Users 4 

are free to download the result tables and view the sgRNA library on the interactive page. (B) The designed 5 
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sgRNA library is grouped by its targeted gene. (C) The list of sgRNAs which are excluded from quality control, 1 

along with their off-target hits and penalty scores. 2 

 3 

Figure 2. Functional blocks of GLiDe. (A) The GLiDe flowchart encompasses the processing of the FASTA file 4 

and the annotation file through multiple modules. These modules conduct candidate sgRNA searches, quality 5 

control (identifying off-target hits and selecting GC content), and ultimately present the results. (B) The off-6 

target hits identification module generates three FASTA files containing 12 bp PAM-proximal sequences of 7 

sgRNA candidates. Alignments are performed among these three files to identify potential off-target hits. 8 
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 1 

Figure 3. Assessment of off-target binding affinities using flow cytometry assay. (A) The binding affinity of 2 

each mismatched sgRNA was compared with positive controls and negative controls. Fluorescence intensities of 3 

the three groups were measured by flow cytometry. (B) All sgRNAs from the EXP groups exhibited significant 4 

off-target binding affinities (P < 10-4 for all groups, two tailed t-test). (C) The fluorescence intensities of the 5 

blank control groups were similar, demonstrated that the effects of sgRNA expression on mcherry expression are 6 

negligible. Therefore, the fluorescence intensity variations among EXP, PC, and NC groups were originated 7 

from the differences in binding affinities of sgRNAs. In both (B) and (C), error bars represent the standard 8 

deviations of biological replicates (n = 3). 9 

10 
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Table 1. An example of four high rank sgRNAs designed by existing tools and their potential off-target hits 1 

identified by GLiDe. 2 

No. Design tool Rank 

Target 

gene 

sgRNA sequence 

Off-target 

gene 

Potential off-target hits discovered 

by GLiDe 

R1 chopchop 1 Cgl0025 TAATTCGAATGGTTCCACGG Cgl2364 TCCTTCCTCTGGTTCCACGG 

R2 chopchop 3 Cgl0044 GCACGATGCCCACCACACCG Cgl1968 CGGATGGGCCCACCACACCG 

R3 Synthego 3 Cgl0005 TTCTGCGCATGGCTTCGGCG Cgl0369 GCGCGGCGATGGCTTCGGCG 

R4 Synthego 2 Cgl0059 GAGCTCAGATCGCTCAACAT Cgl1680 TCTCTTGAATCGCTCAACAT 

 3 

Table 2. sgRNAs and N20 sequences of each test group 4 

Test group sgRNA sequence N20 sequence 

R1-NC TATTATCGGAGCCCGGACAT 

TCCTTCCTCTGGTTCCACGG R1-EXP TAATTCGAATGGTTCCACGG 

R1-PC TCCTTCCTCTGGTTCCACGG 

R2-NC TATTATCGGAGCCCGGACAT 

CGGATGGGCCCACCACACCG R2-EXP GCACGATGCCCACCACACCG 

R2-PC CGGATGGGCCCACCACACCG 

R3-NC TATTATCGGAGCCCGGACAT 

GCGCGGCGATGGCTTCGGCG R3-EXP TTCTGCGCATGGCTTCGGCG 

R3-PC GCGCGGCGATGGCTTCGGCG 

R4-NC TATTATCGGAGCCCGGACAT 

TCTCTTGAATCGCTCAACAT R4-EXP GAGCTCAGATCGCTCAACAT 

R4-PC TCTCTTGAATCGCTCAACAT 

NC-blank TATTATCGGAGCCCGGACAT 

CATGTATTATACACGAAGTT 

R1-blank TAATTCGAATGGTTCCACGG 

R1-PC-blank TCCTTCCTCTGGTTCCACGG 

R2-blank GCACGATGCCCACCACACCG 

R2-PC-blank CGGATGGGCCCACCACACCG 
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R3-blank TTCTGCGCATGGCTTCGGCG 

R3-PC-blank GCGCGGCGATGGCTTCGGCG 

R4-blank GAGCTCAGATCGCTCAACAT 

R4-PC-blank TCTCTTGAATCGCTCAACAT 

 1 
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