

Figure S1 Fluorescence intensity distributions of EXP (blue), NC (red) and PC groups (green). Three independent biological replicates were conducted for (A-C) R1, (D-F) R2, (G-I) R3, and (J-L) R4.

Figure S2. A toy example to illustrate the identification and classification of candidate sgRNAs. sgRNAs are searched by regular expressions and classified into three groups based on the PAM and targeted strands. The start position and PAM-proximal 12-bp of each sgRNA are saved in three separate FASTA files.

NNNNNNN	NNNNN	NNNNNN NG	G		
Region III	Region II	Region I			
2.5/mismatch	4.5/mismatch	8/mismatch			
NNNNNNN	NNNN	NNNNNN NA	G		
Region III	Region II	Region I			
3/mismatch	7/mismatch	10/mismatch			
Penalty score = \sum (penalty × mismatch)					

Figure S3. Schematic diagram of the calculation of penalty scores

Figure S4. Workflow of the plasmid construction. The sgRNA and N20 sequences were introduced via Gibson assembly.

Gene	Сору
name	number
insL	3
insB	7
insA	7
insI	3
insH	11
insE	5
insF	5
insC	6
insD	6
rzpD, rzoR	2
ylcI, ynfO	2
nohD, nohA	2
rhsC, rhsB, rhsA	3
ybfD, ydcC, yhhI	3
ldrA, ldrB, ldrC	3
tpr, ychS	2
tfaR, tfaQ	2
pinR, $pinQ$	2
ynaE, ydfK	2
ynaM, ynfT	2
hokB, mokB	2
gadB, gadA	2
yqgG, yqgC	2
tufA, tufB	2
yriA, yriB	2
cyaY, yzcX	2

Table S1: Clusters of all multi-copy coding genes of E. coli MG1655 identified by GLiDe

Table S2: PCR Primers used in this study

Name	Sequence
R1_F	CCGTGGAACCATTCGAATTAACTAGTATTATACCTAGGACTGAGC
R1_R	CTAGTTAATTCGAATGGTTCCACGGGTTTTAGAGCTAGAAATAGCAAGTT
N20_R1_F	TCCTTCCTCTGGTTCCACGGCGGTTTATGGCTAGCTCAGTCCTAG
N20_R1_R	AACCGCCGTGGAACCAGAGGAAGGAGTTGGATGTACTGCGGCTCCGTCTA
R1_PC_F	CCGTGGAACCAGAGGAAGGAACTAGTATTATACCTAGGACTGAGC
R1_PC_R	CTAGTTCCTTCCTCTGGTTCCACGGGTTTTAGAGCTAGAAATAGCAAGTT
R2_F	CGGTGTGGGGGGCATCGTGCACTAGTATTATACCTAGGACTGAGC
R2_R	CTAGTGCACGATGCCCACCACCGGTTTTAGAGCTAGAAATAGCAAGTT
N20_R2_F	CGGATGGGCCCACCACCGCGGTTTATGGCTAGCTCAGTCCTAG
N20_R2_R	AACCGCGGTGTGGGGGCCCATCCGGTTGGATGTACTGCGGCTCCGTCTA
R2_PC_F	CGGTGTGGGGGCCCATCCGACTAGTATTATACCTAGGACTGAGC
R2_PC_R	CTAGTCGGATGGGCCCACCACCGGTTTTAGAGCTAGAAATAGCAAGTT
R3_F	CGCCGAAGCCATGCGCAGAAACTAGTATTATACCTAGGACTGAGC
R3_R	CTAGTTTCTGCGCATGGCTTCGGCGGTTTTAGAGCTAGAAATAGCAAGTT
N20_R3_F	GCGCGGCGATGGCTTCGGCGCGGTTTATGGCTAGCTCAGTCCTAG
N20_R3_R	AACCGCGCCGAAGCCATCGCCGCGCGTTGGATGTACTGCGGCTCCGTCTA
R3_PC_F	CGCCGAAGCCATCGCCGCGCACTAGTATTATACCTAGGACTGAGC
R3_PC_R	CTAGTGCGCGGCGATGGCTTCGGCGGTTTTAGAGCTAGAAATAGCAAGTT
R4_F	ATGTTGAGCGATCTGAGCTCACTAGTATTATACCTAGGACTGAGC
R4_R	CTAGTGAGCTCAGATCGCTCAACATGTTTTAGAGCTAGAAATAGCAAGTT
N20_R4_F	TCTCTTGAATCGCTCAACATCGGTTTATGGCTAGCTCAGTCCTAG
N20_R4_R	AACCGATGTTGAGCGATTCAAGAGAGTTGGATGTACTGCGGCTCCGTCTA
R4_PC_F	ATGTTGAGCGATTCAAGAGAACTAGTATTATACCTAGGACTGAGC
R4_PC_R	CTAGTTCTCTTGAATCGCTCAACATGTTTTAGAGCTAGAAATAGCAAGTT
NC_F	ATGTCCGGGCTCCGATAATAACTAGTATTATACCTAGGACTGAGC
NC_R	CTAGTTATTATCGGAGCCCGGACATGTTTTAGAGCTAGAAATAGCAAGTT
N20_NC_F	CCAACCATGTATTATACACGAAGTTCGGTTTATGGCTAGCTCAGTCCTAG
N20_NC_R	AACTTCGTGTATAATACATGGTTGGATGTACTGCGGCTCCGTCTA

Strains/plasmids	Sequence	Sources
Strains		
<i>E. coli</i> K12 MG1655	Wild type	ATCC 700936
	Carries chloromycetin expression cassette	
E. coli MCm	integrated into <i>smf</i> locus of <i>E. coli</i> K12 MG1655	Ref (1)
Plasmids		
pdCas9-J23111	Expresses dCas9, p15A, Km ^R	Ref (2)
pN20test-J23114-MCherry-R1-EXP		
pN20test-J23114-MCherry-R1-PC		
pN20test-J23114-MCherry-R1-NC		
pN20test-J23114-MCherry-R2-EXP		
pN20test-J23114-MCherry-R2-PC		
pN20test-J23114-MCherry-R2-NC	Express MCherry with different exp/NC/PC	This study
pN20test-J23114-MCherry-R3-EXP	sgRNA and N20 sequence, pMB1, Amp ^R	
pN20test-J23114-MCherry-R3-PC		
pN20test-J23114-MCherry-R3-NC		
pN20test-J23114-MCherry-R4-EXP		
pN20test-J23114-MCherry-R4-PC		
pN20test-J23114-MCherry-R4-NC		
pN20test-J23114-MCherry-R1-EXP-blank		
pN20test-J23114-MCherry-R1-PC-blank		
pN20test-J23114-MCherry-R2-EXP-blank		
pN20test-J23114-MCherry-R2-PC-blank	Express MCherry with negative control N20	
pN20test-J23114-MCherry-R3-EXP-blank	sequence and different exp/NC/PC sgRNA,	This study
pN20test-J23114-MCherry-R3-PC-blank	pMB1, Amp ^R	
pN20test-J23114-MCherry-R4-EXP-blank		
pN20test-J23114-MCherry-R4-PC-blank		
pN20test-J23114-MCherry-NC-blank		

References

- 1. Wang, T., Guan, C., Guo, J., Liu, B., Wu, Y., Xie, Z., Zhang, C. and Xing, X.-H. (2018) Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance. *Nat Commun*, **9**, 2475.
- 2. Feng,H., Guo,J., Wang,T., Zhang,C. and Xing,X. (2021) Guide-target mismatch effects on dCas9–sgRNA binding activity in living bacterial cells. *Nucleic Acids Res*, **49**, 1263–1277.