Supporting Information

Biocatalytic Construction of Chiral Pyrrolidines and Indolines *via* Intramolecular C(sp³)–H Amination

Zi-Yang Qin,^{†,§} Shilong Gao,^{†,§} Yike Zou,^{‡,#} Zhen Liu, ^{†,||} James B. Wang,[†] K. N. Houk,[‡]

Frances H. Arnold*,[†]

[†]Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.

[‡]Division of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA.

[#]Current address: Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.

Current address: National Institute of Biological Sciences, Beijing 102206, China.

[§]These authors contributed equally.

*To whom correspondence should be addressed. E-mail: frances@cheme.caltech.edu

Table of Contents

Biocat	alytic Construction of Chiral Pyrrolidines and Indolines via Intramolecular	$C(sp^3)-H$
Amina	tion	1
I.	General Procedures	2
II.	Directed Evolution of P411-PYS-5149 and P411-INS-5151 for Intramolecular	C(sp ³)–H
	Amination	6
III.	Supporting Experimental Figures and Miscellaneous Experiments	9
IV.	Preparation and Characterization of the Alkyl and Aryl Azides	14
V.	Preparation and Characterization of the Racemic Standards of Products	19
VI.	Analytic Scale Enzymatic Reactions and Calibration Curves for Products	
VII.	Preparative-scale Enzymatic Synthesis	
VIII.	Chiral-phase HPLC Traces	
IX.	Sequence Information	
X.	Computational methods	69
XI.	NMR Spectra	
XII.	References	126

I. General Procedures

(A) General

Unless otherwise noted, all chemicals and reagents were obtained from commercial suppliers (Millipore Sigma, VWR, Alfa Aesar, Ambeed, Combi-Blocks, TCI America, and Fisher Scientific) and used without further purification. Silica-gel chromatography was carried out using AMD Silica Gel 60, 230–400 mesh. ¹H and ¹³C NMR spectra were recorded on a Varian Inova 300 MHz or Bruker 400 MHz instrument in CDCl₃. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, hept = heptet, m = multiplet), coupling constant (Hz), and integration. Chemical reactions were monitored using thin-layer chromatography (Merck 60 silica gel plates) and a UV lamp for visualization. Sonication was performed using a Qsonica Q500 sonicator. High-resolution mass spectra HRMS were acquired from the Caltech Mass Spectral Facility using Field Desorption (FD-MS) with a JEOL AccuTOF GC-Alpha (JMS-T2000GC) mass spectrometer (enabled by funds from DOW next generation instrumentation). High-performance liquid-chromatography mass spectroscopy (HPLC-MS) for analysis was carried out using Agilent 1200 series instruments, with C18 (Kromasil®, 4.6×50 mm, 5 µm) columns. Water and acetonitrile containing 0.1% acetic acid were used as eluents. Normal-phase chiral HPLC was performed using Daicel Chiralpak IC column (4.6 \times 250 mm, 5 µm) with hexane and isopropanol as the mobile phase. Distilled water was utilized for growth media while double-distilled water was employed for all buffer preparations.

The M9-N buffer described in this study was prepared as follows:

A 5X stock solution was prepared by dissolving Na_2HPO_4 (34 g), KH_2PO_4 (15 g) and NaCl (2.5 g) in 1 L of water followed by sterilization by autoclaving. A 1X stock was then prepared by diluting 200 mL of the 5X solution to 1 L, followed by addition of 1 mL CaCl₂ (0.1 M), 2 mL MgSO₄ (1.0 M), and adjusting the pH to 7.4 or 8.4 by the addition of 6.0 M aqueous NaOH.

In all cases, commercially available cyclic amines (Sigma, Enamine, Ambeed, Combi-Blocks) were utilized as amine standards without further purification. These were acetylated with benzoyl chloride to give the corresponding acetyl amides for use as amide standards for enantioselectivity.

(B) Cloning, mutagenesis, and expression of enzymes

Expression vector pET22b(+) (Novagen) was used for cloning and expression of all variants described in this paper. Site-saturation mutagenesis was performed using a modified QuikChangeTM mutagenesis protocol using the 22-codon trick.¹ The PCR products were purified with New England Biolabs gel purification kit, and the gaps were repaired using Gibson Mix^{TM,2} Without further purification, 1 μ L of the Gibson product was used to transform 50 μ L of electrocompetent *Escherichia coli* cells. Electrocompetent *E. coli* BL21 *E. cloni*® (Lucigen) cells were utilized for all experiments. Luria-Bertani (LB) media were used for growth.

E. coli transformed with pET22b(+) constructs encoding various P411 variants were grown overnight (14 h to 16 h) in 5-mL LB medium supplemented with ampicillin (LB_{amp}). Subsequently, 1 mL of this preculture was used to inoculate 49 mL of Hyper-BrothTM (HB, AthenaES) medium

in a 150-mL Erlenmeyer flask, supplemented with ampicillin (HB_{amp}) and Glucose Mix for expression. The expression culture was incubated at 37 °C and shaken at 220 rpm for 2 hours until the optical cell density at 600 nm (OD₆₀₀) was ~0.9–1.1. Then, the expression culture was cooled in an ice bath for 45–60 minutes and was treated with 1 mM 5-aminolevulinic acid (ALA) and 0.5 mM isopropyl β -D-1-thiogalactopyranoside (IPTG) (final concentrations). Cells were grown at 22 °C and 140 rpm for 20–24 hours, and the shaking radius was 25 mm. Once expression was finished, the cultures were centrifuged (4,000*g*, 6 minutes, 4 °C) and the pellets were resuspended to an OD₆₀₀ of 30–40 (or other appropriate OD as necessary) in M9-N buffer with pH adjusted to 8.4. This cell suspension was utilized to setup whole-cell reactions. Aliquots of the cell suspension (3–4 mL) were used to determine protein concentration after lysis by sonication.

(C) Determination of hemoprotein concentration

The concentration of P411 enzymes in whole-cell experiments was determined from ferrous carbon monoxide binding difference spectra using the previously reported extinction coefficient for serine-ligated enzymes ($\varepsilon = 103,000 \text{ M}^{-1} \cdot \text{cm}^{-1}$).³ Lysate was obtained by sonication (2 minutes, 1 second on, 1 second off, 30% amplitude, on wet ice). The cell debris was removed by centrifugation (14,000 × g, 10 minutes, 4 °C), and 180 µL of the supernatant were then transferred to a well in a 96-well UV-vis flat bottom plate (measurements were performed in quadruplicate). To each well, 20 µL of freshly prepared 0.5 M sodium dithionite aqueous solution were added. Absorbance measurements were performed on a Tecan Spark instrument before and after CO binding. The following formula was used for estimating protein concentration.

$$[Enzyme] (\mu M) = 1.1 * \frac{\Delta 411_{co-red} - \Delta 490_{co-red}}{0.74 \, cm * 0.103 \, \mu M^{-1} cm^{-1}}$$

(D) Analytic reaction setup and product quantification

All biocatalytic reactions were set up in an anaerobic chamber (oxygen level: <40 ppm). • For pyrrolidine construction, 300 μ L of resuspended cells (diluted to OD₆₀₀ = 40 with M9-N minimal buffer, pH = 8.4) were added to 2-mL screw cap vials, followed by addition of D-glucose (90 µL, 500 mM in M9-N buffer), M9-N buffer, and the azide substrate (10 µL of 100 mM stock solution in EtOH). Final concentrations were 2.5 mM alkyl azide and 112.5 mM D-glucose; final reaction volume was 400 µL. The vials were capped and then shaken inside coy chamber (600 rpm) at room temperature for 12-20 hours (overnight). After the reaction was completed and the vials were removed from the shaker, 400 µL of 2.5 mM internal standard (ethyl benzoate) acetonitrile solution were added. The mixture was transferred to a 2.0-mL Eppendorf tube and then subjected to vortexing (20 s \times 2) and centrifugation (14,000 \times g, 5 min, 4 °C). A sample of the supernatant (0.2 mL) was transferred to a vial with an insert for LC-MS analysis. Products were identified and quantified based on the corresponding reference compounds (Section V and VI). To further determine the enantiomeric excess (ee), the remaining supernatants of three parallel analytical reactions were combined and transferred to a 2-dram vial and the solvent was removed by blowing air. To the remaining residues from air blowing were added benzoyl chloride (60 µL of 1 M stock solution in acetonitrile) and 60 µL saturated NaHCO3 solution. After shaking the vials overnight, the benzoyl-protected pyrrolidines were extracted to a solution of hexane and EtOAc mixture (1:1) and subjected to normal-phase HPLC to determine the ee.

• For indoline construction, 360 μ L of resuspended cells (diluted to OD₆₀₀ = 45 with M9-N minimal buffer, pH = 8.4) were added to 2-mL screw cap vials, followed by D-glucose (30 μ L, 500 mM in M9-N buffer), M9-N buffer the azide substrate (10 μ L of 200 mM stock solution in EtOH). Final concentrations were 5.0 mM alkyl azide and 37.5 mM D-glucose; final reaction volume was 400 μ L. The vials were capped and then shaken inside coy chamber (600 rpm) at room temperature for 12–20 hours (overnight). After the reaction was completed and the vials were removed from the shaker, 400 μ L of 5.0 mM internal standard (1,2,3-trimethoxylbenzene) acetonitrile solution were added. The mixture was transferred to a 2.0-mL Eppendorf tube and then subjected to vortexing (20 s × 2) and centrifugation (14,000 × g, 5 min, 4 °C). A sample of the supernatant (0.2 mL) was transferred to a vial with an insert for LC-MS analysis. Products were identified and quantified based on the corresponding reference compounds (**Section V** and **VI**). To further determine the enantiomeric excess (*ee*), the remaining supernatants of three parallel analytical reactions were combined and transferred to a 2-dram vial and the solvent was removed by blowing air. After shaking the vials for 1 hour, the indolines were extracted to a solution of hexane and EtOAc mixture (1:1) and subjected to normal-phase HPLC to determine the *ee*.

(E) Reaction screening in 96-well plate in whole-cell format

After a single-site saturation mutagenesis (SSM) library was generated, 88 single colonies were randomly picked and cultured in 300 µL of LB medium with 0.1 mg/mL ampicillin (LB_{amp}) in a sterilized 96-well culture plate. The plate typically contained six wells inoculated with single colonies expressing the parent enzyme and two sterile wells. The cultures were grown at 37 °C, 250 rpm, and 80% relative humidity for 13-15 hours. A separate, sterilized 96-well culture plate was filled with 950 µL of Hyperbroth medium containing 0.1 mg/mL ampicillin (HB_{amp}) in each well. Likewise, a glycerol stock replica plate of the preculture (50 µL of preculture added to 50 µL of 50% glycerol per well) was also prepared and stored at -80 °C for future reference. The plate with HB_{amp} was inoculated with the LB preculture (50 µL/well), and incubated at 37 °C, 250 rpm, and 80% relative humidity for 2.5 hours. The plate was cooled on ice for 1 hour, induced with 0.5 mM IPTG and 1 mM ALA (final concentrations), and then expressed at 22 °C and 220 rpm for 21–23 hours. The cells were pelleted (4,000g, 6 minutes), and after removal of the supernatant, 390 µL of M9-N (pH 7.4, 20 mM D-glucose) were added to each well. After the cell pellets were fully resuspended by shaking at 500 rpm, the 96-well plate was transferred to an anaerobic chamber. Inside the anaerobic chamber, to each well were added 10 µL of a reactant stock solution in ethanol (100 or 200 mM stock solution, 2.5 or 5.0 mM final concentration). The plate was sealed with aluminum foil tape and shaken at 600 rpm in the anaerobic chamber at room temperature overnight.

Once the plate was taken out of the anaerobic chamber and the seal was removed, ethanol (400 μ L/well) was added. The resulting suspension in the wells was mixed by vortexing and shaking. The plate was then centrifuged (5,000*g*, 5 minutes) to precipitate proteins and cell debris. The supernatant (200 μ L/well) was transferred to a shallow 96-well plate for reverse-phase HPLC-MS analysis. The MS product signals from each well were compared, and wells showing signals higher than the parent wells were identified. These 'hits' were recultured using the wells from the frozen replica glycerol stock plate and then sequenced. Among these, the activities of candidates showing mutations at the targeted site were revalidated in analytical scale reactions. In this way,

the best variant was selected as the final hit and was used as the parent for the next round of sitesaturation mutagenesis.

II. Directed Evolution of P411-PYS-5149 and P411-INS-5151 for Intramolecular C(sp³)– H Amination

Discovery of Initial Activity

The Arnold lab collection of heme enzymes (including P450s, P411s, protoglobins, and cytochromes *c*) was screened in 96-well-plate whole-cell reactions for product formation (see Section I.E). The collection consisted of nearly 400 distinct variants accumulated from prior directed evolution campaigns. For pyrrolidine synthesis, one variant from a previous carbene transferring lineage showed the highest product formation as assayed by LCMS. For indoline synthesis, the pyrrolidine synthase lineage showed the most promising results, and the 7th generation showed highest activity as assayed by LCMS. No product was detected in control reactions with free heme.

Pyrrolidine synthesis variants showing product formation:

Variant	Ion Count
P450-BM3 (WT)	0
P411-A330Y	2786747
P411-M177L	4420892

Indoline synthesis variants showing product formation:

Variant	Ion Count
P450-BM3 (WT)	0
P411-PYS-5146	2027686
P411-PYS-5148	8380970

Table S1. Detailed information of the evolutionary lineage for PYrrolidine Synthase (PYS).

P411-PYS variant	Yield (%)	er
P411-M177L (P411-PYS-5141)	4 ± 0.8	84:16
P411-PYS-5141- L75E (P411-PYS-5142)	13 ± 0.2	91:9
P411-PYS-5141- L75E Q437L (P411-PYS-5143)	13 ± 1.0	90:10
P411-PYS-5141- L75E Q437L A330Q (P411-PYS-5144)	20 ± 0.9	91:9
P411-PYS-5141- L75E Q437L A330Q M118V(P411-PYS-5145)	29 ± 1.6	93:7

31 ± 1.0	91:9
53 ± 0.6	90:10
54 ± 1.6	91:9
66 ± 3.5	91:9
	31 ± 1.0 53 ± 0.6 54 ± 1.6 66 ± 3.5

Table S2. Detailed information of the evolutionary lineage for INdoline Synthase (INS).

P411-INS variant	Yield (%)	er
P411-PYS-5148	46 ± 3.2	51:49
P411-PYS-5148- L437P (P411-INS-5150)	49 ± 1.7	88:12
P411-PYS-5148- L437P L181N (P411-INS-5151)	52 ± 1.0	91:9

Table S3. Further information on directed evolution experiments.

Round #	Parent	Sites targeted for SSM	Screen for activity or enantioselectivity
1	P411-PYS- 5141	75X	activity
2	P411-PYS- 5142	78X, 87X, 263X, 268X, 327X, 328X, 437X	activity
3	P411-PYS- 5143	86X, 267X, 330X , 400X	activity
4	P411-PYS- 5144	82X, 118X , 181X, 395X, 438X, 401X	activity
5	P411-PYS- 5145	77X , 177X 266X, 326X, 409X, 436X	activity
6	P411-PYS- 5146	72X , 88X, 162X, 264X, 333X, 435X	activity
7	P411-PYS- 5147	70X, 71X, 73X , 74X, 76X, 178X, 269X, 331X, 332X	activity
8	P411-PYS- 5148	87X, 267X, 268X, 327X, 436X , 437X	activity
9	P411-PYS- 5148	87X, 267X, 268X, 327X,	both

	(for indoline synthesis)	436X, 437X	
10	P411-INS- 5149	72X, 78X, 82X, 181X , 188X, 438X	both

III. Supporting Experimental Figures and Miscellaneous Experiments

Figure S1. Summary of alkyl azide substrates (1a–1j).

Figure S2. Other substrates tested for intramolecular alkyl nitrene C(sp³)–H amination reaction.

Notes: The alkyl azide substrates listed here have been tested briefly for the intramolecular $C(sp^3)$ – H amination chemistry catalyzed by **P411-PYS-5149**. However, these substrates only gave low activity, as preliminarily analyzed by LC-MS and chiral HPLC. These results are noteworthy, but they cannot be used for drawing final conclusions before further validation.

Figure S3. Summary of aryl azide substrates (1a–1j).

Figure S4. Other substrates tested for intramolecular aryl nitrene C(sp³)–H amination reaction.

Notes: The aryl azide substrates listed here have been tested briefly for the intramolecular $C(sp^3)$ – H amination chemistry catalyzed by **P411-INS-5151**. However, these substrates only gave low activity, as preliminarily analyzed by LC-MS and chiral HPLC. These results are noteworthy, but they cannot be used for drawing final conclusions before further validation.

Figure S5. Variants that showed improved activity or selectivity for examples 1h and 3a.

Notes: Variant **P411-PYS-5148** (**CA-G7**) is the seventh generation of 'pyrrolidine synthase' lineage. Variant **P411-INS-5151_V184M** has one mutation (V184M) relative to **P411-INS-5151** (**AN-G2**).

Kinetic Isotope Effect (KIE) studies

From a freshly streaked plate of *E. coli.* cells with the **P411-PYS-5149** plasmid, two single colonies were inoculated into two separate, 4-mL LB media tubes for ~14 h at 37 °C. These were utilized for duplicate experiments. After growing the overnight culture for ~14 h, 1 mL of the starter culture was transferred to 49 mL HB media (supplemented with Ampicillin and Glucose Mix) in a 150-mL Erlenmeyer flask and grown with vigorous shaking at 37 °C (230 rpm) for 2 h, by which time the cell optical density (OD₆₀₀) was 0.8 to 1.0. The flask was chilled on ice for 45 min. ALA (1 mM) and IPTG (0.5 mM) were supplemented, and the flask shaken at 22 °C (140 rpm) for 22 h. The culture was centrifuged (4,000g, 6 min), and the cell pellets were resuspended in 12 mL of M9-N buffer (pH 8.4) to give a suspension with OD₆₀₀~40. All manipulations were done on ice. Reaction setup follows the standard procedure mentioned in **Section I** (D).

• Calibration curve of non-deuterated product **2a** at low yields (using ion count in single-mass channel to quantify)

• Non-competitive KIE Experiments

Entry	Subs		Ion Count	Count		Yield (%)		Kup	KIE
	5005	30 s	60 s	90 s	30 s	60 s	90 s	Ι Υ <u>Η</u> /D	(K_H/K_D)
1	H-1a	146156	247766	176056	0.099	0.169	0.220	0.00261	1 43
1	D-1a	100606	176056	224437	0.068	0.120	0.153	0.00182	1.15
2	H-1a	161435	267685	353785	0.110	0.182	0.241	0.00285	1 45
2	D-1a	105536	190294	240509	0.072	0.129	0.164	0.00196	1.15

Figure S6. Duplicate of non-competitive kinetic isotope effect (KIE) experiments

Entry	Subs	Ion Count			Yield (%)			KIE	
	5005	30 s	60 s	90 s	30 s	60 s	90 s	KH/D	KIE (K _H /K _D) 3.14 3.26
	1:1	167110	276341	367201	0.114	0.188	0.250	0.00295	
1	H/D- 1a	56674	87321	116399	0.039	0.059	0.079	0.00094	3.14
	1:1	182657	290499	382915	0.124	0.198	0.260	0.00310	
2	H/D- 1a	42133	91205	120526	0.028	0.062	0.082	0.00095	3.26

• Competitive KIE Experiments

Figure S7. Duplicate of competitive kinetic isotope effect (KIE) experiments

Entry		KIE	Avg. KIE	SD KIE	KIE	
Non-	1	1.43	1 4 4	0.01	1.44 ± 0.01	
KIE	2	1.45	1.44	0.01		
Competitive	1	3.14	3 20	0.08	3.20 ± 0.08	
KIE	2	3.26	3.20	0.00	<u>3.20 r</u> 0.00	

• KIE Experiments Summary

IV. Preparation and Characterization of the Azide Substrates

General procedure A:⁴

To a 100-mL flask were added alkyl bromide (5.0 mmol, 1.0 equiv.), sodium azide (487.6 mg, 7.5 mmol, 1.5 equiv.), and anhydrous DMF (50 mL). The mixture was stirred at 70 °C for 12 h, then cooled to room temperature, and diluted with diethyl ether/water (50 mL, 1:1). The product was extracted by diethyl ether (30 mL \times 3), and the combined organic layer was washed with brine (50 mL). The organic phase was further dried over Na₂SO₄ and concentrated to afford a yellow residue. Flash column chromatography was performed to afford pure product in 60% to 80% yield.

General procedure B:

LAH reduction:⁵ To a round-bottom flask containing carboxylic acids (1.0 equiv.) and anhydrous THF (0.1 M) at 0 °C was slowly added LiAlH₄ (5.0 equiv.). The mixture was gradually warmed to room temperature and stirred for 18 h. Fieser method was conducted to workup the LAH reduction. After filtration, the organic phase was dried over Na₂SO₄, and further concentrated to afford a yellow residue. Flash column chromatography was performed to afford pure product in quantitative yield.

Bromination:⁶ To a round-bottom flask containing alcohols (1.0 equiv.) and anhydrous dichloromethane (DCM, 0.3 M) was added CBr₄ (1.2 equiv.) and PPh₃ (1.2 equiv.) sequentially. The mixture was stirred at room temperature for 4 h before quenching with saturated aqueous NaHCO₃ and extracted with DCM (\times 3). The combined organic layer was washed with brine, further dried with Na₂SO₄, and concentrated to afford a colored residue. Flash column chromatography was performed to afford pure product in 70% to 80% yield.

Azidation: To a round-bottom flask were added alkyl bromide (1.0 equiv.), sodium azide (1.5 equiv.), and anhydrous DMF (0.1 M). The mixture was stirred at 70 °C for 12 h, then cooled to room temperature, and diluted with diethyl ether/water (1:1). The product was extracted by diethyl ether (\times 3), and the combined organic layer was washed with brine (50 mL). The organic phase was further dried over Na₂SO₄ and concentrated to afford a yellow residue. Flash column chromatography was performed to afford pure product in 60% to 80% yield.

^{N3} (4-azidobutyl)benzene (1a): The synthesis was conducted through general procedure A. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.24 (m, 2H), 7.23 – 7.13 (m, 3H), 3.29 (t, *J* = 6.6 Hz, 2H), 2.65 (t, *J* = 7.4 Hz, 2H), 1.78 – 1.58 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 142.0, 128.5, 128.5, 126.0, 51.5, 35.5, 28.6.

N₃

^F ^{1b} 1-(4-azidobutyl)-4-fluorobenzene (1b): The synthesis was conducted through general procedure B. ¹H NMR (400 MHz, CDCl₃) δ 7.15 – 7.03 (m, 4H), 3.28 (t, *J* = 6.7 Hz, 2H), 2.61 (t, *J* = 7.3 Hz, 2H), 2.32 (s, 3H), 1.78 – 1.57 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 161.4 (d, *J* = 243.5 Hz), 137.5 (d, *J* = 3.2 Hz), 129.8 (d, *J* = 7.7 Hz), 115.3 (d, *J* = 21.2 Hz), 51.4, 34.7, 28.7, 28.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -117.6.

^{Me} ^{1c} **1-(4-azidobutyl)-4-methylbenzene (1c):** The synthesis was conducted through general procedure B. ¹**H NMR** (400 MHz, CDCl₃) δ 7.14 – 7.02 (m, 4H), 3.28 (t, J = 6.5 Hz, 2H), 2.61 (t, J = 7.2 Hz, 2H), 2.32 (s, 3H), 1.76 – 1.57 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 138.9, 135.5, 129.2, 128.4, 51.5, 35.0, 28.7, 28.6, 21.1.

^{MeO} ^{1d} **1-(4-azidobutyl)-4-methoxybenzene (1d):** The synthesis was conducted through general procedure A. ¹**H NMR** (400 MHz, CDCl₃) δ 7.13 – 7.06 (m, 2H), 6.87 – 6.79 (m, 2H), 3.79 (s, 3H), 3.28 (t, J = 6.5 Hz, 2H), 2.59 (t, J = 7.2 Hz, 2H), 1.74 – 1.56 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 158.0, 134.0, 129.4, 113.9, 55.4, 51.5, 34.6, 28.8, 28.5.

^{1e} **2-(4-azidobutyl)-1,4-difluorobenzene (1e):** The synthesis was conducted through general procedure B. ¹H NMR (400 MHz, CDCl₃) δ 6.96 (td, J = 8.8, 4.4 Hz, 1H), 6.92 – 6.80 (m, 2H), 3.30 (t, J = 6.5 Hz, 2H), 2.65 (t, J = 6.7 Hz, 2H), 1.74 – 1.60 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 158.7 (d, J = 239.4 Hz), 157.2 (d, J = 240.6 Hz), 130.5 (dd, J = 18.7, 7.7 Hz), 116.9 (dd, J = 23.6, 5.3 Hz), 116.3 (dd, J = 25.4, 8.8 Hz), 114.0 (dd, J = 24.0, 8.6 Hz), 51.3, 28.6, 28.5, 27.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -119.6 (d, J = 18.0 Hz), -125.0 (d, J = 18.0 Hz).

^{1†} **2-(4-azidobutyl)naphthalene** (**1f**): The synthesis was conducted through general procedure B. ¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (ddd, J = 10.9, 7.7, 1.1 Hz, 3H), 7.61 (dd, J = 1.8, 0.9 Hz, 1H), 7.55 – 7.38 (m, 2H), 7.33 (dd, J = 8.5, 1.7 Hz, 1H), 3.31 (t, J = 6.8 Hz, 2H), 2.82 (t, J = 7.7 Hz, 2H), 1.87 – 1.74 (m, 2H), 1.74 – 1.59 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 139.4, 133.7, 132.2, 128.1, 127.8, 127.6, 127.3, 126.6, 126.1, 125.3, 51.5, 35.6, 28.6, 28.4.

¹⁹ **2-(4-azidobutyl)thiophene (1g):** The synthesis was conducted through general procedure B. ¹**H NMR** (400 MHz, CDCl₃) δ 7.13 (dd, J = 5.1, 1.2 Hz, 1H), 6.92 (dd, J = 5.1, 3.4 Hz, 1H), 6.79 (dq, J = 3.2, 1.0 Hz, 1H), 3.30 (t, J = 6.7 Hz, 2H), 2.87 (td, J = 7.3, 1.0 Hz, 2H), 1.83 – 1.72 (m, 2H), 1.72 – 1.61 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 144.7, 126.9, 124.4, 123.3, 51.4, 29.5, 28.9, 28.4.

th **3-(4-azidobutyl)-1H-indole (1h):** The synthesis was conducted through general procedure B. ¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.61 (dq, J = 7.8, 0.9 Hz, 1H), 7.37 (dt, J = 8.1, 0.9 Hz, 1H), 7.21 (ddd, J = 8.1, 7.0, 1.2 Hz, 1H), 7.13 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 6.99 (dt, J = 2.0, 0.9 Hz, 1H), 3.31 (t, J = 6.8 Hz, 2H), 2.81 (td, J = 7.4, 0.9 Hz, 2H), 1.86 – 1.76 (m, 2H), 1.76 – 1.66 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 136.5, 127.6, 122.1, 121.3, 119.3, 119.0, 116.3, 111.2, 51.6, 28.8, 27.3, 24.8.

(3-azidopropyl)cyclohexane (1i): The synthesis was conducted through general procedure A. ¹H NMR (400 MHz, CDCl₃) δ 3.24 (t, J = 7.0 Hz, 2H), 1.75 – 1.51 (m, 7H), 1.27 – 1.08 (m, 6H), 0.89 (tt, J = 11.6, 6.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 52.0, 37.5, 34.6, 33.4, 26.7, 26.5, 26.4.

Me Me

¹ **1-azido-4-methylpentane (1j):** The synthesis was conducted through general procedure A. ¹H NMR (400 MHz, CDCl₃) δ 3.25 (t, J = 7.0 Hz, 2H), 1.68 – 1.51 (m, 3H), 1.30 – 1.20 (m, 2H), 0.90 (d, J = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 51.9, 36.0, 27.9, 26.9, 22.6.

General procedure C:7

A mixture of (4-bromobutyl)benzene (0.53 g, 2.5 mmol, 1.0 equiv.) and Pd/C (10 wt%, 0.33 g, 60 mol%) in CD₃OD (5 mL) was placed under nitrogen and equipped with a deuterium balloon. After 20 h of reaction the mixture was filtered over celite, and the product diluted with diethyl ether (20 mL). The solution was washed with water (20 mL) and a saturated aqueous solution of sodium bicarbonate (\times 2). The organic fraction was dried over MgSO₄ filtered and solvent removed to yield 4-bromo-1,1-bisdeutero-1-phenylbutane as a colorless oil which was used in the next step without additional purification.

The obtained 4-bromo-1,1-bisdeutero-1-phenylbutane was dissolved in DMF (10 mL) and sodium azide was added to the stirred solution. After heating at 70 °C for 20 hours the mixture was cooled to room temperature and water (20 mL) was added. The product was extracted with diethyl ether (20 mL), and the organic fraction was washed with water (5×30 mL), dried over MgSO₄, filtered and concentrated to afford a yellow residue. Flash column chromatography was performed to afford pure product as a colorless oil (0.25 g, 1.4 mmol, 90% deuteration rate, 56% overall yield).

^{1aa} (4-azidobutyl-1,1-d2)benzene (1aa): The synthesis was conducted through general procedure C (90% deuteration rate). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (tt, *J* = 6.9, 0.9 Hz, 2H), 7.23 – 7.16 (m, 3H), 3.29 (t, *J* = 6.6 Hz, 2H), 1.75 – 1.59 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.8, 128.4, 128.4, 125.9, 51.4, 35.2 – 34.4, 28.4, 28.3.

General procedure D:⁸

To a 100-mL flask at 0 °C were added aniline (1.0 equiv.), MeCN (0.4 M), *t*-BuNO₂ (4.0 equiv.), and TMSN₃ (3.0 equiv.) dropwise, then the flask was warmed to room temperature and stirred overnight. De-ionized water was added after completion, the reaction mixture was extracted by diethyl ether (\times 3), and the combined organic layer was washed with brine. The organic phase was further dried over Na₂SO₄ and concentrated to afford a yellow residue. Flash column chromatography was performed to afford pure product in 50% to 70% yield.

General procedure E:9

Allylation: To a 100-mL round-bottom flask were added aniline (1.0 equiv.), K₂CO₃ (2.4 equiv.), DMF (0.4 M) and allyl bromide (1.0 equiv.) dropwise. The solution was sealed and heated to 80 °C overnight. The reaction mixture was filtered, washed with H₂O, and extracted with ethyl acetate twice. The combined organic layer was washed with brine, then dried over Na₂SO₄ and concentrated to afford a yellow residue. The crude product was purified by flash column chromatography (eluent: 10% Hex in EtOAc) to afford corresponding allyl aniline as a yellow oil with 40% to 50% yield.

Aza-Claisen rearrangement: To a 50-mL Schlenk tube were added allyl aniline (1.0 equiv.), *p*-xylene (2.0 M) and then added $BF_3 \cdot Et_2O$ (1.0 equiv.) dropwise. The Schlenk tube was sealed and heated to 180 °C for 4 h (sometimes longer based on how fast the rearrangement is).

Hydrogenation: To a 25-mL round-bottom flask were added corresponding aniline (1.0 equiv.) ethyl acetate (0.2 M) and Pd/C (100 mg/g of aniline) and then the mixture was degassed and recharged with a balloon of hydrogen. The reaction was vigorously stirred at room temperature overnight. After the reaction was completed, the mixture was filtered through a pad of celite before being concentrated to afford a yellow residue. The residue was directly used for the next step without any further purification.

Azidation: Same as General Procedure C described above.

¹N₃ ^{3a} **1-azido-2-propylbenzene** (3a): The synthesis was conducted through general procedure C. ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.19 (m, 1H), 7.14 (ddd, *J* = 12.2, 7.7, 1.4 Hz, 2H), 7.06 (td, *J* = 7.4, 1.3 Hz, 1H), 2.58 – 2.50 (m, 2H), 1.66 – 1.52 (m, 2H), 0.94 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.1, 134.3, 130.6, 127.3, 124.7, 118.2, 33.4, 23.6, 14.1.

¹ **1-azido-2-butylbenzene (3b):** The synthesis was conducted through general procedure C. ¹H NMR (400 MHz, CDCl₃) δ 7.23 (td, *J* = 7.6, 1.7 Hz, 1H), 7.14 (ddd, *J* = 13.8, 7.7, 1.4 Hz, 2H), 7.06 (td, *J* = 7.4, 1.2 Hz, 1H), 2.56 (t, *J* = 7.6 Hz, 2H), 1.60 – 1.48 (m, 2H), 1.35

(dq, J = 14.6, 7.3 Hz, 2H), 0.93 (t, J = 7.3 Hz, 3H).¹³**C NMR** (101 MHz, CDCl₃) δ 138.0, 134.5, 130.5, 127.2, 124.8, 118.2, 32.6, 31.1, 22.7, 14.1.

¹ **1-azido-4-fluoro-2-propylbenzene** (3c): The synthesis was conducted through general procedure D. ¹**H NMR** (400 MHz, CDCl₃) δ 7.06 (dd, J = 8.7, 4.8 Hz, 1H), 6.98 – 6.84 (m, 2H), 2.55 – 2.49 (m, 2H), 1.64 – 1.53 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 159.9 (d, J = 243.7 Hz), 136.4 (d, J = 7.4 Hz), 133.8 (d, J = 2.8 Hz), 119.3 (d, J = 8.7 Hz), 117.2 (d, J = 22.4 Hz), 113.9 (d, J = 23.2 Hz), 33.3 (d, J = 1.4 Hz), 23.3, 14.0. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -118.5.

^{N₃} ^{3d} **1-azido-4-methyl-2-propylbenzene (3d):** The synthesis was conducted through general procedure D. ¹**H NMR** (400 MHz, CDCl₃) δ 7.05 – 6.99 (m, 2H), 6.96 (s, 1H), 2.54 – 2.43 (m, 2H), 2.30 (s, 3H), 1.64 – 1.51 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 135.2, 134.4, 134.0, 131.3, 127.8, 118.1, 33.4, 23.7, 21.0, 14.1.

¹ **1-azido-2-isobutylbenzene (3e):** The synthesis was conducted through general procedure C. ¹**H** NMR (400 MHz, CDCl₃) δ 7.26 – 7.20 (m, 1H), 7.12 (ddd, *J* = 7.6, 3.6, 1.5 Hz, 2H), 7.05 (td, *J* = 7.4, 1.2 Hz, 1H), 2.44 (d, *J* = 7.2 Hz, 2H), 1.95 – 1.82 (m, 1H), 0.89 (d, *J* = 6.6 Hz, 6H). ¹³**C** NMR (101 MHz, CDCl₃) δ 138.3, 133.4, 131.5, 127.3, 124.5, 118.2, 40.5, 29.3, 22.5.

V. Preparation and Characterization of the Racemic Standards of Products

Notes: All the pyrrolidine derivative standard products were commercially available and purchased from vendors mentioned in **Section I**. Unless otherwise noted, indoline derivative standard products were commercially available and purchased from vendors.

General procedure F:¹⁰

To a round-bottom flask at 0 °C were added indole (1.0 equiv.), AcOH (0.2 M), and NaBH₃CN (6.0 equiv.). The mixture was gradually warmed to room temperature and stirred overnight. After completion detected by TLC analysis, water and additional NaOH pellets were added until pH >12 before extracting with diethyl ether (three times). After extraction, the organic phase was combined, further dried over Na₂SO₄, and concentrated to afford a yellow residue. Flash column chromatography was performed to afford pure product in 50% to 60% yield.

^{4b} **2-ethylindoline (4b):** ¹**H NMR** (400 MHz, CDCl₃) δ 7.11 – 7.04 (m, 1H), 7.01 (dddd, J = 7.7, 6.8, 1.3, 0.7 Hz, 1H), 6.70 (td, J = 7.4, 1.0 Hz, 1H), 6.63 (d, J = 7.7 Hz, 1H), 3.79 (tt, J = 8.5, 6.6 Hz, 1H), 3.13 (dd, J = 15.5, 8.6 Hz, 1H), 2.69 (dd, J = 15.5, 8.4 Hz, 1H), 1.65 (dtd, J = 13.8, 7.3, 3.0 Hz, 2H), 0.98 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 150.7, 129.2, 127.4, 124.8, 118.9, 109.5, 61.7, 35.9, 29.6, 10.9. **HRMS** (FD) Calcd for C₁₀H₁₃N [M] 147.1048, found 147.1038.

⁴**c** 5-fluoro-2-methylindoline (4c): ¹H NMR (400 MHz, CDCl₃) δ 6.80 (ddt, J = 8.5, 2.5, 1.2 Hz, 1H), 6.70 (dddt, J = 9.3, 8.4, 2.7, 0.8 Hz, 1H), 6.53 (ddd, J = 8.4, 4.4, 1.1 Hz, 1H), 4.08 – 3.94 (m, 1H), 3.13 (dd, J = 16.3, 8.9 Hz, 1H), 2.63 (dd, J = 15.4, 7.6 Hz, 1H), 1.30 (d, J = 6.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.3 (d, J = 235.2 Hz), 146.6 (d, J = 1.5 Hz), 131.0 (d, J = 8.2 Hz), 113.3 (d, J = 23.1 Hz), 112.3 (d, J = 23.7 Hz), 109.8 (d, J = 8.4 Hz), 56.1, 38.1 (d, J = 1.8 Hz), 22.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -126.3. HRMS (FD) Calcd for C₉H₁₀NF [M] 151.0797, found 151.0798.

^{Me} ^{4d} **2,5-dimethylindoline (4d):** ¹H NMR (400 MHz, CDCl₃) δ 6.92 (s, 1H), 6.83 (d, J = 7.8 Hz, 1H), 6.54 (d, J = 7.8 Hz, 1H), 3.98 (ddq, J = 8.4, 7.8, 6.2 Hz, 1H), 3.11 (dd, J = 15.4, 8.4 Hz, 1H), 2.61 (dd, J = 15.4, 7.8 Hz, 1H), 2.25 (s, 3H), 1.29 (d, J = 6.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.0, 129.7, 128.6, 127.7, 125.7, 109.8, 55.6, 37.9, 22.2, 21.0. **HRMS** (FD) Calcd for C₁₀H₁₃N [M] 147.1048, found 147.1046.

General procedure G:11

To a 40-mL dram vial were added a solution of alkylamine (2.2 mmol) in DMF (1.5 mL) and α -bromo- γ -butyrolactone (330 mg, 0.185 mL, 2 mmol). The resulting mixture was stirred at room temperature for 24 h. After reaction completion, the mixture was extracted with ethyl acetate (7 mL × 3), and the combined organic layer was washed with saturated NaHCO₃ solution (15 mL) and brine (15 mL). The organic phase was further dried over Na₂SO₄ and concentrated to afford a brown residue. The final product was purified through silica gel column chromatography.

⁵ **3-(2-methylindolin-1-yl)dihydrofuran-2(3H)-one (5):** ¹H NMR (400 MHz, CDCl₃) δ 7.09 – 6.98 (m, 2H), 6.70 (dtd, J = 12.4, 7.4, 0.9 Hz, 1H), 6.30 (dd, J = 11.4, 7.9 Hz, 1H), 4.55 (tdd, J = 9.2, 6.7, 1.7 Hz, 1H), 4.39 – 4.22 (m, 2H), 4.07 – 3.70 (m, 1H), 3.28 – 3.13 (m, 1H), 2.77 – 2.45 (m, 2H), 2.43 – 2.29 (m, 1H), 1.34 (dd, J = 41.8, 6.2 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 175.2, 174.8, 148.7, 148.2, 129.7, 129.1, 127.4, 127.3, 125.0, 124.9, 119.1, 118.6, 108.8, 107.0, 65.7, 65.5, 60.0, 59.5, 55.0, 54.4, 37.3, 37.2, 24.7, 22.7, 20.3, 20.2. HRMS (FD) Calcd for C_{13H15}NO₂ [M] 217.1103, found 217.1108.

VI. Analytic Scale Enzymatic Reactions and Calibration Curves for Products

All enzymatic reactions for intramolecular alkyl/aryl nitrene C–H insertion on analytical scale were conducted following the general procedure described in **Section I** (**D**). Reactions for every substrate were set up in triplicate. Product formation was quantified by LC-MS based on the calibration curve of the corresponding racemic standard compound (**Section IV**). All TTNs for different products were calculated as the concentration of products divided by the concentration of hemoproteins measured by the CO binding assay (**Section I** (**C**)).

LC-MS calibration curve:

Calibration curves of synthesized reference compounds were created for the determination of yield and TTN. For each substrate, five different concentrations of product (1.00, 2.00, 3.00, 4.00, and 5.00 mM) in 400- μ L *E. coli* cell solutions were quenched, each with 400 μ L of 5.00 mM internal standard (ethyl benzoate or 1,2,3-trimethoxylbenzene) acetonitrile solution. The mixtures were vortexed and then analyzed by LC-MS based on UV absorbance at 254 or 210 nm. All data points represent the average of duplicate runs. The calibration curves depict the ratio of product area to internal standard area (y-axis) against product concentration in mM (x-axis).

Notes: Pdt = product area, IS = internal standard area, [Pdt] = product concentration in reaction,[PC] = protein concentration in reaction, Avg. TTN = average total turnover number, SD TTN = standard deviation of TTN, Avg. Yield = average yield, SD Yield = standard deviation of yield.

2-Phenylpyrrolidine (2a)

Data analysis for **P411-PYS-5141** catalyzed intramolecular C–H insertion with **1a** (2.5 mM, OD₆₀₀ = 30):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	50.6	967.3	0.0523	0.10	1.95				
2	40.9	945.9	0.0432	0.086	1.95	54	10	4	0.8
3	60.3	952.1	0.0633	0.13	1.95				

Data analysis for **P411-PYS-5142** catalyzed intramolecular C–H insertion with **1a** (2.5 mM, OD₆₀₀ = 30):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	159.7	964.7	0.166	0.33	1.58				
2	161.9	952	0.170	0.34	1.58	210	3	13	0.2
3	160.3	956.1	0.168	0.33	1.58				

Data analysis for **P411-PYS-5143** catalyzed intramolecular C–H insertion with **1a** (2.5 mM, OD₆₀₀ = 30):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	159.6	972.7	0.164	0.32	2.38				
2	155.2	956	0.162	0.32	2.38	142	10	14	1.0
3	179.5	970.8	0.185	0.37	2.38				

Data analysis for **P411-PYS-5144** catalyzed intramolecular C–H insertion with **1a** (2.5 mM, OD₆₀₀ = 30):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	241.6	932.6	0.259	0.51	2.21				
2	240.9	951.2	0.253	0.50	2.21	224	10	20	0.9
3	225.4	946.2	0.238	0.47	2.21				

Data analysis for **P411-PYS-5145** catalyzed intramolecular C–H insertion with **1a** (2.5 mM, OD₆₀₀ = 30):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	344.2	907.4	0.379	0.75	1.73				
2	361.8	957.5	0.378	0.75	1.73	420	24	29	1.6
3	329.4	960.3	0.343	0.68	1.73				

Data analysis for **P411-PYS-5146** catalyzed intramolecular C–H insertion with **1a** (2.5 mM, OD₆₀₀ = 30):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	369.4	916.5	0.403	0.80	1.68				
2	368.8	931.8	0.396	0.78	1.68	463	15	31	1.0
3	353	933.8	0.378	0.75	1.68				

Data analysis for **P411-PYS-5147** catalyzed intramolecular C–H insertion with **1a** (2.5 mM, OD₆₀₀ = 30):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	608.4	927.9	0.656	1.30	3.76				
2	637.8	952.7	0.669	1.33	3.76	350	4	53	0.6
3	628.5	938.6	0.670	1.33	3.76				

Data analysis for **P411-PYS-5148** catalyzed intramolecular C–H insertion with **1a** (2.5 mM, OD₆₀₀ = 30):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	635.7	958.9	0.663	1.31	3.76				
2	645.5	938.4	0.688	1.36	3.76	361	11	54	1.6
3	676.4	961.4	0.704	1.39	3.76				

Data analysis for **P411-PYS-5149** catalyzed intramolecular C–H insertion with **1a** (2.5 mM, OD₆₀₀ = 30):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	725.9	927.9	0.782	1.55	3.44				
2	797.5	940.6	0.848	1.68	3.44	479	25	66	3.5
3	812.8	938.3	0.866	1.72	3.44				

Data analysis for P411-PYS-5149 (M9-N, pH = 8.4) catalyzed intramolecular C–H insertion with 1a (2.5 mM, $OD_{600} = 30$):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	874.9	930.6	0.940	1.86	3.74				
2	877.2	949.8	0.924	1.83	3.74	494	4	74	0.7
3	877.7	940.7	0.933	1.85	3.74				

2-(4-Fluorophenyl)pyrrolidine (3b)

Data analysis for **P411-PYS-5149** (M9-N, pH = **8.4**) catalyzed intramolecular C–H insertion with **1b** (2.5 mM, OD₆₀₀ = 30):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	307	965.9	0.249	0.43	2.21	290	37	26	3.2

2	395.6	966.9	0.320	0.56	2.21	
3	371.1	974	0.301	0.52	2.21	

2-(*p*-Tolyl)pyrrolidine (2c)

Data analysis for **P411-PYS-5149** (M9-N, pH = **8.4**) catalyzed intramolecular C–H insertion with **1c** (2.5 mM, $OD_{600} = 30$):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	560.1	902.7	0.620	0.85	2.21				
2	681.4	911	0.748	1.02	2.21	414	43	37	3.8
3	576.7	902	0.639	0.87	2.21				

2-(4-Methoxyphenyl)pyrrolidine (2d)

Data analysis for **P411-PYS-5149** (M9-N, pH = **8.4**) catalyzed intramolecular C–H insertion with 1d (2.5 mM, OD₆₀₀ = 30):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	659.8	928.2	0.711	1.64	2.21				
2	697.7	913.9	0.763	1.76	2.21	761	30	67	2.7
3	656.5	916.3	0.716	1.65	2.21				

2-(2,5-Difluorophenyl)pyrrolidine (2e)

Data analysis for **P411-PYS-5149** (M9-N, pH = **8.4**) catalyzed intramolecular C–H insertion with **1e** (2.5 mM, OD₆₀₀ = 30):

Entry	Pdt (Ion Count)	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	2730675.0	919.7	2969.1	0.082	1.44				
2	2790964.8	915.6	3048.2	0.084	1.44	58	1	3.3	0.06
3	2751191.0	895.4	3072.6	0.084	1.44				

2-(Naphthalen-2-yl)pyrrolidine (2f)

Data analysis for **P411-PYS-5149** (M9-N, pH = **8.4**) catalyzed intramolecular C–H insertion with **1f** (2.5 mM, $OD_{600} = 30$):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	166.8	212.1	0.786	0.27	1.44				
2	162.5	183.0	0.888	0.31	1.44	211	19	12	1.1
3	155.6	165.8	0.938	0.33	1.44				

2-(Thiophen-2-yl)pyrrolidine (2g)

Data analysis for **P411-PYS-5149** (M9-N, pH = **8.4**) catalyzed intramolecular C–H insertion with **1g** (2.5 mM, $OD_{600} = 30$):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	76.5	184.5	0.415	0.74	2.21				
2	84.3	178.9	0.471	0.84	2.21	360	23	32	2.0
3	80.4	179.9	0.447	0.80	2.21				

3-(Pyrrolidin-2-yl)-1H-indole (2h)

Data analysis for **P411-PYS-5149** (M9-N, pH = **8.4**) catalyzed intramolecular C–H insertion with **1h** (2.5 mM, $OD_{600} = 30$):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	254.4	177.8	1.43	0.90	2.21				
2	306.1	175.4	1.75	1.09	2.21	461	49	41	4.3
3	290.4	170.1	1.71	1.07	2.21				

1-Azaspiro[4.5]decane (2i)

Data analysis for P411-PYS-5149 (M9-N, pH = 8.4) catalyzed intramolecular C–H insertion with 1i (2.5 mM, OD₆₀₀ = 30):

Entry	Pdt (Ion Count)	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	2544228.3	931.9	2730.1516	0.084	1.44				
2	2383615.3	931.8	2558.0761	0.079	1.44	57	2	3.3	0.1
3	2489055.3	931.6	2671.8069	0.082	1.44				

2,2-Dimethylpyrrolidine (2j)

Data analysis for **P411-PYS-5149** (M9-N, pH = **8.4**) catalyzed intramolecular C–H insertion with **1j** (2.5 mM, $OD_{600} = 30$):

Entry	Pdt (Ion Count)	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	657275.0	896.6	733.1	0.054	1.44				
2	631301.0	915.8	689.3	0.050	1.44	36	1	2.0	0.08
3	622256.9	916	679.3	0.050	1.44				

2-Methylindoline (4a)

Data analysis for **P411-PYS-5148** (M9-N, pH = **7.4**) catalyzed intramolecular C–H insertion with **3a** (5.0 mM, $OD_{600} = 40$):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	59.3	97.6	0.61	2.18	4.71				
2	68.8	99.7	0.69	2.48	4.71	488	34	46	3.2
3	58.2	94.2	0.62	2.22	4.71				

Data analysis for **P411-INS-5150** (M9-N, pH = **7.4**) catalyzed intramolecular C–H insertion with **3a** (5.0 mM, $OD_{600} = 40$):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	66.3	95.2	0.70	2.51	3.29				
2	63.7	97.7	0.65	2.35	3.29	742	25	49	1.7
3	63.8	93.2	0.68	2.47	3.29				

Data analysis for **P411-INS-5151** (M9-N, pH = **7.4**) catalyzed intramolecular C–H insertion with **3a** (5.0 mM, $OD_{600} = 40$):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	72.8	100.1	0.73	2.62	0.97				
2	67.8	92.3	0.73	2.65	0.97	2690	49	52	1.0
3	67.7	95.5	0.71	2.55	0.97				

Data analysis for **P411-INS-5151** (M9-N, pH = **8.4**) catalyzed intramolecular C–H insertion with **3a** (5.0 mM, $OD_{600} = 40$):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	82.4	91.8	0.90	3.23	1.04				
2	88.5	97.5	0.91	3.27	1.04	3100	48	64	1.0
3	83.7	95.1	0.88	3.17	1.04				

Ethylindoline (4b)

Data analysis for **P411-INS-5151** (M9-N, pH = **8.4**) catalyzed intramolecular C–H insertion with **3c** (5.0 mM, $OD_{600} = 40$):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	258.0	5814.1	0.044	0.66	0.49				
2	261.0	5945.0	0.044	0.66	0.49	1310	57	13	0.6
3	232.6	5684.5	0.041	0.61	0.49				

5-Fluoro2-methylindoline (4c)

Data analysis for **P411-INS-5151** (M9-N, pH = **8.4**) catalyzed intramolecular C–H insertion with **3b** (5.0 mM, $OD_{600} = 40$):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	17.9	95.3	0.19	0.51	0.49				
2	17.4	93.9	0.19	0.50	0.49	1050	43	10	0.4
3	19.1	95.5	0.20	0.54	0.49				

2,5-Dimethylindoline (4d)

Data analysis for **P411-INS-5151** (M9-N, pH = **8.4**) catalyzed intramolecular C–H insertion with 3c (5.0 mM, $OD_{600} = 40$):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	48.2	6019.7	0.0080	0.11	0.49				
2	40.1	5831.5	0.0069	0.10	0.49	211	18	2	0.2
3	41.4	5869.6	0.0071	0.10	0.49				

3-(2-Methylindolin-1-yl)dihydrofuran-2(3H)-one (5)

Data analysis for L7_FL (M9-N, pH = 7.4) catalyzed intermolecular N–H insertion with 4a (10.0 mM, $OD_{600} = 30$):

Entry	Pdt	IS	Pdt/IS	[Pdt]/mM	[PC]/µM	Avg. TTN	SD TTN	Avg. Yield [%]	SD Yield [%]
1	697.6	359.4	1.94	0.90	2.38				
2	621.8	357.6	1.74	1.09	2.38	1985	115	47	2.7
3	640.6	358.8	1.79	1.07	2.38				

VII. Preparative-Scale Enzymatic Synthesis

General procedure for 1-mmol scale enzymatic intramolecular C-H aminations with 3a:

In a 500-mL flask, a suspension of 150 mL *E. coli* expressing variant **P411-INS-5151** ($OD_{600} = 40$) in M9-N (pH = 8.4), 45 mL D-glucose (500 mM in M9-N, pH = 8.4), and 5 mL 1-azido-2-propylbenzene **3a** (161.2 mg, 200 mM in EtOH) were added sequentially under anaerobic conditions. The flask was capped and sealed with parafilm inside the anaerobic chamber. The mixture was shaken at 250 rpm in a shaker outside of an anaerobic chamber overnight.

After the reaction was completed, the reaction mixture was transferred to two 500-mL centrifuge bottles. The aqueous phase was extracted with organic solvent (hexane/EtOAc = 1:2, 120 mL \times 4). The organic layers were combined in an Erlenmeyer flask, dried over Na₂SO₄, and concentrated under reduced pressure. Purification by preparative TLC with dichloromethane (with 0.5% NEt₃) as eluents afforded the cyclized product as a dark oil. TTNs were calculated based on measured protein concentration using CO binding and isolated product yield.

(S)-2-Methylindoline

^{largescale} (*S*)-**4a**: 79.8 mg, 60% yield, 2900 TTN, 92:8 *er* ¹**H** NMR (400 MHz, CDCl₃) δ 7.08 (d, J = 7.3 Hz, 1H), 7.02 (dddd, J = 9.1, 7.6, 1.4, 0.8 Hz, 1H), 6.71 (td, J = 7.4, 1.0 Hz, 1H), 6.64 (d, J = 7.8 Hz, 1H), 4.01 (ddq, J = 8.5, 7.7, 6.2 Hz, 1H), 3.15 (dd, J = 15.3, 8.4 Hz, 1H), 2.65 (dd, J = 15.4, 7.7 Hz, 1H), 1.31 (d, J = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.6, 129.2, 127.4, 124.9, 119.0, 109.7, 55.4, 37.9, 22.3.

General procedure for 1-mmol scale enzymatic intramolecular C–H aminations with 3e:

In a 500-mL flask, a suspension of 150 mL *E. coli* expressing variant **P411-INS-5151** (OD₆₀₀ = 40) in M9-N (pH = 8.4), 45 mL D-glucose (500 mM in M9-N, pH = 8.4), and 5 mL 1-azido-2-propylbenzene **3a** (175.2 mg, 200 mM in EtOH) were added sequentially under anaerobic conditions. The flask was capped and sealed with parafilm inside the anaerobic chamber. The mixture was shaken at 250 rpm in a shaker outside of an anaerobic chamber overnight.

After the reaction was completed, the reaction mixture was transferred to two 500-mL centrifuge bottles. The aqueous phase was extracted with organic solvent (hexane/EtOAc = 1:2, 120 mL \times 4). The organic layers were combined in an Erlenmeyer flask, dried over Na₂SO₄, and concentrated under reduced pressure. Purification by preparative TLC with EtOAc/hexanes (10% hexanes in EtOAc) as eluents afforded the cyclized product as a dark oil. TTNs were calculated based on measured protein concentration using CO binding and isolated product yield.

2,2-Dimethylindoline

^{largescale} **4e**: 58.6 mg, 40% yield, 1470 TTN ¹**H NMR** (400 MHz, CDCl₃) δ 7.06 (d, J = 7.3 Hz, 1H), 7.01 (t, J = 7.6 Hz, 1H), 6.69 (t, J = 7.4 Hz, 1H), 6.58 (d, J = 7.7 Hz, 1H), 2.85 (s, 2H), 1.33 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 129.7, 127.6, 125.3, 120.2, 117.5, 111.2, 62.3, 44.1, 28.9. **HRMS** (FD) Calcd for C₁₀H₁₃N [M] 147.1048, found 147.1046.

General procedure for 0.5-mmol scale enzymatic N–H insertion reactions:

In a 250-mL flask, a suspension of 45 mL *E. coli* expressing variant $L7_FL$ (OD₆₀₀ = 40) in M9-N (pH = 7.4), 2.5 mL D-glucose (500 mM in M9-N, pH = 7.4), 1.25 mL (*S*)-2-methylindoline **4a** (66.6 mg, 1.0 equiv. 400 mM in EtOH), and 1.25 mL lactone diazo (LAD, 67.2 mg, 1.2 equiv. 480 mM in EtOH) were added sequentially under anaerobic conditions. The flask was capped and sealed with parafilm inside the anaerobic chamber. The mixture was shaken at 250 rpm in a shaker outside of an anaerobic chamber overnight.

After the reaction was completed, the reaction mixture was transferred to four 50-mL Eppendorf tubes. The aqueous phase was extracted with organic solvent (hexane/EtOAc = 1:2, 120 mL \times 4). The organic layers were combined in an Erlenmeyer flask, dried over Na₂SO₄, and concentrated under reduced pressure. Purification by silica column chromatography with EtOAc/hexanes as eluents afforded the desired product. TTNs were calculated based on measured protein concentration using CO binding and isolated product yield.

(S)-3-((S)-2-Methylindolin-1-yl)dihydrofuran-2(3H)-one

⁵ **5**: 46.6 mg, 43% yield, 2770 TTN, 98:2 *er*, >96:4 *dr* ¹**H** NMR (400 MHz, CDCl₃) δ 7.11 – 6.97 (m, 2H), 6.72 (t, J = 7.4 Hz, 1H), 6.30 (d, J = 7.9 Hz, 1H), 4.54 (td, J = 9.2, 1.6 Hz, 1H), 4.36 – 4.20 (m, 2H), 3.76 (ddq, J = 9.5, 8.7, 6.1 Hz, 1H), 3.18 (dd, J = 15.5, 8.6 Hz, 1H), 2.71 (dd, J = 15.4, 9.4 Hz, 1H), 2.60 – 2.43 (m, 1H), 2.42 – 2.29 (m, 1H), 1.40 (d, J = 6.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.8, 148.1, 129.8, 127.4, 124.9, 119.2, 108.8, 65.7, 60.0, 55.1, 37.3, 22.7, 20.2. **HRMS** (FD) Calcd for C_{13H15}NO₂ [M] 217.1103, found 217.1104.

General procedure for 0.5-mmol scale enzymatic non-canonical amino acid synthesis:

In a 100-mL flask, a suspension of 25 mL kPi (pH = 8.0), L-serine (52.5 mg as a solid), (*S*)-2-methylindoline **4a** (66.6 mg, 1.0 equiv. 400 mM in EtOH), and 300 μ L purified *Tm*TrpB synthase **TmE3** (238 μ M in KPi buffer, 2.856 μ M final concentration) were added sequentially under aerobic conditions. The flask was capped and sealed with parafilm. The mixture was shaken at 250 rpm in a shaker overnight.
After the reaction was completed, the reaction mixture was transferred to a 100-mL roundbottom flask. The aqueous phase was concentrated under reduced pressure. Purification by reverse column chromatography with EtOAc/hexanes as eluents afforded the desired product. TTNs were calculated based on measured protein concentration using CO binding and isolated product yield.

(2S)-2-Amino-3-(2-methylindolin-1-yl)propanoic acid

6 6: 32.5 mg, 30% yield, 2100 TTN, >94:6 dr ¹**H** NMR (400 MHz, D₂O) δ 7.14 (tdd, J = 7.7, 4.2, 1.3 Hz, 2H), 6.73 (t, J = 7.4 Hz, 1H), 6.62 (d, J = 7.8 Hz, 1H), 3.82 – 3.72 (m, 1H), 3.69 (dd, J = 7.4, 5.5 Hz, 1H), 3.43 (qd, J = 14.8, 6.4 Hz, 2H), 3.15 (dd, J = 15.7, 8.4 Hz, 1H), 2.61 (dd, J = 15.7, 7.5 Hz, 1H), 1.23 (d, J = 6.2 Hz, 3H). ¹³C NMR (101 MHz, D₂O) δ 178.3, 151.8, 129.6, 127.5, 124.7, 118.0, 106.8, 61.3, 55.3, 50.0, 36.4, 17.8. HRMS (FD) Calcd for C₁₂H₁₆N₂O₂ [M] 220.1211, found 220.1214.

VIII. Chiral-Phase HPLC Traces

The absolute stereochemistry for enzymatic products **2a** and **4a** were assigned to be *R* and *S*, respectively, by comparing with their optical pure standard product. All other products **2b–2g**, **2j**, **4b–4d** were assigned by analogy. Before analysis of *ee*, all pyrrolidine products were protected by the benzoyl group, while indoline products were not.

Determination of absolute stereochemistry for 2a:

Chiral-phase HPLC conditions: Chiralpak IC, 25% *i*-PrOH in hexane, 1.5 mL/min, 25 °C, 210 nm

Racemic 2-Phenylpyrrolidine:

(S)-Phenylpyrrolidine: commercially available enantiopure compound

Determination of absolute stereochemistry for 4a:

Chiral-phase HPLC conditions: Chiralpak IB, 2% i-PrOH in hexane, 1.0 mL/min, 25 °C, 254 nm

Racemic 2-Methylindoline:

(*R*)- 2-Methylindoline: commercially available enantiopure compound

Determination of stereochemistry for all products:

(R)-2-Phenylpyrrolidine (2a)

Chiral-phase HPLC conditions: Chiralpak IC, 25% *i*-PrOH in hexane, 1.5 mL/min, 25 °C, 210 nm

Racemic 2a:

Enzymatic preparation of 2a with P411-PYS-5149: 91:9 er

2-(4-Fluorophenyl)pyrrolidine (2b)

Chiral-phase HPLC conditions: Chiralpak IA, 10% *i*-PrOH in hexane, 1.5 mL/min, 25 °C, 210 nm

Racemic 2b:

Enzymatic preparation of 2b with P411-PYS-5149: 92:8 er

2-(*p***-Tolyl)pyrrolidine (2c)** Chiral-phase HPLC conditions: Chiralpak IA, 10% *i*-PrOH in hexane, 1.5 mL/min, 25 °C, 210 nm

Racemic 2c:

Enzymatic preparation of 2c with P411-PYS-5149: 92:8 er

(*R*)-2-(4-Methoxyphenyl)pyrrolidine (2d)

Chiral-phase HPLC conditions: Chiralpak IA, 15% *i*-PrOH in hexane, 1.5 mL/min, 25 °C, 210 nm

Racemic 2d:

Enzymatic preparation of 2d with P411-PYS-5149: 99:1 er

(*R*)-2-(2,5-Difluorophenyl)pyrrolidine (2e)

Chiral-phase HPLC conditions: Chiralpak IA, 7% i-PrOH in hexane, 1.5 mL/min, 25 °C, 210 nm

Racemic 2e:

Enzymatic preparation of 2e with P411-PYS-5149: 85:15 er DADI C. Sig=210.8 Ref=380.100 (CACHEM32A1/DATA/ZQ/221011-CA-IA-25-DIF 1980-01-26 17-58-12/0240301.0)

(R)-2-(Naphthalen-2-yl)pyrrolidine (2f)

Chiral-phase HPLC conditions: Chiralpak IA, 10% *i*-PrOH in hexane, 1.5 mL/min, 25 °C, 210 nm

Racemic 2f:

Enzymatic preparation of 2f with P411-PYS-5149: 60:40 *er*

2-(Thiophen-2-yl)pyrrolidine (2g)

Chiral-phase HPLC conditions: Chiralpak IC, 25% i-PrOH in hexane, 1.5 mL/min, 25 °C, 254 nm

Racemic 2g:

Enzymatic preparation of 2g with P411-PYS-5149: 23:77 er

3-(Pyrrolidin-2-yl)-1H-indole (2h)

Chiral-phase HPLC conditions: Chiralpak IC, 20% *i*-PrOH in hexane, 1.5 mL/min, 25 °C, 210 nm

Racemic 2h:

Enzymatic preparation of 2h with P411-PYS-5149: 52:48 er

(S)-2-Methylindoline (4a)

Chiral-phase HPLC conditions: Chiralpak IB, 2% i-PrOH in hexane, 1.0 mL/min, 25 °C, 254 nm

Racemic 4a:

Enzymatic preparation of 4a with P411-INS-5151: 8:92 er

Preparative scale enzymatic preparation of 4a with P411-INS-5151: 9:91 er

(S)-2-Ethylindoline (4b)

Chiral-phase HPLC conditions: Chiralpak IB, 2% i-PrOH in hexane, 1.0 mL/min, 25 °C, 254 nm

Racemic 4b:

Enzymatic preparation of 4b with P411-INS-5151: 9:91 er

(*S*)-**5-Fluoro-2-methylindoline (4c)** Chiral-phase HPLC conditions: Chiralpak IB, 2% *i*-PrOH in hexane, 1.0 mL/min, 25 °C, 254 nm

Racemic 4c:

Enzymatic preparation of 4c with P411-INS-5151: 13:87 er

Racemic 4d:

Enzymatic preparation of 4d with P411-INS-5151: 79:21 er

(S)-3-((S)-2-Methylindolin-1-yl)dihydrofuran-2(3H)-one (5):

Chiral-phase HPLC conditions: Chiralpak IC, 25% *i*-PrOH in hexane, 1.5 mL/min, 25 °C, 254 nm

Racemic 5:

Racemic 3-((S)-2-methylindolin-1-yl)dihydrofuran-2(3H)-one:

Preparative scale enzymatic preparation of 5 with L7_FL: 98:2 er and >24:1 dr

IX. Sequence Information

P411 variant	Mutations relative to wild-type P450 _{BM3}			
P411- M177L (P411-PYS- 5141)	A74G V78L A82L F87A P142S T175I M177L A184V S226R H236Q E252G I263Y H266V T268G A290V T327I A328V L353V I366V C400S T436L L437Q E442K			
P411-PYS- 5142	A74G L75E V78L A82L F87A P142S T175I M177L A184V S226R H236Q E252G I263Y H266V T268G A290V T327I A328V L353V I366V C400S T436L L437O E442K			
P411-PYS- 5143	A74G L75E V78L A82L F87A P142S T175I M177L A184V S226R H236Q E252G I263Y H266V T268G A290V T327I A328V L353V I366V C400S T436L E442K			
P411-PYS- 5144	A74G L75E V78L A82L F87A P142S T175I M177L A184V S226R H236Q E252G I263Y H266V T268G A290V T327I A328V A330Q L353V I366V C400S T436L E442K			
P411-PYS- 5145	A74G L75E V78L A82L F87A M118V P142S T175I M177L A184V S226R H236Q E252G I263Y H266V T268G A290V T327I A328V A330Q L353V I366V C400S T436L E442K			
P411-PYS- 5146	A74G L75E F77C V78L A82L F87A M118V P142S T175I M177L A184V S226R H236Q E252G I263Y H266V T268G A290V T327I A328V A330O L353V I366V C400S T436L E442K			
P411-PYS- 5147	S72W A74G L75E F77C V78L A82L F87A M118V P142S T175I M177L A184V S226R H236Q E252G I263Y H266V T268G A290V T327I A328V A330Q L353V I366V C400S T436L E442K			
P411-PYS- 5148	S72W Q73A A74G L75E F77C V78L A82L F87A M118V P142S T175I M177L A184V S226R H236Q E252G I263Y H266V T268G A290V T327I A328V A330Q L353V I366V C400S T436L E442K			
P411-PYS- 5149	S72W Q73A A74G L75E F77C V78L A82L F87A M118V P142S T175I M177L A184V S226R H236Q E252G I263Y H266V T268G A290V T327I A328V A330Q L353V I366V C400S T436R E442K			
P411-INS- 5150	S72W Q73A A74G L75E F77C V78L A82L F87A M118V P142S T175I M177L A184V S226R H236Q E252G I263Y H266V T268G A290V T327I A328V A330Q L353V I366V C400S T436L L437P E442K			
P411-INS- 5151	S72W Q73A A74G L75E F77C V78L A82L F87A M118V P142S T175I M177L L181N A184V S226R H236Q E252G I263Y H266V T268G A290V T327I A328V A330Q L353V I366V C400S T436L L437P E442K			

Mutations present in P411 variants described in this study:

Nucleotide and amino acid sequences of P411-M177L (P411-PYS-5141):

ATGACAATTAAAGAAATGCCTCAGCCAAAAACGTTTGGAGAGCTTAAAAATTTACCGTTATTAAACACAG ATAAACCGGTTCAAGCTTTGATGAAAATTGCGGATGAATTAGGAGAAATCTTTAAATTCGAGGCGCCTGG TCGTGTAACGCGCTACTTATCAAGTCAGCGTCTAATTAAAGAAGCATGCGATGAATCACGCTTTGATAAA AACTTAAGTCAAGGTCTGAAATTTCTGCGTGATTTTCTTGGAGACGGGTTAGCCACAAGCTGGACGCATG AAAAAAATTGGAAAAAAGCGCATAATATCTTACTTCCAAGCTTTAGTCAGCAGGCAATGAAAGGCTATCA TGCGATGATGGTCGATATCGCCGTGCAGCTTGTTCAAAAGTGGGAGCGTCTAAATGCAGATGAGCATATT GAAGTATCGGAAGACATGACACGTTTAACGCTTGATACAATTGGTCTTTGCGGCTTTAACTATCGCTTTA ACAGCTTTTACCGAGATCAGCCTCATCCATTTATTATAAGTCTGGTCCGTGCACTGGATGAAGTAATGAA CAAGCTGCAGCGAGCAAATCCAGACGACCCAGCTTATGATGAAAACAAGCGCCAGTTTCAAGAAGATATC AAGGTGATGAACGACCTAGTAGATAAAATTATTGCAGATCGCAAAGCAAGGGGTGAACAAAGCGATGATT TATTAACGCAGATGCTAAACGGAAAAGATCCAGAAACGGGTGAGCCGCTTGATGACGGGAACATTCGCTA TCAAATTATTACATTCTTATATGCGGGGGGTTGAAGGTACAAGTGGTCTTTTATCATTTGCGCTGTATTTC TTAGTGAAAAATCCACATGTATTACAAAAAGTAGCAGAAGAAGCAGCACGAGTTCTAGTAGATCCTGTTC CAAGCTACAAACAAGTCAAACAGCTTAAATATGTCGGCATGGTCTTAAACGAAGCGCTGCGCTTATGGCC AATTGTTCCTGCGTTTTCCCTATATGCAAAAGAAGATACGGTGCTTGGAGGAGAATATCCTTTAGAAAAA GGCGACGAAGTAATGGTTCTGATTCCTCAGCTTCACCGTGATAAAACAGTTTGGGGAGACGATGTGGAGG AGTTCCGTCCAGAGCGTTTTGAAAATCCAAGTGCGATTCCGCAGCATGCGTTTAAACCGTTTGGAAACGG TCAGCGTGCGTCTATCGGTCAGCAGTTCGCTCTTCATGAAGCAACGCTGGTACTTGGTATGATGCTAAAA CACTTTGACTTTGAAGATCATACAAACTACGAGCTCGATATTAAAGAACTGCAGACGTTAAAACCTAAAG GCTTTGTGGTAAAAGCAAAAATCGAAAAAAATTCCGCTTGGCGGTATTCCTTCACCTAGCACTGAACAGTC TGCTAAAAAAGTACGCAAAAAGGCAGAAAACGCTCATAATACGCCGCTGCTTGTGCTATACGGTTCAAAT ATGGGTACCGCTGAAGGAACGGCGCGTGATTTAGCAGATATTGCAATGAGCAAAGGATTTGCACCGCAGG TCGCAACGCTTGATTCACACGCCGGAAATCTTCCGCGCGAAGGAGCTGTATTAATTGTAACGGCGTCTTA TAACGGTCATCCGCCTGATAACGCAAAGCAATTTGTCGACTGGTTAGACCAAGCGTCTGCTGATGAAGTA AAAGGCGTTCGCTACTCCGTATTTGGATGCGGCGATAAAAACTGGGCTACTACGTATCAAAAAGTGCCTG CTTTTATCGATGAAACGCTTGCCGCTAAAGGGGCAGAAAACATCGCTGACCGCGGTGAAGCAGATGCAAG CGACGACTTTGAAGGCACATATGAAGAATGGCGTGAACATATGTGGAGTGACGTAGCAGCCTACTTTAAC CTCGACATTGAAAACAGTGAAGATAATAAATCTACTCTTTCACTTCAATTTGTCGACAGCGCCGCGGATA CAGTGCACGAAGCACGCGACATCTTGAAATTGAACTTCCAAAAGAAGCTTCTTATCAAGAAGGAGATCAT TTAGGTGTTATTCCTCGCAACTATGAAGGAATAGTAAACCGTGTAACAGCAAGGTTCGGCCTAGATGCAT CACAGCAAATCCGTCTGGAAGCAGAAGAAGAAGAAAATTAGCTCATTTGCCACTCGCTAAAACAGTATCCGT TGCTGGCAAAACGTTTAACAATGCTTGAACTGCTTGAAAAATACCCGGCGTGTGAAATGAAATTCAGCGA ATTTATCGCCCTTCTGCCAAGCATACGCCCGCGCTATTACTCGATTTCTTCATCACCTCGTGTCGATGAA AAACAAGCAAGCATCACGGTCAGCGTTGTCTCAGGAGAAGCGTGGAGCGGATATGGAGAATATAAAGGAA TTGCGTCGAACTATCTTGCCGAGCTGCAAGAAGGAGATACGATTACGTGCTTTATTTCCACACCGCAGTC AGAATTTACGCTGCCAAAAGACCCTGAAACGCCGCTTATCATGGTCGGACCGGGAACAGGCGTCGCGCCG TTTAGAGGCTTTGTGCAGGCGCGCAAACAGCTAAAAGAACAAGGACAGTCACTTGGAGAAGCACATTTAT ACTTCGGCTGCCGTTCACCTCATGAAGACTATCTGTATCAAGAAGAGCTTGAAAAACGCCCAAAGCGAAGG CATCATTACGCTTCATACCGCTTTTTCTCGCATGCCAAATCAGCCGAAAACATACGTTCAGCACGTAATG GAACAAGACGGCAAGAAATTGATTGAACTTCTTGATCAAGGAGCGCACTTCTATATTTGCGGAGACGGAA AGACGCTCGCTTATGGCTGCAGCAGCTAGAAGAAAAAGGCCGATACGCAAAAGACGTGTGGGCTGGGCTC GAGCACCACCACCACCACTGA

MTIKEMPQPKTFGELKNLPLLNTDKPVQALMKIADELGEIFKFEAPGRVTRYLSSQRLIKEACDESRFDK NLSQGLKFLRDFLGDGLATSWTHEKNWKKAHNILLPSFSQQAMKGYHAMMVDIAVQLVQKWERLNADEHI EVSEDMTRLTLDTIGLCGFNYRFNSFYRDQPHPFIISLVRALDEVMNKLQRANPDDPAYDENKRQFQEDI KVMNDLVDKIIADRKARGEQSDDLLTQMLNGKDPETGEPLDDGNIRYQIITFLYAGVEGTSGLLSFALYF LVKNPHVLQKVAEEAARVLVDPVPSYKQVKQLKYVGMVLNEALRLWPIVPAFSLYAKEDTVLGGEYPLEK GDEVMVLIPQLHRDKTVWGDDVEEFRPERFENPSAIPQHAFKPFGNGQRASIGQQFALHEATLVLGMMLK HFDFEDHTNYELDIKELQTLKPKGFVVKAKSKKIPLGGIPSPSTEQSAKKVRKKAENAHNTPLLVLYGSN MGTAEGTARDLADIAMSKGFAPQVATLDSHAGNLPREGAVLIVTASYNGHPPDNAKQFVDWLDQASADEV KGVRYSVFGCGDKNWATTYQKVPAFIDETLAAKGAENIADRGEADASDDFEGTYEEWREHMWSDVAAYFN LDIENSEDNKSTLSLQFVDSAADMPLAKMHGAFSTNVVASKELQQPGSARSTRHLEIELPKEASYQEGDH LGVIPRNYEGIVNRVTARFGLDASQQIRLEAEEEKLAHLPLAKTVSVEELLQYVELQDPVTRTQLRAMAA KTVCPPHKVELEALLEKQAYKEQVLAKRLTMLELLEKYPACEMKFSEFIALLPSIRPRYYSISSSPRVDE KQASITVSVVSGEAWSGYGEYKGIASNYLAELQEGDTITCFISTPQSEFTLPKDPETPLIMVGPGTGVAP FRGFVQARKQLKEQQSLGEAHLYFGCRSPHEDYLYQEELENAQSEGIITLHTAFSRMPNQPKTYVQHVM EQDGKKLIELLDQGAHFYICGDGSQMAPAVEATLMKSYADVHQVSEADARLWLQQLEEKGRYAKDVWAGL EHHHHH

Nucleotide and amino acid sequences of P411-PYS-5142:

ATGACAATTAAAGAAATGCCTCAGCCAAAAACGTTTGGAGAGCTTAAAAATTTACCGTTATTAAACACAG ATAAACCGGTTCAAGCTTTGATGAAAATTGCGGATGAATTAGGAGAAATCTTTAAATTCGAGGCGCCTGG TCGTGTAACGCGCTACTTATCAAGTCAGCGTCTAATTAAAGAAGCATGCGATGAATCACGCTTTGATAAA AACTTAAGTCAAGGTGAGAAATTTCTGCGTGATTTTCTTGGAGACGGGTTAGCCACAAGCTGGACGCATG AAAAAATTGGAAAAAAGCGCATAATATCTTACTTCCAAGCTTTAGTCAGCAGGCAATGAAAGGCTATCA TGCGATGATGGTCGATATCGCCGTGCAGCTTGTTCAAAAGTGGGAGCGTCTAAATGCAGATGAGCATATT GAAGTATCGGAAGACATGACACGTTTAACGCTTGATACAATTGGTCTTTGCGGCTTTAACTATCGCTTTA ACAGCTTTTACCGAGATCAGCCTCATCCATTTATTATAAGTCTGGTCCGTGCACTGGATGAAGTAATGAA CAAGCTGCAGCGAGCAAATCCAGACGACCCAGCTTATGATGAAAACAAGCGCCAGTTTCAAGAAGATATC AAGGTGATGAACGACCTAGTAGATAAAATTATTGCAGATCGCAAAGCAAGGGGTGAACAAAGCGATGATT TATTAACGCAGATGCTAAACGGAAAAGATCCAGAAACGGGTGAGCCGCTTGATGACGGGAACATTCGCTA TCAAATTATTACATTCTTATATGCGGGGGGTTGAAGGTACAAGTGGTCTTTTATCATTTGCGCTGTATTTC TTAGTGAAAAATCCACATGTATTACAAAAAGTAGCAGAAGAAGCAGCACGAGTTCTAGTAGATCCTGTTC CAAGCTACAAACAAGTCAAACAGCTTAAATATGTCGGCATGGTCTTAAACGAAGCGCTGCGCTTATGGCC AATTGTTCCTGCGTTTTCCCTATATGCAAAAGAAGATACGGTGCTTGGAGGAGAATATCCTTTAGAAAAA GGCGACGAAGTAATGGTTCTGATTCCTCAGCTTCACCGTGATAAAACAGTTTGGGGAGACGATGTGGAGG AGTTCCGTCCAGAGCGTTTTGAAAATCCAAGTGCGATTCCGCAGCATGCGTTTAAACCGTTTGGAAACGG TCAGCGTGCGTCTATCGGTCAGCAGTTCGCTCTTCATGAAGCAACGCTGGTACTTGGTATGATGCTAAAA CACTTTGACTTTGAAGATCATACAAACTACGAGCTCGATATTAAAGAACTGCAGACGTTAAAACCTAAAG GCTTTGTGGTAAAAGCAAAATCGAAAAAATTCCGCTTGGCGGTATTCCTTCACCTAGCACTGAACAGTC TGCTAAAAAAGTACGCAAAAAGGCAGAAAACGCTCATAATACGCCGCTGCTTGTGCTATACGGTTCAAAT ATGGGTACCGCTGAAGGAACGGCGCGTGATTTAGCAGATATTGCAATGAGCAAAGGATTTGCACCGCAGG TCGCAACGCTTGATTCACACGCCGGAAATCTTCCGCGCGAAGGAGCTGTATTAATTGTAACGGCGTCTTA TAACGGTCATCCGCCTGATAACGCAAAGCAATTTGTCGACTGGTTAGACCAAGCGTCTGCTGATGAAGTA AAAGGCGTTCGCTACTCCGTATTTGGATGCGGCGATAAAAACTGGGCTACTACGTATCAAAAAGTGCCTG CTTTTATCGATGAAACGCTTGCCGCTAAAGGGGCAGAAAACATCGCTGACCGCGGTGAAGCAGATGCAAG CGACGACTTTGAAGGCACATATGAAGAATGGCGTGAACATATGTGGAGTGACGTAGCAGCCTACTTTAAC CTCGACATTGAAAACAGTGAAGATAATAAATCTACTCTTTCACTTCAATTTGTCGACAGCGCCGCGGATA CAGTGCACGAAGCACGCGACATCTTGAAATTGAACTTCCAAAAGAAGCTTCTTATCAAGAAGGAGATCAT TTAGGTGTTATTCCTCGCAACTATGAAGGAATAGTAAACCGTGTAACAGCAAGGTTCGGCCTAGATGCAT CACAGCAAATCCGTCTGGAAGCAGAAGAAGAAAAATTAGCTCATTTGCCACTCGCTAAAACAGTATCCGT TGCTGGCAAAACGTTTAACAATGCTTGAACTGCTTGAAAAATACCCGGCGTGTGAAATGAAATTCAGCGA

ATTTATCGCCCTTCTGCCAAGCATACGCCCGCGCTATTACTCGATTTCTTCATCACCTCGTGTCGATGAA AAACAAGCAAGCATCACGGTCAGCGTTGTCTCAGGAGAAGCGTGGAGCGGATATGGAGAATATAAAGGAA TTGCGTCGAACTATCTTGCCGAGCTGCAAGAAGGAGAGAGCGATTACGTGCTTTATTTCCACACCGCAGTC AGAATTTACGCTGCCAAAAGACCCTGAAACGCCGCTTATCATGGTCGGACCGGGAACAGGCGTCGCGCCG TTTAGAGGCTTTGTGCAGGCGCGCAAACAGCTAAAAGAACAAGGACAGTCACTTGGAGAAGCACATTTAT ACTTCGGCTGCCGTTCACCTCATGAAGACTATCTGTATCAAGAAGAGCTTGAAAACGCCCAAAGCGAAGG CATCATTACGCTTCATACCGCTTTTTCTCGCATGCCAAATCAGGCGAAAACATACGTTCAGCACGTAATG GAACAAGACGGCAAGAAATTGATTGAACTTCTTGATCAAGGAGCGCACTTCTATATTTGCGGAGACGGAA GCCAAATGGCACCTGCCGTTGAAGCAACGCTTATGAAAAGCTATGCTGACGTTCACCAAGTGAGGAGCG AGACGCTCGCTTATGGCTGCAGCAGCTAGAAGAAAAAGGCCGATACGCTAAAGACGTGTGGGCTGGGCTC GAGCACCACCACCACCACCACTGA

MTIKEMPOPKTFGELKNLPLLNTDKPVQALMKIADELGEIFKFEAPGRVTRYLSSQRLIKEACDESRFDK NLSOGEKFLRDFLGDGLATSWTHEKNWKKAHNILLPSFSOOAMKGYHAMMVDIAVOLVOKWERLNADEHI EVSEDMTRLTLDTIGLCGFNYRFNSFYRDQPHPFIISLVRALDEVMNKLQRANPDDPAYDENKRQFQEDI KVMNDLVDKIIADRKARGEQSDDLLTQMLNGKDPETGEPLDDGNIRYQIITFLYAGVEGTSGLLSFALYF LVKNPHVLQKVAEEAARVLVDPVPSYKQVKQLKYVGMVLNEALRLWPIVPAFSLYAKEDTVLGGEYPLEK GDEVMVLIPQLHRDKTVWGDDVEEFRPERFENPSAIPQHAFKPFGNGQRASIGQQFALHEATLVLGMMLK HFDFEDHTNYELDIKELQTLKPKGFVVKAKSKKIPLGGIPSPSTEQSAKKVRKKAENAHNTPLLVLYGSN MGTAEGTARDLADIAMSKGFAPQVATLDSHAGNLPREGAVLIVTASYNGHPPDNAKQFVDWLDQASADEV KGVRYSVFGCGDKNWATTYOKVPAFIDETLAAKGAENIADRGEADASDDFEGTYEEWREHMWSDVAAYFN ${\tt LDIENSEDNKSTLSLQFVDSAADMPLAKMHGAFSTNVVASKELQQPGSARSTRHLEIELPKEASYQEGDH}$ LGVIPRNYEGIVNRVTARFGLDASQQIRLEAEEEKLAHLPLAKTVSVEELLQYVELQDPVTRTQLRAMAA KTVCPPHKVELEALLEKOAYKEOVLAKRLTMLELLEKYPACEMKFSEFIALLPSIRPRYYSISSSPRVDE KQASITVSVVSGEAWSGYGEYKGIASNYLAELQEGDTITCFISTPQSEFTLPKDPETPLIMVGPGTGVAP FRGFVQARKQLKEQGQSLGEAHLYFGCRSPHEDYLYQEELENAQSEGIITLHTAFSRMPNQPKTYVQHVM EQDGKKLIELLDQGAHFYICGDGSQMAPAVEATLMKSYADVHQVSEADARLWLQQLEEKGRYAKDVWAGL ЕНННННН

Nucleotide and amino acid sequences of P411-PYS-5143:

ATGACAATTAAAGAAATGCCTCAGCCAAAAACGTTTGGAGAGCTTAAAAAATTTACCGTTATTAAACACAG ATAAACCGGTTCAAGCTTTGATGAAAATTGCGGATGAATTAGGAGAAATCTTTAAATTCGAGGCGCCTGG TCGTGTAACGCGCTACTTATCAAGTCAGCGTCTAATTAAAGAAGCATGCGATGAATCACGCTTTGATAAA AACTTAAGTCAAGGTGAGAAATTTCTGCGTGATTTTCTTGGAGACGGGTTAGCCACAAGCTGGACGCATG AAAAAAATTGGAAAAAAGCGCATAATATCTTACTTCCAAGCTTTAGTCAGCAGGCAATGAAAGGCTATCA TGCGATGATGGTCGATATCGCCGTGCAGCTTGTTCAAAAGTGGGAGCGTCTAAATGCAGATGAGCATATT GAAGTATCGGAAGACATGACACGTTTAACGCTTGATACAATTGGTCTTTGCGGCTTTAACTATCGCTTTA ACAGCTTTTACCGAGATCAGCCTCATCCATTTATTATAAGTCTGGTCCGTGCACTGGATGAAGTAATGAA CAAGCTGCAGCGAGCAAATCCAGACGACCCAGCTTATGATGAAAACAAGCGCCAGTTTCAAGAAGATATC AAGGTGATGAACGACCTAGTAGATAAAATTATTGCAGATCGCAAAGCAAGGGGTGAACAAAGCGATGATT TATTAACGCAGATGCTAAACGGAAAAGATCCAGAAACGGGTGAGCCGCTTGATGACGGGAACATTCGCTA TCAAATTATTACATTCTTATATGCGGGGGGTTGAAGGTACAAGTGGTCTTTTATCATTTGCGCTGTATTTC TTAGTGAAAAATCCACATGTATTACAAAAAGTAGCAGAAGAAGCAGCACGAGTTCTAGTAGATCCTGTTC CAAGCTACAAACAAGTCAAACAGCTTAAATATGTCGGCATGGTCTTAAACGAAGCGCTGCGCTTATGGCC AATTGTTCCTGCGTTTTCCCTATATGCAAAAGAAGATACGGTGCTTGGAGGAGAATATCCTTTAGAAAAA GGCGACGAAGTAATGGTTCTGATTCCTCAGCTTCACCGTGATAAAACAGTTTGGGGAGACGATGTGGAGG AGTTCCGTCCAGAGCGTTTTGAAAATCCAAGTGCGATTCCGCAGCATGCGTTTAAACCGTTTGGAAACGG TCAGCGTGCGTCTATCGGTCAGCAGTTCGCTCTTCATGAAGCAACGCTGGTACTTGGTATGATGCTAAAA CACTTTGACTTTGAAGATCATACAAACTACGAGCTCGATATTAAAGAACTGCTGACGTTAAAACCTAAAG GCTTTGTGGTAAAAGCAAAATCGAAAAAATTCCGCTTGGCGGTATTCCTTCACCTAGCACTGAACAGTC TGCTAAAAAAGTACGCAAAAAGGCAGAAAACGCTCATAATACGCCGCTGCTTGTGCTATACGGTTCAAAT

ATGGGTACCGCTGAAGGAACGGCGCGTGATTTAGCAGATATTGCAATGAGCAAAGGATTTGCACCGCAGG TCGCAACGCTTGATTCACACGCCGGAAATCTTCCGCGCGAAGGAGCTGTATTAATTGTAACGGCGTCTTA TAACGGTCATCCGCCTGATAACGCAAAGCAATTTGTCGACTGGTTAGACCAAGCGTCTGCTGATGAAGTA AAAGGCGTTCGCTACTCCGTATTTGGATGCGGCGATAAAAACTGGGCTACTACGTATCAAAAAGTGCCTG CTTTTATCGATGAAACGCTTGCCGCTAAAGGGGCAGAAAACATCGCTGACCGCGGTGAAGCAGATGCAAG CGACGACTTTGAAGGCACATATGAAGAATGGCGTGAACATATGTGGAGTGACGTAGCAGCCTACTTTAAC CTCGACATTGAAAACAGTGAAGATAATAAATCTACTCTTTCACTTCAATTTGTCGACAGCGCCGCGGATA CAGTGCACGAAGCACGCGACATCTTGAAATTGAACTTCCAAAAGAAGCTTCTTATCAAGAAGGAGATCAT TTAGGTGTTATTCCTCGCAACTATGAAGGAATAGTAAACCGTGTAACAGCAAGGTTCGGCCTAGATGCAT CACAGCAAATCCGTCTGGAAGCAGAAGAAGAAAAATTAGCTCATTTGCCACTCGCTAAAACAGTATCCGT TGCTGGCAAAACGTTTAACAATGCTTGAACTGCTTGAAAAATACCCCGGCGTGTGAAATGAAATTCAGCGA ATTTATCGCCCTTCTGCCAAGCATACGCCCGCGCTATTACTCGATTTCTTCATCACCTCGTGTCGATGAA AAACAAGCAAGCATCACGGTCAGCGTTGTCTCAGGAGAAGCGTGGAGCGGATATGGAGAATATAAAGGAA TTGCGTCGAACTATCTTGCCGAGCTGCAAGAAGGAGATACGATTACGTGCTTTATTTCCACACCGCAGTC AGAATTTACGCTGCCAAAAGACCCTGAAACGCCGCTTATCATGGTCGGACCGGGAACAGGCGTCGCGCCG TTTAGAGGCTTTGTGCAGGCGCGCAAACAGCTAAAAGAACAAGGACAGTCACTTGGAGAAGCACATTTAT ACTTCGGCTGCCGTTCACCTCATGAAGACTATCTGTATCAAGAAGAGCTTGAAAAACGCCCAAAGCGAAGG CATCATTACGCTTCATACCGCTTTTTCTCGCATGCCAAATCAGCCGAAAACATACGTTCAGCACGTAATG GAACAAGACGGCAAGAAATTGATTGAACTTCTTGATCAAGGAGCGCACTTCTATATTTGCGGAGACGGAA AGACGCTCGCTTATGGCTGCAGCAGCTAGAAGAAAAAGGCCGATACGCAAAAGACGTGTGGGCTGGGCTC GAGCACCACCACCACCACTGA

MTIKEMPQPKTFGELKNLPLLNTDKPVQALMKIADELGEIFKFEAPGRVTRYLSSQRLIKEACDESRFDK NLSQGEKFLRDFLGDGLATSWTHEKNWKKAHNILLPSFSQQAMKGYHAMMVDIAVQLVQKWERLNADEHI EVSEDMTRLTLDTIGLCGFNYRFNSFYRDQPHPFIISLVRALDEVMNKLQRANPDDPAYDENKRQFQEDI KVMNDLVDKIIADRKARGEQSDDLLTQMLNGKDPETGEPLDDGNIRYQIITFLYAGVEGTSGLLSFALYF LVKNPHVLQKVAEEAARVLVDPVPSYKQVKQLKYVGMVLNEALRLWPIVPAFSLYAKEDTVLGGEYPLEK GDEVMVLIPOLHRDKTVWGDDVEEFRPERFENPSAIPOHAFKPFGNGORASIGOOFALHEATLVLGMMLK HFDFEDHTNYELDIKELLTLKPKGFVVKAKSKKIPLGGIPSPSTEQSAKKVRKKAENAHNTPLLVLYGSN MGTAEGTARDLADIAMSKGFAPQVATLDSHAGNLPREGAVLIVTASYNGHPPDNAKQFVDWLDQASADEV KGVRYSVFGCGDKNWATTYOKVPAFIDETLAAKGAENIADRGEADASDDFEGTYEEWREHMWSDVAAYFN LDIENSEDNKSTLSLQFVDSAADMPLAKMHGAFSTNVVASKELQQPGSARSTRHLEIELPKEASYQEGDH LGVIPRNYEGIVNRVTARFGLDASQQIRLEAEEEKLAHLPLAKTVSVEELLQYVELQDPVTRTQLRAMAA KTVCPPHKVELEALLEKQAYKEQVLAKRLTMLELLEKYPACEMKFSEFIALLPSIRPRYYSISSSPRVDE KOASITVSVVSGEAWSGYGEYKGIASNYLAELOEGDTITCFISTPOSEFTLPKDPETPLIMVGPGTGVAP FRGFVQARKQLKEQGQSLGEAHLYFGCRSPHEDYLYQEELENAQSEGIITLHTAFSRMPNQPKTYVQHVM EQDGKKLIELLDQGAHFYICGDGSQMAPAVEATLMKSYADVHQVSEADARLWLQQLEEKGRYAKDVWAGL ЕНННННН

Nucleotide and amino acid sequences of P411-PYS-5144:

ATGACAATTAAAGAAATGCCTCAGCCAAAAACGTTTGGAGAGCTTAAAAAATTTACCGTTATTAAACACAG ATAAACCGGTTCAAGCTTTGATGAAAATTGCGGATGAATTAGGAGAAATCTTTAAATTCGAGGCGCCTGG TCGTGTAACGCGCTACTTATCAAGTCAGCGTCTAATTAAAGAAGCATGCGATGAATCACGCTTTGATAAA AACTTAAGTCAAGGTGAGAAATTTCTGCGTGATTTTCTTGGAGAACGGGTTAGCCACAAGCTGGACGCATG AAAAAAATTGGGAAAAAAGCGCATAATATCTTACTTCCAAGCTTTAGTCAGCAGGCAATGAAAGGCTATC ATGCGATGATGGTCGATATCGCCGTGCAGCTTGTTCAAAAGTGGGAGCGTCTAAATGCAGATGAGCATAT TGAAGTATCGGAAAGACATGACACGTTTAACGCTTGATACAATTGGTCTTTGCGGCTTTAACTATCGCTT AACAGCTTTTACCGAGATCAGCCTCATCCATTTATTATAAGTCTGGTCCGTGCACTGGATGAAGTAATGA ACAAGCTGCAGCGAGCAAATCCAGACGACCCAGCTTATGATGAAAACAAGCGCCAGTTTCAAGAAGATAT CAAGGTGATGAACGACCTAGTAGATAAAATTATTGCAGATCGCAAAGCAAGGGGTGAACAAAGCGATGAT TTATTAACGCAGATGCTAAACGGAAAAGATCCAGAAACGGGTGAGCCGCTTGATGACGGGAACATTCGCT ATCAAATTATTACATTCTTATATGCGGGGGGTTGAAGGTACAAGTGGTCTTTTATCATTTGCGCTGTATTT CTTAGTGAAAAATCCACATGTATTACAAAAAGTAGCAGAAGAAGCAGCACGAGTTCTAGTAGATCCTGTT CCAAGCTACAAACAAGTCAAACAGCTTAAATATGTCGGCATGGTCTTAAACGAAGCGCTGCGCTTATGGC CAATTGTTCCTCAGTTTTCCCTATATGCAAAAGAAGATACGGTGCTTGGAGGAGAATATCCTTTAGAAAA AGGCGACGAAGTAATGGTTCTGATTCCTCAGCTTCACCGTGATAAAACAGTTTGGGGAGACGATGTGGAG GAGTTCCGTCCAGAGCGTTTTGAAAATCCAAGTGCGATTCCGCAGCATGCGTTTAAACCGTTTGGAAACG GTCAGCGTGCGTCTATCGGTCAGCAGTTCGCTCTTCATGAAGCAACGCTGGTACTTGGTATGATGCTAAA ACACTTTGACTTTGAAGATCATACAAACTACGAGCTCGATATTAAAGAACTGCTGACGTTAAAAACCTAAA GGCTTTGTGGTAAAAGCAAAATCGAAAAAATTCCGCTTGGCGGTATTCCTTCACCTAGCACTGAACAGT CTGCTAAAAAAGTACGCAAAAAGGCAGAAAACGCTCATAATACGCCGCTGCTTGTGCTATACGGTTCAAA TATGGGTACCGCTGAAGGAACGGCGCGTGATTTAGCAGATATTGCAATGAGCAAAGGATTTGCACCGCAG GTCGCAACGCTTGATTCACACGCCGGAAATCTTCCGCGCGAAGGAGCTGTATTAATTGTAACGGCGTCTT ATAACGGTCATCCGCCTGATAACGCAAAGCAATTTGTCGACTGGTTAGACCAAGCGTCTGCTGATGAAGT AAAAGGCGTTCGCTACTCCGTATTTGGATGCGGCGATAAAAACTGGGCTACTACGTATCAAAAAGTGCCT GCTTTTATCGATGAAACGCTTGCCGCTAAAGGGGCAGAAAACATCGCTGACCGCGGTGAAGCAGATGCAA GCGACGACTTTGAAGGCACATATGAAGAATGGCGTGAACATATGTGGAGTGACGTAGCAGCCTACTTTAA CCTCGACATTGAAAACAGTGAAGATAATAAATCTACTCTTTCACTTCAATTTGTCGACAGCGCCGCGGAT GCAGTGCACGAAGCACGCGACATCTTGAAATTGAACTTCCAAAAGAAGCTTCTTATCAAGAAGGAGATCA TTTAGGTGTTATTCCTCGCAACTATGAAGGAATAGTAAACCGTGTAACAGCAAGGTTCGGCCTAGATGCA TCACAGCAAATCCGTCTGGAAGCAGAAGAAGAAGAAAATTAGCTCATTTGCCACTCGCTAAAACAGTATCCG GTGCTGGCAAAACGTTTAACAATGCTTGAACTGCTTGAAAAATACCCCGGCGTGTGAAATGAAATTCAGCG AATTTATCGCCCTTCTGCCAAGCATACGCCCGCGCTATTACTCGATTTCTTCATCACCTCGTGTCGATGA AAAACAAGCAAGCATCACGGTCAGCGTTGTCTCAGGAGAAGCGTGGAGCGGATATGGAGAATATAAAGGA ATTGCGTCGAACTATCTTGCCGAGCTGCAAGAAGGAGATACGATTACGTGCTTTATTTCCACACCGCAGT CAGAATTTACGCTGCCAAAAGACCCTGAAACGCCGCTTATCATGGTCGGACCGGGAACAGGCGTCGCGCC GTTTAGAGGCTTTGTGCAGGCGCGCAAACAGCTAAAAGAACAAGGACAGTCACTTGGAGAAGCACATTTA TACTTCGGCTGCCGTTCACCTCATGAAGACTATCTGTATCAAGAAGAGCTTGAAAAACGCCCAAAGCGAAG GCATCATTACGCTTCATACCGCTTTTTTCTCGCATGCCAAATCAGCCGAAAACATACGTTCAGCACGTAAT GGAACAAGACGGCAAGAAATTGATTGAACTTCTTGATCAAGGAGCGCACTTCTATATTTGCGGAGACGGA CAGACGCTCGCTTATGGCTGCAGCAGCTAGAAGAAAAGGCCGATACGCAAAAGACGTGTGGGCTGGGCT CGAGCACCACCACCACCACTGA

MTIKEMPQPKTFGELKNLPLLNTDKPVQALMKIADELGEIFKFEAPGRVTRYLSSQRLIKEACDESRFDK NLSQGEKFLRDFLGDGLATSWTHEKNWKKAHNILLPSFSQQAMKGYHAMMVDIAVQLVQKWERLNADEHI EVSEDMTRLTLDTIGLCGFNYRFNSFYRDQPHPFIISLVRALDEVMNKLQRANPDDPAYDENKRQFQEDI KVMNDLVDKIIADRKARGEQSDDLLTQMLNGKDPETGEPLDDGNIRYQIITFLYAGVEGTSGLLSFALYF LVKNPHVLQKVAEEAARVLVDPVPSYKQVKQLKYVGMVLNEALRLWPIVPQFSLYAKEDTVLGGEYPLEK GDEVMVLIPQLHRDKTVWGDDVEEFRPERFENPSAIPQHAFKPFGNGQRASIGQQFALHEATLVLGMMLK HFDFEDHTNYELDIKELLTLKPKGFVVKAKSKKIPLGGIPSPSTEQSAKKVRKKAENAHNTPLLVLYGSN MGTAEGTARDLADIAMSKGFAPQVATLDSHAGNLPREGAVLIVTASYNGHPPDNAKQFVDWLDQASADEV KGVRYSVFGCGDKNWATTYQKVPAFIDETLAAKGAENIADRGEADASDDFEGTYEEWREHMWSDVAAYFN LDIENSEDNKSTLSLQFVDSAADMPLAKMHGAFSTNVVASKELQQPGSARSTRHLEIELPKEASYQEGDH LGVIPRNYEGIVNRVTARFGLDASQQIRLEAEEEKLAHLPLAKTVSVEELLQYVELQDPVTRTQLRAMAA KTVCPPHKVELEALLEKQAYKEQVLAKRLTMLELLEKYPACEMKFSEFIALLPSIRPRYYSISSSPRVDE KQASITVSVVSGEAWSGYGEYKGIASNYLAELQEGDTITCFISTPQSEFTLPKDPETPLIMVGPGTGVAP FRGFVQARKQLKEQGQSLGEAHLYFGCRSPHEDYLYQEELENAQSEGIITLHTAFSRMPNQPKTYVQHVM EQDGKKLIELLDQGAHFYICGDGSQMAPAVEATLMKSYADVHQVSEADARLWLQQLEEKGRYAKDVWAGL EHHHHHH

Nucleotide and amino acid sequences of P411-PYS-5145:

ATGACAATTAAAGAAATGCCTCAGCCAAAAACGTTTGGAGAGCTTAAAAAATTTACCGTTATTAAACACAG ATAAACCGGTTCAAGCTTTGATGAAAATTGCGGATGAATTAGGAGAAATCTTTAAATTCGAGGCGCCTGG TCGTGTAACGCGCTACTTATCAAGTCAGCGTCTAATTAAAGAAGCATGCGATGAATCACGCTTTGATAAA AACTTAAGTCAAGGTGAGAAATTTCTGCGTGATTTTCTTGGAGACGGGTTAGCCACAAGCTGGACGCATG AAAAAATTGGGAAAAAAGCGCATAATATCTTACTTCCAAGCTTTAGTCAGCAGGCAATGAAAGGCTATC ATGCGGTGATGGTCGATATCGCCGTGCAGCTTGTTCAAAAGTGGGAGCGTCTAAATGCAGATGAGCATAT TGAAGTATCGGAAGACATGACACGTTTAACGCTTGATACAATTGGTCTTTGCGGCTTTAACTATCGCTTT AACAGCTTTTACCGAGATCAGCCTCATCCATTTATTATAAGTCTGGTCCGTGCACTGGATGAAGTAATGA ACAAGCTGCAGCGAGCAAATCCAGACGACCCAGCTTATGATGAAAACAAGCGCCAGTTTCAAGAAGATAT CAAGGTGATGAACGACCTAGTAGATAAAATTATTGCAGATCGCAAAGCAAGGGGTGAACAAAGCGATGAT TTATTAACGCAGATGCTAAACGGAAAAGATCCAGAAACGGGTGAGCCGCTTGATGACGGGAACATTCGCT ATCAAATTATTACATTCTTATATGCGGGGGGTTGAAGGTACAAGTGGTCTTTTATCATTTGCGCTGTATTT CTTAGTGAAAAATCCACATGTATTACAAAAAGTAGCAGAAGAAGCAGCACGAGTTCTAGTAGATCCTGTT CCAAGCTACAAACAAGTCAAACAGCTTAAATATGTCGGCATGGTCTTAAACGAAGCGCTGCGCTTATGGC CAATTGTTCCTCAGTTTTCCCTATATGCAAAAGAAGATACGGTGCTTGGAGGAGAATATCCTTTAGAAAA AGGCGACGAAGTAATGGTTCTGATTCCTCAGCTTCACCGTGATAAAACAGTTTGGGGAGACGATGTGGAG GAGTTCCGTCCAGAGCGTTTTGAAAATCCAAGTGCGATTCCGCAGCATGCGTTTAAACCGTTTGGAAACG GTCAGCGTGCGTCTATCGGTCAGCAGTTCGCTCTTCATGAAGCAACGCTGGTACTTGGTATGATGCTAAA ACACTTTGACTTTGAAGATCATACAAACTACGAGCTCGATATTAAAGAACTGCTGACGTTAAAACCTAAA GGCTTTGTGGTAAAAGCAAAATCGAAAAAATTCCGCTTGGCGGTATTCCTTCACCTAGCACTGAACAGT CTGCTAAAAAAGTACGCAAAAAGGCAGAAAACGCTCATAATACGCCGCTGCTTGTGCTATACGGTTCAAA TATGGGTACCGCTGAAGGAACGGCGCGTGATTTAGCAGATATTGCAATGAGCAAAGGATTTGCACCGCAG GTCGCAACGCTTGATTCACACGCCGGAAATCTTCCGCGCGAAGGAGCTGTATTAATTGTAACGGCGTCTT ATAACGGTCATCCGCCTGATAACGCAAAGCAATTTGTCGACTGGTTAGACCAAGCGTCTGCTGATGAAGT AAAAGGCGTTCGCTACTCCGTATTTGGATGCGGCGATAAAAACTGGGCTACTACGTATCAAAAAGTGCCT GCTTTTATCGATGAAACGCTTGCCGCTAAAGGGGCAGAAAACATCGCTGACCGCGGTGAAGCAGATGCAA GCGACGACTTTGAAGGCACATATGAAGAATGGCGTGAACATATGTGGAGTGACGTAGCAGCCTACTTTAA CCTCGACATTGAAAACAGTGAAGATAATAAATCTACTCTTTCACTTCAATTTGTCGACAGCGCCGCGGAT GCAGTGCACGAAGCACGCGACATCTTGAAATTGAACTTCCAAAAGAAGCTTCTTATCAAGAAGGAGATCA TTTAGGTGTTATTCCTCGCAACTATGAAGGAATAGTAAACCGTGTAACAGCAAGGTTCGGCCTAGATGCA TCACAGCAAATCCGTCTGGAAGCAGAAGAAGAAGAAAATTAGCTCATTTGCCACTCGCTAAAACAGTATCCG GTGCTGGCAAAACGTTTAACAATGCTTGAACTGCTTGAAAAATACCCGGCGTGTGAAATGAAATTCAGCG AATTTATCGCCCTTCTGCCAAGCATACGCCCGCGCTATTACTCGATTTCTTCATCACCTCGTGTCGATGA AAAACAAGCAAGCATCACGGTCAGCGTTGTCTCAGGAGAAGCGTGGAGCGGATATGGAGAATATAAAGGA ATTGCGTCGAACTATCTTGCCGAGCTGCAAGAAGGAGATACGATTACGTGCTTTATTTCCACACCGCAGT CAGAATTTACGCTGCCAAAAGACCCTGAAACGCCGCTTATCATGGTCGGACCGGGAACAGGCGTCGCGCC GTTTAGAGGCTTTGTGCAGGCGCGCAAACAGCTAAAAGAACAAGGACAGTCACTTGGAGAAGCACATTTA TACTTCGGCTGCCGTTCACCTCATGAAGACTATCTGTATCAAGAAGAGCTTGAAAAACGCCCAAAGCGAAG GCATCATTACGCTTCATACCGCTTTTTTCTCGCATGCCAAATCAGCCGAAAACATACGTTCAGCACGTAAT GGAACAAGACGGCAAGAAATTGATTGAACTTCTTGATCAAGGAGCGCACTTCTATATTTGCGGAGACGGA CAGACGCTCGCTTATGGCTGCAGCAGCTAGAAGAAAAAGGCCGATACGCAAAAGACGTGTGGGCTGGGCT

CGAGCACCACCACCACCACTGA

MTIKEMPOPKTFGELKNLPLLNTDKPVOALMKIADELGEIFKFEAPGRVTRYLSSORLIKEACDESRFDK NLSQGEKFLRDFLGDGLATSWTHEKNWKKAHNILLPSFSQQAMKGYHAVMVDIAVQLVQKWERLNADEHI EVSEDMTRLTLDTIGLCGFNYRFNSFYRDQPHPFIISLVRALDEVMNKLQRANPDDPAYDENKRQFQEDI KVMNDLVDKIIADRKARGEQSDDLLTQMLNGKDPETGEPLDDGNIRYQIITFLYAGVEGTSGLLSFALYF LVKNPHVLQKVAEEAARVLVDPVPSYKQVKQLKYVGMVLNEALRLWPIVPQFSLYAKEDTVLGGEYPLEK GDEVMVLIPQLHRDKTVWGDDVEEFRPERFENPSAIPQHAFKPFGNGQRASIGQQFALHEATLVLGMMLK HFDFEDHTNYELDIKELLTLKPKGFVVKAKSKKIPLGGIPSPSTEOSAKKVRKKAENAHNTPLLVLYGSN MGTAEGTARDLADIAMSKGFAPOVATLDSHAGNLPREGAVLIVTASYNGHPPDNAKOFVDWLDOASADEV KGVRYSVFGCGDKNWATTYQKVPAFIDETLAAKGAENIADRGEADASDDFEGTYEEWREHMWSDVAAYFN LDIENSEDNKSTLSLQFVDSAADMPLAKMHGAFSTNVVASKELQQPGSARSTRHLEIELPKEASYQEGDH LGVIPRNYEGIVNRVTARFGLDASQQIRLEAEEEKLAHLPLAKTVSVEELLQYVELQDPVTRTOLRAMAA KTVCPPHKVELEALLEKOAYKEOVLAKRLTMLELLEKYPACEMKFSEFIALLPSIRPRYYSISSSPRVDE KQASITVSVVSGEAWSGYGEYKGIASNYLAELQEGDTITCFISTPQSEFTLPKDPETPLIMVGPGTGVAP FRGFVQARKQLKEQGQSLGEAHLYFGCRSPHEDYLYQEELENAQSEGIITLHTAFSRMPNQPKTYVQHVM EQDGKKLIELLDQGAHFYICGDGSQMAPAVEATLMKSYADVHQVSEADARLWLQQLEEKGRYAKDVWAGL ЕНННННН

Nucleotide and amino acid sequences of P411-PYS-5146:

ATGACAATTAAAGAAATGCCTCAGCCAAAAACGTTTGGAGAGCTTAAAAATTTACCGTTATTAAACACAG ATAAACCGGTTCAAGCTTTGATGAAAATTGCGGATGAATTAGGAGAAATCTTTAAATTCGAGGCGCCTGG TCGTGTAACGCGCTACTTATCAAGTCAGCGTCTAATTAAAGAAGCATGCGATGAATCACGCTTTGATAAA AACTTAAGTCAAGGTGAGAAATGTCTGCGTGATTTTCTTGGAGACGGGTTAGCCACAAGCTGGACGCATG AAAAAATTGGGAAAAAAGCGCATAATATCTTACTTCCAAGCTTTAGTCAGCAGGCAATGAAAGGCTATC ATGCGGTGATGGTCGATATCGCCGTGCAGCTTGTTCAAAAGTGGGAGCGTCTAAATGCAGATGAGCATAT TGAAGTATCGGAAGACATGACACGTTTAACGCTTGATACAATTGGTCTTTGCGGCTTTAACTATCGCTTT AACAGCTTTTACCGAGATCAGCCTCATCCATTTATTATAAGTCTGGTCCGTGCACTGGATGAAGTAATGA ACAAGCTGCAGCGAGCAAATCCAGACGACCCAGCTTATGATGAAAACAAGCGCCAGTTTCAAGAAGATAT CAAGGTGATGAACGACCTAGTAGATAAAATTATTGCAGATCGCAAAGCAAGGGGTGAACAAAGCGATGAT TTATTAACGCAGATGCTAAACGGAAAAGATCCAGAAACGGGTGAGCCGCTTGATGACGGGAACATTCGCT CTTAGTGAAAAATCCACATGTATTACAAAAAGTAGCAGAAGAAGCAGCACGAGTTCTAGTAGATCCTGTT CCAAGCTACAAACAAGTCAAACAGCTTAAATATGTCGGCATGGTCTTAAACGAAGCGCTGCGCTTATGGC CAATTGTTCCTCAGTTTTCCCTATATGCAAAAGAAGATACGGTGCTTGGAGGAGAATATCCTTTAGAAAA AGGCGACGAAGTAATGGTTCTGATTCCTCAGCTTCACCGTGATAAAACAGTTTGGGGAGACGATGTGGAG GAGTTCCGTCCAGAGCGTTTTGAAAATCCAAGTGCGATTCCGCAGCATGCGTTTAAACCGTTTGGAAACG GTCAGCGTGCGTCTATCGGTCAGCAGTTCGCTCTTCATGAAGCAACGCTGGTACTTGGTATGATGCTAAA ACACTTTGACTTTGAAGATCATACAAACTACGAGCTCGATATTAAAGAACTGCTGACGTTAAAACCTAAA GGCTTTGTGGTAAAAGCAAAATCGAAAAAATTCCGCTTGGCGGTATTCCTTCACCTAGCACTGAACAGT CTGCTAAAAAAGTACGCAAAAAAGGCAGAAAACGCTCATAATACGCCGCTGCTTGTGCTATACGGTTCAAA TATGGGTACCGCTGAAGGAACGGCGCGTGATTTAGCAGATATTGCAATGAGCAAAGGATTTGCACCGCAG GTCGCAACGCTTGATTCACACGCCGGAAATCTTCCGCGCGAAGGAGCTGTATTAATTGTAACGGCGTCTT ATAACGGTCATCCGCCTGATAACGCAAAGCAATTTGTCGACTGGTTAGACCAAGCGTCTGCTGATGAAGT AAAAGGCGTTCGCTACTCCGTATTTGGATGCGGCGATAAAAACTGGGCTACTACGTATCAAAAAGTGCCT GCTTTTATCGATGAAACGCTTGCCGCTAAAGGGGCAGAAAACATCGCTGACCGCGGTGAAGCAGATGCAA GCGACGACTTTGAAGGCACATATGAAGAATGGCGTGAACATATGTGGAGTGACGTAGCAGCCTACTTTAA CCTCGACATTGAAAACAGTGAAGATAATAAATCTACTCTTTCACTTCAATTTGTCGACAGCGCCGCGGAT GCAGTGCACGAAGCACGCGACATCTTGAAATTGAACTTCCAAAAGAAGCTTCTTATCAAGAAGGAGATCA TTTAGGTGTTATTCCTCGCAACTATGAAGGAATAGTAAACCGTGTAACAGCAAGGTTCGGCCTAGATGCA

MTIKEMPOPKTFGELKNLPLLNTDKPVQALMKIADELGEIFKFEAPGRVTRYLSSQRLIKEACDESRFDK NLSQGEKCLRDFLGDGLATSWTHEKNWKKAHNILLPSFSQQAMKGYHAVMVDIAVQLVQKWERLNADEHI EVSEDMTRLTLDTIGLCGFNYRFNSFYRDQPHPFIISLVRALDEVMNKLQRANPDDPAYDENKRQFQEDI KVMNDLVDKIIADRKARGEQSDDLLTQMLNGKDPETGEPLDDGNIRYQIITFLYAGVEGTSGLLSFALYF LVKNPHVLQKVAEEAARVLVDPVPSYKQVKQLKYVGMVLNEALRLWPIVPQFSLYAKEDTVLGGEYPLEK GDEVMVLIPQLHRDKTVWGDDVEEFRPERFENPSAIPQHAFKPFGNGQRASIGQQFALHEATLVLGMMLK HFDFEDHTNYELDIKELLTLKPKGFVVKAKSKKIPLGGIPSPSTEQSAKKVRKKAENAHNTPLLVLYGSN MGTAEGTARDLADIAMSKGFAPOVATLDSHAGNLPREGAVLIVTASYNGHPPDNAKOFVDWLDOASADEV KGVRYSVFGCGDKNWATTYQKVPAFIDETLAAKGAENIADRGEADASDDFEGTYEEWREHMWSDVAAYFN $\verb|LDIENSEDNKSTLSLQFVDSAADMPLAKMHGAFSTNVVASKELQQPGSARSTRHLEIELPKEASYQEGDH|$ LGVIPRNYEGIVNRVTARFGLDASQQIRLEAEEEKLAHLPLAKTVSVEELLQYVELQDPVTRTQLRAMAA KTVCPPHKVELEALLEKQAYKEQVLAKRLTMLELLEKYPACEMKFSEFIALLPSIRPRYYSISSSPRVDE KQASITVSVVSGEAWSGYGEYKGIASNYLAELQEGDTITCFISTPQSEFTLPKDPETPLIMVGPGTGVAP FRGFVQARKQLKEQGQSLGEAHLYFGCRSPHEDYLYQEELENAQSEGIITLHTAFSRMPNQPKTYVQHVM EQDGKKLIELLDQGAHFYICGDGSQMAPAVEATLMKSYADVHQVSEADARLWLQQLEEKGRYAKDVWAGL ЕНННННН

Nucleotide and amino acid sequences of P411-PYS-5147:

ATGACAATTAAAGAAATGCCTCAGCCAAAAACGTTTGGAGAGCTTAAAAATTTACCGTTATTAAACACAG ATAAACCGGTTCAAGCTTTGATGAAAATTGCGGATGAATTAGGAGAAATCTTTAAATTCGAGGCGCCTGG TCGTGTAACGCGCTACTTATCAAGTCAGCGTCTAATTAAAGAAGCATGCGATGAATCACGCTTTGATAAA AACTTATGGCAAGGTGAGAAATGTCTGCGTGATTTTCTTGGAGACGGGTTAGCCACAAGCTGGACGCATG AAAAAAATTGGGAAAAAAGCGCATAATATCTTACTTCCAAGCTTTAGTCAGCAGGCAATGAAAGGCTATC ATGCGGTGATGGTCGATATCGCCGTGCAGCTTGTTCAAAAGTGGGAGCGTCTAAATGCAGATGAGCATAT TGAAGTATCGGAAGACATGACACGTTTAACGCTTGATACAATTGGTCTTTGCGGCTTTAACTATCGCTTT AACAGCTTTTACCGAGATCAGCCTCATCCATTTATTATAAGTCTGGTCCGTGCACTGGATGAAGTAATGA ACAAGCTGCAGCGAGCAAATCCAGACGACCCAGCTTATGATGAAAACAAGCGCCAGTTTCAAGAAGATAT CAAGGTGATGAACGACCTAGTAGATAAAATTATTGCAGATCGCAAAGCAAGGGGTGAACAAAGCGATGAT TTATTAACGCAGATGCTAAACGGAAAAGATCCAGAAACGGGTGAGCCGCTTGATGACGGGAACATTCGCT ATCAAATTATTACATTCTTATATGCGGGGGGTTGAAGGTACAAGTGGTCTTTTATCATTTGCGCTGTATTT CTTAGTGAAAAATCCACATGTATTACAAAAAGTAGCAGAAGAAGCAGCACGAGTTCTAGTAGATCCTGTT CCAAGCTACAAACAAGTCAAACAGCTTAAATATGTCGGCATGGTCTTAAACGAAGCGCTGCGCTTATGGC CAATTGTTCCTCAGTTTTCCCTATATGCAAAAGAAGATACGGTGCTTGGAGGAGAATATCCTTTAGAAAA AGGCGACGAAGTAATGGTTCTGATTCCTCAGCTTCACCGTGATAAAACAGTTTGGGGAGACGATGTGGAG GAGTTCCGTCCAGAGCGTTTTGAAAATCCAAGTGCGATTCCGCAGCATGCGTTTAAACCGTTTGGAAACG GTCAGCGTGCGTCTATCGGTCAGCAGTTCGCTCTTCATGAAGCAACGCTGGTACTTGGTATGATGCTAAA ACACTTTGACTTTGAAGATCATACAAACTACGAGCTCGATATTAAAGAACTGCTGACGTTAAAAACCTAAA GGCTTTGTGGTAAAAGCAAAATCGAAAAAATTCCGCTTGGCGGTATTCCTTCACCTAGCACTGAACAGT CTGCTAAAAAAGTACGCAAAAAGGCAGAAAACGCTCATAATACGCCGCTGCTTGTGCTATACGGTTCAAA TATGGGTACCGCTGAAGGAACGGCGCGTGATTTAGCAGATATTGCAATGAGCAAAGGATTTGCACCGCAG GTCGCAACGCTTGATTCACACGCCGGAAATCTTCCGCGCGAAGGAGCTGTATTAATTGTAACGGCGTCTT ATAACGGTCATCCGCCTGATAACGCAAAGCAATTTGTCGACTGGTTAGACCAAGCGTCTGCTGATGAAGT AAAAGGCGTTCGCTACTCCGTATTTGGATGCGGCGATAAAAACTGGGCTACTACGTATCAAAAAGTGCCT GCTTTTATCGATGAAACGCTTGCCGCTAAAGGGGCAGAAAACATCGCTGACCGCGGTGAAGCAGATGCAA GCGACGACTTTGAAGGCACATATGAAGAATGGCGTGAACATATGTGGAGTGACGTAGCAGCCTACTTTAA CCTCGACATTGAAAACAGTGAAGATAATAAATCTACTCTTTCACTTCAATTTGTCGACAGCGCCGCGGAT GCAGTGCACGAAGCACGCGACATCTTGAAATTGAACTTCCAAAAGAAGCTTCTTATCAAGAAGGAGATCA TTTAGGTGTTATTCCTCGCAACTATGAAGGAATAGTAAACCGTGTAACAGCAAGGTTCGGCCTAGATGCA TCACAGCAAATCCGTCTGGAAGCAGAAGAAGAAGAAAATTAGCTCATTTGCCACTCGCTAAAACAGTATCCG GTGCTGGCAAAACGTTTAACAATGCTTGAACTGCTTGAAAAATACCCCGGCGTGTGAAATGAAATTCAGCG AATTTATCGCCCTTCTGCCAAGCATACGCCCGCGCTATTACTCGATTTCTTCATCACCTCGTGTCGATGA AAAACAAGCAAGCATCACGGTCAGCGTTGTCTCAGGAGAAGCGTGGAGCGGATATGGAGAATATAAAGGA ATTGCGTCGAACTATCTTGCCGAGCTGCAAGAAGGAGATACGATTACGTGCTTTATTTCCACACCGCAGT CAGAATTTACGCTGCCAAAAGACCCTGAAACGCCGCTTATCATGGTCGGACCGGGAACAGGCGTCGCGCC GTTTAGAGGCTTTGTGCAGGCGCGCAAACAGCTAAAAGAACAAGGACAGTCACTTGGAGAAGCACATTTA TACTTCGGCTGCCGTTCACCTCATGAAGACTATCTGTATCAAGAAGAGCTTGAAAAACGCCCAAAGCGAAG GCATCATTACGCTTCATACCGCTTTTTCTCGCATGCCAAATCAGCCGAAAACATACGTTCAGCACGTAAT GGAACAAGACGGCAAGAAATTGATTGAACTTCTTGATCAAGGAGCGCACTTCTATATTTGCGGAGACGGA CAGACGCTCGCTTATGGCTGCAGCAGCTAGAAGAAAAAGGCCGATACGCAAAAGACGTGTGGGCTGGGCT CGAGCACCACCACCACCACTGA

MTIKEMPOPKTFGELKNLPLLNTDKPVQALMKIADELGEIFKFEAPGRVTRYLSSQRLIKEACDESRFDK NLWOGEKCLRDFLGDGLATSWTHEKNWKKAHNILLPSFSOOAMKGYHAVMVDIAVOLVOKWERLNADEHI EVSEDMTRLTLDTIGLCGFNYRFNSFYRDQPHPFIISLVRALDEVMNKLQRANPDDPAYDENKRQFQEDI KVMNDLVDKIIADRKARGEQSDDLLTQMLNGKDPETGEPLDDGNIRYQIITFLYAGVEGTSGLLSFALYF LVKNPHVLOKVAEEAARVLVDPVPSYKOVKOLKYVGMVLNEALRLWPIVPOFSLYAKEDTVLGGEYPLEK GDEVMVLIPQLHRDKTVWGDDVEEFRPERFENPSAIPQHAFKPFGNGQRASIGQQFALHEATLVLGMMLK HFDFEDHTNYELDIKELLTLKPKGFVVKAKSKKIPLGGIPSPSTEQSAKKVRKKAENAHNTPLLVLYGSN MGTAEGTARDLADIAMSKGFAPQVATLDSHAGNLPREGAVLIVTASYNGHPPDNAKQFVDWLDQASADEV KGVRYSVFGCGDKNWATTYQKVPAFIDETLAAKGAENIADRGEADASDDFEGTYEEWREHMWSDVAAYFN LDIENSEDNKSTLSLQFVDSAADMPLAKMHGAFSTNVVASKELQQPGSARSTRHLEIELPKEASYQEGDH LGVIPRNYEGIVNRVTARFGLDASQOIRLEAEEEKLAHLPLAKTVSVEELLQYVELQDPVTRTQLRAMAA KTVCPPHKVELEALLEKQAYKEQVLAKRLTMLELLEKYPACEMKFSEFIALLPSIRPRYYSISSSPRVDE KOASITVSVVSGEAWSGYGEYKGIASNYLAELOEGDTITCFISTPOSEFTLPKDPETPLIMVGPGTGVAP FRGFVQARKQLKEQGQSLGEAHLYFGCRSPHEDYLYQEELENAQSEGIITLHTAFSRMPNQPKTYVQHVM EQDGKKLIELLDQGAHFYICGDGSQMAPAVEATLMKSYADVHQVSEADARLWLQQLEEKGRYAKDVWAGL ЕНННННН

Nucleotide and amino acid sequences of P411-PYS-5148:

ATGACAATTAAAGAAATGCCTCAGCCAAAAACGTTTGGAGAGCTTAAAAAATTTACCGTTATTAAACACAG ATAAACCGGTTCAAGCTTTGATGAAAATTGCGGATGAATTAGGAGAAATCTTTAAATTCGAGGCGCCTGG TCGTGTAACGCGCTACTTATCAAGTCAGCGTCTAATTAAAGAAGCATGCGATGAATCACGCCTTTGATAAA AACTTATGGGCGGGTGAGAAATGTCTGCGTGATTTTCTTGGAGACGGGTTAGCCACAAGCTGGACGCATG AAAAAAATTGGAAAAAAGCGCATAATATCTTACTTCCAAGCTTTAGTCAGCAGGCAATGAAAGGCTATCA TGCGGTGATGGTCGATATCGCCGTGCAGCTTGTTCAAAAGTGGGAGCGTCTAAATGCAGATGAGCATATT GAAGTATCGGAAGACATGACACGTTTAACGCTTGATACAATTGGTCTTTGCGGCTTTAACTATCGCTTTA ACAGCTTTTACCGAGATCAGCCTCATCCATTTATTATAAGTCTGGTCCGTGCACTGGATGAAGTAATGAA CAAGCTGCAGCGAGCAAATCCAGACGACCCAGCTTATGATGAAAACAAGCGCCAGTTTCAAGAAGATATC AAGGTGATGAACGACCTAGTAGATAAAATTATTGCAGATCGCAAAGCAAGGGGTGAACAAAGCGATGATT TATTAACGCAGATGCTAAACGGAAAAGATCCAGAAACGGGTGAGCCGCTTGATGACGGGAACATTCGCTA TCAAATTATTACATTCTTATATGCGGGGGGTTGAAGGTACAAGTGGTCTTTTATCATTTGCGCTGTATTTC TTAGTGAAAAATCCACATGTATTACAAAAAGTAGCAGAAGAAGCAGCACGAGTTCTAGTAGATCCTGTTC CAAGCTACAAACAAGTCAAACAGCTTAAATATGTCGGCATGGTCTTAAACGAAGCGCTGCGCTTATGGCC AATTGTTCCTCAGTTTTCCCTATATGCAAAAGAAGATACGGTGCTTGGAGGAGAATATCCTTTAGAAAAA GGCGACGAAGTAATGGTTCTGATTCCTCAGCTTCACCGTGATAAAACAGTTTGGGGAGACGATGTGGAGG AGTTCCGTCCAGAGCGTTTTGAAAATCCAAGTGCGATTCCGCAGCATGCGTTTAAACCGTTTGGAAACGG TCAGCGTGCGTCTATCGGTCAGCAGTTCGCTCTTCATGAAGCAACGCTGGTACTTGGTATGATGCTAAAA CACTTTGACTTTGAAGATCATACAAACTACGAGCTCGATATTAAAGAACTGCTGACGTTAAAACCTAAAG GCTTTGTGGTAAAAGCAAAATCGAAAAAATTCCGCTTGGCGGTATTCCTTCACCTAGCACTGAACAGTC TGCTAAAAAAGTACGCAAAAAGGCAGAAAACGCTCATAATACGCCGCTGCTTGTGCTATACGGTTCAAAT ATGGGTACCGCTGAAGGAACGGCGCGTGATTTAGCAGATATTGCAATGAGCAAAGGATTTGCACCGCAGG TCGCAACGCTTGATTCACACGCCGGAAATCTTCCGCGCGAAGGAGCTGTATTAATTGTAACGGCGTCTTA TAACGGTCATCCGCCTGATAACGCAAAGCAATTTGTCGACTGGTTAGACCAAGCGTCTGCTGATGAAGTA AAAGGCGTTCGCTACTCCGTATTTGGATGCGGCGATAAAAACTGGGCTACTACGTATCAAAAAGTGCCTG CTTTTATCGATGAAACGCTTGCCGCTAAAGGGGCAGAAAACATCGCTGACCGCGGTGAAGCAGATGCAAG CGACGACTTTGAAGGCACATATGAAGAATGGCGTGAACATATGTGGAGTGACGTAGCAGCCTACTTTAAC CTCGACATTGAAAACAGTGAAGATAATAAATCTACTCTTTCACTTCAATTTGTCGACAGCGCCGCGGATA CAGTGCACGAAGCACGCGACATCTTGAAATTGAACTTCCAAAAGAAGCTTCTTATCAAGAAGGAGATCAT TTAGGTGTTATTCCTCGCAACTATGAAGGAATAGTAAACCGTGTAACAGCAAGGTTCGGCCTAGATGCAT CACAGCAAATCCGTCTGGAAGCAGAAGAAGAAAAATTAGCTCATTTGCCACTCGCTAAAACAGTATCCGT TGCTGGCAAAACGTTTAACAATGCTTGAACTGCTTGAAAAATACCCGGCGTGTGAAATGAAATTCAGCGA ATTTATCGCCCTTCTGCCAAGCATACGCCCGCGCTATTACTCGATTTCTTCATCACCTCGTGTCGATGAA AAACAAGCAAGCATCACGGTCAGCGTTGTCTCAGGAGAAGCGTGGAGCGGATATGGAGAATATAAAGGAA TTGCGTCGAACTATCTTGCCGAGCTGCAAGAAGGAGATACGATTACGTGCTTTATTTCCACACCGCAGTC AGAATTTACGCTGCCAAAAGACCCTGAAACGCCGCTTATCATGGTCGGACCGGGAACAGGCGTCGCGCCG TTTAGAGGCTTTGTGCAGGCGCGCAAACAGCTAAAAGAACAAGGACAGTCACTTGGAGAAGCACATTTAT ACTTCGGCTGCCGTTCACCTCATGAAGACTATCTGTATCAAGAAGAGCTCGAAAACGCCCAAAGCGAAGG CATCATTACGCTTCATACCGCTTTTTCTCGCATGCCAAATCAGCCGAAAACATACGTTCAGCACGTAATG GAACAAGACGGCAAGAAATTGATTGAACTTCTTGATCAAGGAGCGCACTTCTATATTTGCGGAGACGGAA AGACGCTCGCTTATGGCTGCAGCAGCTAGAAGAAAAAGGCCGATACGCAAAAGACGTGTGGGCTGGGCTC GAGCACCACCACCACCACTGA

MTIKEMPQPKTFGELKNLPLLNTDKPVQALMKIADELGEIFKFEAPGRVTRYLSSQRLIKEACDESRFDK NLWAGEKCLRDFLGDGLATSWTHEKNWKKAHNILLPSFSQQAMKGYHAVMVDIAVQLVQKWERLNADEHI EVSEDMTRLTLDTIGLCGFNYRFNSFYRDQPHPFIISLVRALDEVMNKLQRANPDDPAYDENKRQFQEDI KVMNDLVDKIIADRKARGEQSDDLLTQMLNGKDPETGEPLDDGNIRYQIITFLYAGVEGTSGLLSFALYF LVKNPHVLQKVAEEAARVLVDPVPSYKQVKQLKYVGMVLNEALRLWPIVPQFSLYAKEDTVLGGEYPLEK GDEVMVLIPQLHRDKTVWGDDVEEFRPERFENPSAIPQHAFKPFGNGQRASIGQQFALHEATLVLGMMLK HFDFEDHTNYELDIKELLTLKPKGFVVKAKSKKIPLGGIPSPSTEQSAKKVRKKAENAHNTPLLVLYGSN MGTAEGTARDLADIAMSKGFAPQVATLDSHAGNLPREGAVLIVTASYNGHPPDNAKQFVDWLDQASADEV KGVRYSVFGCGDKNWATTYQKVPAFIDETLAAKGAENIADRGEADASDDFEGTYEEWREHMWSDVAAYFN LDIENSEDNKSTLSLQFVDSAADMPLAKMHGAFSTNVVASKELQQPGSARSTRHLEIELPKEASYQEGDH LGVIPRNYEGIVNRVTARFGLDASQQIRLEAEEEKLAHLPLAKTVSVEELLQYVELQDPVTRTQLRAMAA KTVCPPHKVELEALLEKQAYKEQVLAKRLTMLELLEKYPACEMKFSEFIALLPSIRPRYYSISSSPRVDE KQASITVSVVSGEAWSGYGEYKGIASNYLAELQEGDTITCFISTPQSEFTLPKDPETPLIMVGPGTGVAP FRGFVQARKQLKEQGQSLGEAHLYFGCRSPHEDYLYQEELENAQSEGIITLHTAFSRMPNQPKTYVQHVM EQDGKKLIELLDQGAHFYICGDGSQMAPAVEATLMKSYADVHQVSEADARLWLQQLEEKGRYAKDVWAGL EHHHHHH

Nucleotide and amino acid sequences of P411-PYS-5149:

ATGACAATTAAAGAAATGCCTCAGCCAAAAACGTTTGGAGAGCTTAAAAATTTACCGTTATTAAACACAG ATAAACCGGTTCAAGCTTTGATGAAAATTGCGGATGAATTAGGAGAAATCTTTAAATTCGAGGCGCCTGG TCGTGTAACGCGCTACTTATCAAGTCAGCGTCTAATTAAAGAAGCATGCGATGAATCACGCTTTGATAAA AACTTATGGGCGGGTGAGAAATGTCTGCGTGATTTTCTTGGAGACGGGTTAGCCACAAGCTGGACGCATG AAAAAAATTGGAAAAAAGCGCATAATATCTTACTTCCAAGCTTTAGTCAGCAGGCAATGAAAGGCTATCA TGCGGTGATGGTCGATATCGCCGTGCAGCTTGTTCAAAAGTGGGAGCGTCTAAATGCAGATGAGCATATT GAAGTATCGGAAGACATGACACGTTTAACGCTTGATACAATTGGTCTTTGCGGCTTTAACTATCGCTTTA ACAGCTTTTACCGAGATCAGCCTCATCCATTTATTATAAGTCTGGTCCGTGCACTGGATGAAGTAATGAA CAAGCTGCAGCGAGCAAATCCAGACGACCCAGCTTATGATGAAAACAAGCGCCAGTTTCAAGAAGATATC AAGGTGATGAACGACCTAGTAGATAAAATTATTGCAGATCGCAAAGCGAAGGGGTGAACAAAGCGATGATT TATTAACGCAGATGCTAAACGGAAAAGATCCAGAAACGGGTGAGCCGCTTGATGACGGGAACATTCGCTA TCAAATTATTACATTCTTATATGCGGGGGGTTGAAGGTACAAGTGGTCTTTTATCATTTGCGCTGTATTTC TTAGTGAAAAATCCACATGTATTACAAAAAGTAGCAGAAGAAGCAGCACGAGTTCTAGTAGATCCTGTTC CAAGCTACAAACAAGTCAAACAGCTTAAATATGTCGGCATGGTCTTAAACGAAGCGCTGCGCTTATGGCC AATTGTTCCTCAGTTTTCCCTATATGCAAAAGAAGATACGGTGCTTGGAGGAGAATATCCTTTAGAAAAA GGCGACGAAGTAATGGTTCTGATTCCTCAGCTTCACCGTGATAAAACAGTTTGGGGAGACGATGTGGAGG AGTTCCGTCCAGAGCGTTTTGAAAATCCAAGTGCGATTCCGCAGCATGCGTTTAAACCGTTTGGAAACGG TCAGCGTGCGTCTATCGGTCAGCAGTTCGCTCTTCATGAAGCAACGCTGGTACTTGGTATGATGCTAAAA CACTTTGACTTTGAAGATCATACAAACTACGAGCTCGATATTAAAGAACGTCTGACGTTAAAACCTAAAG GCTTTGTGGTAAAAGCAAAATCGAAAAAAATTCCGCTTGGCGGTATTCCTTCACCTAGCACTGAACAGTC TGCTAAAAAAGTACGCAAAAAGGCAGAAAACGCTCATAATACGCCGCTGCTTGTGCTATACGGTTCAAAT ATGGGTACCGCTGAAGGAACGGCGCGTGATTTAGCAGATATTGCAATGAGCAAAGGATTTGCACCGCAGG TCGCAACGCTTGATTCACACGCCGGAAATCTTCCGCGCGAAGGAGCTGTATTAATTGTAACGGCGTCTTA TAACGGTCATCCGCCTGATAACGCAAAGCAATTTGTCGACTGGTTAGACCAAGCGTCTGCTGATGAAGTA AAAGGCGTTCGCTACTCCGTATTTGGATGCGGCGATAAAAACTGGGCTACTACGTATCAAAAAGTGCCTG CTTTTATCGATGAAACGCTTGCCGCTAAAGGGGCAGAAAACATCGCTGACCGCGGTGAAGCAGATGCAAG CGACGACTTTGAAGGCACATATGAAGAATGGCGTGAACATATGTGGAGTGACGTAGCAGCCTACTTTAAC CTCGACATTGAAAACAGTGAAGATAATAAATCTACTCTTTCACTTCAATTTGTCGACAGCGCCGCGGATA CAGTGCACGAAGCACGCGACATCTTGAAATTGAACTTCCAAAAGAAGCTTCTTATCAAGAAGGAGATCAT TTAGGTGTTATTCCTCGCAACTATGAAGGAATAGTAAACCGTGTAACAGCAAGGTTCGGCCTAGATGCAT CACAGCAAATCCGTCTGGAAGCAGAAGAAGAAAAATTAGCTCATTTGCCACTCGCTAAAACAGTATCCGT TGCTGGCAAAACGTTTAACAATGCTTGAACTGCTTGAAAAATACCCGGCGTGTGAAATGAAATTCAGCGA ATTTATCGCCCTTCTGCCAAGCATACGCCCGCGCTATTACTCGATTTCTTCATCACCTCGTGTCGATGAA AAACAAGCAAGCATCACGGTCAGCGTTGTCTCAGGAGAAGCGTGGAGCGGATATGGAGAATATAAAGGAA TTGCGTCGAACTATCTTGCCGAGCTGCAAGAAGGAGATACGATTACGTGCTTTATTTCCACACCGCAGTC AGAATTTACGCTGCCAAAAGACCCTGAAACGCCGCTTATCATGGTCGGACCGGGAACAGGCGTCGCGCCG TTTAGAGGCTTTGTGCAGGCGCGCAAACAGCTAAAAGAACAAGGACAGTCACTTGGAGAAGCACATTTAT ACTTCGGCTGCCGTTCACCTCATGAAGACTATCTGTATCAAGAAGAGCTCGAAAACGCCCAAAGCGAAGG MTIKEMPOPKTFGELKNLPLLNTDKPVQALMKIADELGEIFKFEAPGRVTRYLSSQRLIKEACDESRFDK NLWAGEKCLRDFLGDGLATSWTHEKNWKKAHNILLPSFSQQAMKGYHAVMVDIAVQLVQKWERLNADEHI EVSEDMTRLTLDTIGLCGFNYRFNSFYRDOPHPFIISLVRALDEVMNKLORANPDDPAYDENKROFOEDI KVMNDLVDKIIADRKARGEQSDDLLTQMLNGKDPETGEPLDDGNIRYQIITFLYAGVEGTSGLLSFALYF LVKNPHVLQKVAEEAARVLVDPVPSYKQVKQLKYVGMVLNEALRLWPIVPQFSLYAKEDTVLGGEYPLEK GDEVMVLIPQLHRDKTVWGDDVEEFRPERFENPSAIPQHAFKPFGNGQRASIGQQFALHEATLVLGMMLK HFDFEDHTNYELDIKERLTLKPKGFVVKAKSKKIPLGGIPSPSTEOSAKKVRKKAENAHNTPLLVLYGSN MGTAEGTARDLADIAMSKGFAPOVATLDSHAGNLPREGAVLIVTASYNGHPPDNAKOFVDWLDOASADEV KGVRYSVFGCGDKNWATTYQKVPAFIDETLAAKGAENIADRGEADASDDFEGTYEEWREHMWSDVAAYFN LDIENSEDNKSTLSLQFVDSAADMPLAKMHGAFSTNVVASKELQQPGSARSTRHLEIELPKEASYQEGDH LGVIPRNYEGIVNRVTARFGLDASQQIRLEAEEEKLAHLPLAKTVSVEELLQYVELQDPVTRTQLRAMAA KTVCPPHKVELEALLEKQAYKEQVLAKRLTMLELLEKYPACEMKFSEFIALLPSIRPRYYSISSSPRVDE KQASITVSVVSGEAWSGYGEYKGIASNYLAELQEGDTITCFISTPQSEFTLPKDPETPLIMVGPGTGVAP FRGFVQARKQLKEQGQSLGEAHLYFGCRSPHEDYLYQEELENAQSEGIITLHTAFSRMPNQPKTYVQHVM EQDGKKLIELLDQGAHFYICGDGSQMAPAVEATLMKSYADVHQVSEADARLWLQQLEEKGRYAKDVWAGL ЕНННННН

Nucleotide and amino acid sequences of P411-INS-5150:

ATGACAATTAAAGAAATGCCTCAGCCAAAAACGTTTGGAGAGCTTAAAAAATTTACCGTTATTAAACACAG ATAAACCGGTTCAAGCTTTGATGAAAATTGCGGATGAATTAGGAGAAATCTTTAAATTCGAGGCGCCTGG TCGTGTAACGCGCTACTTATCAAGTCAGCGTCTAATTAAAGAAGCATGCGATGAATCACGCTTTGATAAA AACTTATGGGCGGGTGAGAAATGTCTGCGTGATTTTCTTGGAGACGGGTTAGCCACAAGCTGGACGCATG AAAAAAATTGGAAAAAAGCGCATAATATCTTACTTCCAAGCTTTAGTCAGCAGGCAATGAAAGGCTATCA TGCGGTGATGGTCGATATCGCCGTGCAGCTTGTTCAAAAGTGGGAGCGTCTAAATGCAGATGAGCATATT GAAGTATCGGAAGACATGACACGTTTAACGCTTGATACAATTGGTCTTTGCGGCTTTAACTATCGCTTTA ACAGCTTTTACCGAGATCAGCCTCATCCATTTATTATAAGTCTGGTCCGTGCACTGGATGAAGTAATGAA CAAGCTGCAGCGAGCAAATCCAGACGACCCAGCTTATGATGAAAACAAGCGCCAGTTTCAAGAAGATATC AAGGTGATGAACGACCTAGTAGATAAAATTATTGCAGATCGCAAAGCAAGGGGTGAACAAAGCGATGATT TATTAACGCAGATGCTAAACGGAAAAGATCCAGAAACGGGTGAGCCGCTTGATGACGGGAACATTCGCTA TCAAATTATTACATTCTTATATGCGGGGGGTTGAAGGTACAAGTGGTCTTTTATCATTTGCGCTGTATTTC TTAGTGAAAAATCCACATGTATTACAAAAAGTAGCAGAAGAAGCAGCACGAGTTCTAGTAGATCCTGTTC CAAGCTACAAACAAGTCAAACAGCTTAAATATGTCGGCATGGTCTTAAACGAAGCGCTGCGCTTATGGCC AATTGTTCCTCAGTTTTCCCTATATGCAAAAGAAGATACGGTGCTTGGAGGAGAATATCCTTTAGAAAAA GGCGACGAAGTAATGGTTCTGATTCCTCAGCTTCACCGTGATAAAACAGTTTGGGGAGACGATGTGGAGG AGTTCCGTCCAGAGCGTTTTGAAAATCCAAGTGCGATTCCGCAGCATGCGTTTAAACCGTTTGGAAACGG TCAGCGTGCGTCTATCGGTCAGCAGTTCGCTCTTCATGAAGCAACGCTGGTACTTGGTATGATGCTAAAA CACTTTGACTTTGAAGATCATACAAACTACGAGCTCGATATTAAAGAACTGCCGACGTTAAAACCTAAAG GCTTTGTGGTAAAAGCAAAATCGAAAAAATTCCGCTTGGCGGTATTCCTTCACCTAGCACTGAACAGTC TGCTAAAAAAGTACGCAAAAAGGCAGAAAACGCTCATAATACGCCGCTGCTTGTGCTATACGGTTCAAAT ATGGGTACCGCTGAAGGAACGGCGCGTGATTTAGCAGATATTGCAATGAGCAAAGGATTTGCACCGCAGG TCGCAACGCTTGATTCACACGCCGGAAATCTTCCGCGCGAAGGAGCTGTATTAATTGTAACGGCGTCTTA TAACGGTCATCCGCCTGATAACGCAAAGCAATTTGTCGACTGGTTAGACCAAGCGTCTGCTGATGAAGTA AAAGGCGTTCGCTACTCCGTATTTGGATGCGGCGATAAAAACTGGGCTACTACGTATCAAAAAGTGCCTG CTTTTATCGATGAAACGCTTGCCGCTAAAGGGGCAGAAAACATCGCTGACCGCGGTGAAGCAGATGCAAG CGACGACTTTGAAGGCACATATGAAGAATGGCGTGAACATATGTGGAGTGACGTAGCAGCCTACTTTAAC

CTCGACATTGAAAACAGTGAAGATAATAAATCTACTCTTTCACTTCAATTTGTCGACAGCGCCGCGGATA CAGTGCACGAAGCACGCGACATCTTGAAATTGAACTTCCAAAAGAAGCTTCTTATCAAGAAGGAGATCAT TTAGGTGTTATTCCTCGCAACTATGAAGGAATAGTAAACCGTGTAACAGCAAGGTTCGGCCTAGATGCAT CACAGCAAATCCGTCTGGAAGCAGAAGAAGAAAAATTAGCTCATTTGCCACTCGCTAAAACAGTATCCGT TGCTGGCAAAACGTTTAACAATGCTTGAACTGCTTGAAAAATACCCGGCGTGTGAAATGAAATTCAGCGA ATTTATCGCCCTTCTGCCAAGCATACGCCCGCGCTATTACTCGATTTCTTCATCACCTCGTGTCGATGAA AAACAAGCAAGCATCACGGTCAGCGTTGTCTCAGGAGAAGCGTGGAGCGGATATGGAGAATATAAAGGAA TTGCGTCGAACTATCTTGCCGAGCTGCAAGAAGGAGATACGATTACGTGCTTTATTTCCACACCGCAGTC AGAATTTACGCTGCCAAAAGACCCTGAAACGCCGCTTATCATGGTCGGACCGGGAACAGGCGTCGCGCCG TTTAGAGGCTTTGTGCAGGCGCGCAAACAGCTAAAAGAACAAGGACAGTCACTTGGAGAAGCACATTTAT ACTTCGGCTGCCGTTCACCTCATGAAGACTATCTGTATCAAGAAGAGCTCGAAAACGCCCAAAGCGAAGG CATCATTACGCTTCATACCGCTTTTTCTCGCATGCCAAATCAGCCGAAAACATACGTTCAGCACGTAATG GAACAAGACGGCAAGAAATTGATTGAACTTCTTGATCAAGGAGCGCACTTCTATATTTGCGGAGACGGAA AGACGCTCGCTTATGGCTGCAGCAGCTAGAAGAAAAAGGCCGATACGCAAAAGACGTGTGGGCTGGGCTC GAGCACCACCACCACCACTGA

MTIKEMPOPKTFGELKNLPLLNTDKPVQALMKIADELGEIFKFEAPGRVTRYLSSORLIKEACDESRFDK NLWAGEKCLRDFLGDGLATSWTHEKNWKKAHNILLPSFSQQAMKGYHAVMVDIAVQLVQKWERLNADEHI EVSEDMTRLTLDTIGLCGFNYRFNSFYRDQPHPFIISLVRALDEVMNKLQRANPDDPAYDENKRQFQEDI KVMNDLVDKIIADRKARGEOSDDLLTOMLNGKDPETGEPLDDGNIRYOIITFLYAGVEGTSGLLSFALYF LVKNPHVLQKVAEEAARVLVDPVPSYKQVKQLKYVGMVLNEALRLWPIVPQFSLYAKEDTVLGGEYPLEK GDEVMVLIPQLHRDKTVWGDDVEEFRPERFENPSAIPQHAFKPFGNGQRASIGQQFALHEATLVLGMMLK HFDFEDHTNYELDIKELPTLKPKGFVVKAKSKKIPLGGIPSPSTEQSAKKVRKKAENAHNTPLLVLYGSN MGTAEGTARDLADIAMSKGFAPOVATLDSHAGNLPREGAVLIVTASYNGHPPDNAKOFVDWLDOASADEV KGVRYSVFGCGDKNWATTYQKVPAFIDETLAAKGAENIADRGEADASDDFEGTYEEWREHMWSDVAAYFN LDIENSEDNKSTLSLQFVDSAADMPLAKMHGAFSTNVVASKELQQPGSARSTRHLEIELPKEASYQEGDH LGVIPRNYEGIVNRVTARFGLDASQQIRLEAEEEKLAHLPLAKTVSVEELLQYVELQDPVTRTOLRAMAA KTVCPPHKVELEALLEKOAYKEOVLAKRLTMLELLEKYPACEMKFSEFIALLPSIRPRYYSISSSPRVDE KQASITVSVVSGEAWSGYGEYKGIASNYLAELQEGDTITCFISTPQSEFTLPKDPETPLIMVGPGTGVAP FRGFVQARKQLKEQGQSLGEAHLYFGCRSPHEDYLYQEELENAQSEGIITLHTAFSRMPNQPKTYVQHVM EODGKKLIELLDOGAHFYICGDGSOMAPAVEATLMKSYADVHOVSEADARLWLOOLEEKGRYAKDVWAGL ЕНННННН

Nucleotide and amino acid sequences of P411-INS-5151:

ATGACAATTAAAGAAATGCCTCAGCCAAAAACGTTTGGAGAGCTTAAAAAATTTACCGTTATTAAACACAG ATAAACCGGTTCAAGCTTTGATGAAAATTGCGGATGAATTAGGAGAAATCTTTAAATTCGAGGCGCCTGG TCGTGTAACGCGCTACTTATCAAGTCAGCGTCTAATTAAAGAAGCATGCGATGAATCACGCTTTGATAAA AACTTATGGGCGGGTGAGAAATGTCTGCGTGATTTTCTTGGAGACGGGTTAGCCACAAGCTGGACGCATG AAAAAAATTGGAAAAAAGCGCATAATATCTTACTTCCAAGCTTTAGTCAGCAGGCAATGAAAGGCTATCA TGCGGTGATGGTCGATATCGCCGTGCAGCTTGTTCAAAAGTGGGAGCGTCTAAATGCAGATGAGCATATT GAAGTATCGGAAGACATGACACGTTTAACGCTTGATACAATTGGTCTTTGCGGCTTTAACTATCGCTTTA ACAGCTTTTACCGAGATCAGCCTCATCCATTTATTATAAGTCTGGTCCGTGCAAATGATGAAGTAATGAA CAAGCTGCAGCGAGCAAATCCAGACGACCCAGCTTATGATGAAAACAAGCGCCAGTTTCAAGAAGATATC AAGGTGATGAACGACCTAGTAGATAAAATTATTGCAGATCGCAAAGCAAGGGGTGAACAAAGCGATGAT TATTAACGCAGATGCTAAACGGAAAAGATCCAGAAACGGGTGAACCAAGGGGTGAACAAAGCGATGAT TCAAATTATTACATTCTTATATGCGGGAGTTGAAGGAAGCAGGGGCCGCTTGATGACGGCAGATCTCT TTAGTGAAAAATCCACATGTATTACAAAAAGTAGCAGGAAGAAGCAGCACGAGCTCTAGTAGATCCTGTTC CAAGCTACAAACAAGTCAAACAGCTTAAATATGTCGGCATGGTCTTAAACGAAGCGCTGCGCTTATGGCC AATTGTTCCTCAGTTTTCCCTATATGCAAAAGAAGAAGATACGGTGCTTGGAGGAGAATATCCTTTAGAAAAA GGCGACGAAGTAATGGTTCTGATTCCTCAGCTTCACCGTGATAAAACAGTTTGGGGAGACGATGTGGAGG AGTTCCGTCCAGAGCGTTTTGAAAATCCAAGTGCGATTCCGCAGCATGCGTTTAAACCGTTTGGAAACGG TCAGCGTGCGTCTATCGGTCAGCAGTTCGCTCTTCATGAAGCAACGCTGGTACTTGGTATGATGCTAAAA CACTTTGACTTTGAAGATCATACAAACTACGAGCTCGATATTAAAGAACTGCCGACGTTAAAACCTAAAG GCTTTGTGGTAAAAGCAAAATCGAAAAAATTCCGCTTGGCGGTATTCCTTCACCTAGCACTGAACAGTC TGCTAAAAAAGTACGCAAAAAGGCAGAAAACGCTCATAATACGCCGCTGCTTGTGCTATACGGTTCAAAT ATGGGTACCGCTGAAGGAACGGCGCGTGATTTAGCAGATATTGCAATGAGCAAAGGATTTGCACCGCAGG TCGCAACGCTTGATTCACACGCCGGAAATCTTCCGCGCGAAGGAGCTGTATTAATTGTAACGGCGTCTTA TAACGGTCATCCGCCTGATAACGCAAAGCAATTTGTCGACTGGTTAGACCAAGCGTCTGCTGATGAAGTA AAAGGCGTTCGCTACTCCGTATTTGGATGCGGCGATAAAAACTGGGCTACTACGTATCAAAAAGTGCCTG CTTTTATCGATGAAACGCTTGCCGCTAAAGGGGCAGAAAACATCGCTGACCGCGGTGAAGCAGATGCAAG CGACGACTTTGAAGGCACATATGAAGAATGGCGTGAACATATGTGGAGTGACGTAGCAGCCTACTTTAAC CTCGACATTGAAAACAGTGAAGATAATAAATCTACTCTTTCACTTCAATTTGTCGACAGCGCCGCGGATA CAGTGCACGAAGCACGCGACATCTTGAAATTGAACTTCCAAAAGAAGCTTCTTATCAAGAAGGAGATCAT TTAGGTGTTATTCCTCGCAACTATGAAGGAATAGTAAACCGTGTAACAGCAAGGTTCGGCCTAGATGCAT CACAGCAAATCCGTCTGGAAGCAGAAGAAGAAAAATTAGCTCATTTGCCACTCGCTAAAACAGTATCCGT TGCTGGCAAAACGTTTAACAATGCTTGAACTGCTTGAAAAATACCCGGCGTGTGAAATGAAATTCAGCGA ATTTATCGCCCTTCTGCCAAGCATACGCCCGCGCTATTACTCGATTTCTTCATCACCTCGTGTCGATGAA AAACAAGCAAGCATCACGGTCAGCGTTGTCTCAGGAGAAGCGTGGAGCGGATATGGAGAATATAAAGGAA TTGCGTCGAACTATCTTGCCGAGCTGCAAGAAGGAGATACGATTACGTGCTTTATTTCCACACCGCAGTC AGAATTTACGCTGCCAAAAGACCCTGAAACGCCGCTTATCATGGTCGGACCGGGAACAGGCGTCGCGCCG TTTAGAGGCTTTGTGCAGGCGCGCAAACAGCTAAAAGAACAAGGACAGTCACTTGGAGAAGCACATTTAT ACTTCGGCTGCCGTTCACCTCATGAAGACTATCTGTATCAAGAAGAGCTCGAAAACGCCCAAAGCGAAGG CATCATTACGCTTCATACCGCTTTTTCTCGCATGCCAAATCAGCCGAAAACATACGTTCAGCACGTAATG GAACAAGACGGCAAGAAATTGATTGAACTTCTTGATCAAGGAGCGCACTTCTATATTTGCGGAGACGGAA AGACGCTCGCTTATGGCTGCAGCAGCTAGAAGAAAAAGGCCGATACGCAAAAGACGTGTGGGCTGGGCTC GAGCACCACCACCACCACTGA

MTIKEMPOPKTFGELKNLPLLNTDKPVOALMKIADELGEIFKFEAPGRVTRYLSSORLIKEACDESRFDK NLWAGEKCLRDFLGDGLATSWTHEKNWKKAHNILLPSFSQQAMKGYHAVMVDIAVQLVQKWERLNADEHI EVSEDMTRLTLDTIGLCGFNYRFNSFYRDQPHPFIISLVRANDEVMNKLQRANPDDPAYDENKRQFQEDI KVMNDLVDKIIADRKARGEQSDDLLTQMLNGKDPETGEPLDDGNIRYQIITFLYAGVEGTSGLLSFALYF LVKNPHVLOKVAEEAARVLVDPVPSYKOVKOLKYVGMVLNEALRLWPIVPOFSLYAKEDTVLGGEYPLEK GDEVMVLIPQLHRDKTVWGDDVEEFRPERFENPSAIPQHAFKPFGNGQRASIGQQFALHEATLVLGMMLK HFDFEDHTNYELDIKELPTLKPKGFVVKAKSKKIPLGGIPSPSTEQSAKKVRKKAENAHNTPLLVLYGSN MGTAEGTARDLADIAMSKGFAPQVATLDSHAGNLPREGAVLIVTASYNGHPPDNAKQFVDWLDQASADEV KGVRYSVFGCGDKNWATTYOKVPAFIDETLAAKGAENIADRGEADASDDFEGTYEEWREHMWSDVAAYFN LDIENSEDNKSTLSLQFVDSAADMPLAKMHGAFSTNVVASKELQQPGSARSTRHLEIELPKEASYQEGDH LGVIPRNYEGIVNRVTARFGLDASQQIRLEAEEEKLAHLPLAKTVSVEELLQYVELQDPVTRTQLRAMAA KTVCPPHKVELEALLEKQAYKEQVLAKRLTMLELLEKYPACEMKFSEFIALLPSIRPRYYSISSSPRVDE KQASITVSVVSGEAWSGYGEYKGIASNYLAELQEGDTITCFISTPQSEFTLPKDPETPLIMVGPGTGVAP FRGFVQARKQLKEQGQSLGEAHLYFGCRSPHEDYLYQEELENAQSEGIITLHTAFSRMPNQPKTYVQHVM EQDGKKLIELLDQGAHFYICGDGSQMAPAVEATLMKSYADVHQVSEADARLWLQQLEEKGRYAKDVWAGL ЕНННННН

X. Computational Methods

DFT Calculations

A conformational search was conducted using CREST of the XTB program (with the searching parameters -rthr 0.5 -metac -T 8).¹² DFT calculation of each low-energy conformer was performed using Gaussian 09 program package.¹³ The structure of each species was submitted for geometry optimization at the level of B3LYP/(SDD for Fe and 6-31G(d) for other atoms) for singlet state and uB3LYP/(SDD for Fe and 6-31G(d) for other atoms) for triplet state, with CPCM solvation model for diethyl ether with the integration grid set to ultrafine level, followed by frequency calculation at the same theoretical level. All reported Gibbs free energies are for 298K and are after quasi-harmonic correction using the GoodVibes program.¹⁴ Single point energy calculations of the optimized geometries were performed at uB3LYP-D3/DEF2TZVP level with CPCM solvation model for diethyl ether and with the integration grid set to ultrafine level. We have calculated energies for singlet, triplet, and quintet. All reported energies are in the lowest energy states of the corresponding species.

Figure S8. Calculated reaction pathway for the alkyl azide substrate **1a**. The MECP for triplet **INT2a** to singlet **P1a** occurs when the bond forming distance is 2.6 Angstrom.

Figure S9. Calculated reaction pathway for the aryl azide substrate 3b.

Molecular Dynamics Simulations

Molecular dynamics (MD) simulations were performed using the Amber 16 program and AmberTools 16 packages.¹⁵ For the MD simulations of proteins with substrates, the structures resulting from the docking calculations were used for the simulations (where the intrinsically preferred antipode led to docked poses, whereas the opposite antipode does not provide any reasonable docking pose). The protonation state of each protein was first determined from the

PDB2PQR Server using PROPKA¹⁶ to assign protonation states at pH 7.3. MD simulations in explicit water were performed using the GPU-accelerated code (pmemd). For the protein scaffold, an evolved version of the Stony Brook modification of the Amber 99 force field (ff14SB)¹⁷ parameters were applied. TIP3P¹⁸ parameters were assigned to water molecules. MCPB.py¹⁹ was applied to prepare for the force field of the ligand and Fe atom. The partial charges of the ligand were set to fit the electrostatic potential generated at the HF/6-31 G(d) level by the RESP (restrained electrostatic potential) model.²⁰ The charges were calculated according to the Merz-Singh-Kollman scheme using the Gaussian 09 program package. For the simulations involving a transition state bound, the two bond-forming distances of the ligand were restrained to the distances according to the QM optimized transition state structure, respectively, applying a harmonic constraint with a force constant with the number corresponding to the imaginary frequency obtained from DFT calculations. For the simulations not involving a transition state bound, no constraint was applied. Each protein complex was placed in a pre-equilibrated cubic box with a 12-Å buffer of TIP3P water molecules using the *leap* module. The systems were neutralized by the addition of explicit counter ions (Na⁺). Long-range electrostatic effects were modeled using the particle mesh Ewald method with periodic boundary conditions.²¹ An 8-Å cutoff was applied to Lennard-Jones and electrostatic interactions. Molecular dynamics simulations were performed according to the following steps:

(1) Each system was minimized with a maximum cycle of 50000 and with the steepest descent algorithm for the first 25000 cycles, with a periodic boundary for constant volume (NVT) and without the SHAKE algorithm activated. Positional restraint of 2 kcal mol⁻¹ $Å^{-2}$ was applied on the protein backbone atoms (C and N) and heavy atoms of the ligand. (2) A 1 ns heating process was performed with a periodic boundary for constant volume (NVT) with the SHAKE algorithm turned on such that the angle between the hydrogen atoms was kept fixed. The temperature increased from 0 K to 300 K in a time period of 1 ns with Langevin dynamics with the collision frequency of 5 ps⁻¹. Positional restraint of 2 kcal mol⁻¹ Å⁻² was applied on the protein backbone atoms (C and N) and heavy atoms of the ligand. (3) a 2 ns equilibrium process was performed with a periodic boundary for constant pressure (NPT) and with a constant temperature of 300 K. Positional restraint of 2 kcal mol⁻¹ $Å^{-2}$ was applied on the protein backbone atoms (C and N) and heavy atoms of the ligand. (4) a 2 ns equilibrium process was performed for constant pressure (NPT) and with a constant temperature of 300 K. Positional restraint of 0.5 kcal mol⁻¹ Å⁻² was applied on the protein backbone atoms (C and N), and heavy atoms of the ligand. (5) A 1000 ns production was performed by applying the standard simulation condition for constant pressure (NPT) and with a constant temperature of 300K.

Figure S10. Reaction model of the hydrogen abstraction step derived from MD simulations.

XYZ coordinates and energies for the DFT calculations

CP1a					
E[M06-2X/6-31G(d,p)/CPCM(ether)] = -					
1820.51428283					
Zero-point correction= 0.575950					
Thermal correction to Energy= 0.614033					
Thermal correction to Enthalpy= 0.614978					
Thermal correction to Gibbs Free Energy=					
0.495862					
Fe	0.398231	0.471892	0.434531		
Ν	1.758604	1.927010	0.148921		
Ν	1.239127	-0.591553	-1.057537		
Ν	-0.410546	1.502004	1.966395		
Ν	-0.913242	-1.031899	0.779858		
С	1.853546	3.110522	0.842744		
С	0.837109	-1.823878	-1.520222		
С	2.778877	1.951030	-0.776262		
С	2.328984	-0.240524	-1.823588		
С	-0.020337	2.741315	2.416989		
С	-1.039820	-2.196365	0.051618		
С	-1.460871	1.122756	2.773501		
С	-1.918756	-1.068271	1.725364		
С	2.954467	3.899251	0.339520		
С	1.689902	-2.254009	-2.604240		
С	3.530270	3.178965	-0.663187		
С	2.617145	-1.273308	-2.790305		
С	-0.844872	3.152722	3.529687		
С	-2.139706	-2.981863	0.556154		
С	-1.737897	2.148346	3.751901		
С	-2.683316	-2.283712	1.594612		
Н	3.238619	4.873012	0.718594		
---	-----------	-----------	-----------		
Н	1.581566	-3.189010	-3.139751		
Н	4.382591	3.439426	-1.278010		
Н	3.424774	-1.236209	-3.510491		
Н	-0.738302	4.089527	4.062317		
Н	-2.444797	-3.941831	0.158451		
Н	-2.515469	2.090408	4.503166		
Н	-3.523619	-2.554460	2.221537		
С	1.024802	3.495671	1.892230		
С	-0.226597	-2.566599	-1.015593		
С	-2.167558	-0.070916	2.663127		
С	3.050459	0.941663	-1.693960		
Н	1.219631	4.460699	2.350604		
Н	-0.434888	-3.520991	-1.490173		
Н	-2.984198	-0.233895	3.360076		
Н	3.888789	1.091523	-2.367614		
Ν	-0.812984	1.846132	-2.313686		
Ν	-0.292833	2.077341	-3.303635		
С	-5.859108	-0.368053	-1.961537		
Н	-5.706282	-0.337124	-3.048265		
Н	-5.487648	-1.342214	-1.617890		
С	-5.014795	0.744592	-1.306740		
Н	-5.384744	1.722694	-1.643573		
С	-2.693592	1.717165	-0.958267		
Н	-3.015349	2.710125	-1.297283		
Н	-5.162834	0.713689	-0.218623		
Н	-2.803275	1.677184	0.126868		
С	-3.519796	0.614206	-1.626384		
Н	-3.147731	-0.360151	-1.286670		
Н	-3.370070	0.653926	-2.714315		
Ν	-1.232379	1.563896	-1.186411		
0	1.785157	-1.007076	2.278405		
С	2.852538	-1.911255	1.961180		
Н	2.758595	-2.258960	0.923630		
Н	2.805050	-2.790912	2.619643		
Н	0.937854	-1.451560	2.102572		
С	4.170793	-1.180918	2.153785		
Н	5.010736	-1.850521	1.937969		
Н	4.268641	-0.825164	3.185378		
Н	4.234424	-0.317794	1.482257		
С	-7.336084	-0.245453	-1.650310		
С	-7.887334	-0.866934	-0.520190		
С	-8.181592	0.521760	-2.465185		
С	-9.241868	-0.725304	-0.210418		

Н	-7.248500	-1.471676	0.120262
С	-9.536764	0.666982	-2.160282
Н	-7.773765	1.006086	-3.350124
С	-10.071980	0.043567	-1.030134
Н	-9.649439	-1.219068	0.668071
Η	-10.175090	1.262810	-2.807711
Н	-11.126918	0.152263	-0.792997

CP1b

E[M06-2X/6-31G(d,p)/CPCM(ether)] = -
1820.51559468
Zero-point correction= 0.574840
Thermal correction to Energy= 0.613114
Thermal correction to Enthalpy= 0.614058
Thermal correction to Gibbs Free Energy=
0.495698

Fe	0.384426	0.145536	0.734914
Ν	1.255724	1.944407	0.510569
Ν	1.363161	-0.524411	-0.893477
Ν	-0.702617	0.853820	2.275452
Ν	-0.581265	-1.624159	0.886582
С	1.076436	3.054081	1.304906
С	1.286595	-1.783165	-1.445911
С	2.178371	2.313289	-0.445029
С	2.272491	0.167398	-1.664146
С	-0.618072	2.107506	2.836278
С	-0.406705	-2.733429	0.086503
С	-1.649242	0.177541	3.014278
С	-1.558215	-1.970509	1.798008
С	1.906354	4.141332	0.842224
С	2.168346	-1.884900	-2.584871
С	2.589052	3.682501	-0.244325
С	2.779374	-0.674615	-2.720896
С	-1.528303	2.221256	3.951610
С	-1.281834	-3.798969	0.511805
С	-2.169726	1.024649	4.060963
С	-1.996838	-3.325722	1.571608
Н	1.947082	5.122427	1.298730
Н	2.289079	-2.772671	-3.193145
Н	3.305858	4.208304	-0.862470
Н	3.504117	-0.364164	-3.463013
Н	-1.651157	3.109694	4.558376
Н	-1.335490	-4.774954	0.045674
Н	-2.926806	0.727224	4.775548

C0.2122903.1314522.39267C0.471323-2.814364-0.98943C-2.051364-1.1354502.79451C2.6552361.488259-1.45775H0.1743184.0728652.93257	4 8 3 4 1 9 9 1
C0.471323-2.814364-0.98943C-2.051364-1.1354502.79451C2.6552361.488259-1.45775H0.1743184.0728652.93257	8 3 4 1 9 9 1
C-2.051364-1.1354502.79451C2.6552361.488259-1.45775H0.1743184.0728652.93257	3 4 1 9 9 1
C 2.655236 1.488259 -1.45775 H 0.174318 4.072865 2.93257	4 9 9 1
Н 0.174318 4.072865 2.93257	1 9 9 1
	9 9 1
Н 0.509953 -3.755368 -1.53013	9 1
Н -2.814857 -1.540084 3.45209	1
Н 3.384432 1.909617 -2.14323	0
N -2.955514 1.786966 -0.63400	7
N -3.475239 2.259410 0.26666	9
N -2.407241 1.107696 -1.50620	4
O 1.991669 -0.897686 2.29833	7
C 3.346859 -1.269750 1.98484	4
Н 3.408121 -1.604077 0.94122	5
Н 3.653172 -2.102844 2.63141	1
C 4.243350 -0.065582 2.21303	2
Н 5.283941 -0.325041 1.98858	5
Н 4.186785 0.266968 3.25529	5
Н 3.946461 0.765580 1.56556	3
C -2.055777 1.656252 -2.78007	8
C -1.355332 2.427015 -5.37187	7
C -1.541709 2.954525 -2.98504	8
C -2.182067 0.754741 -3.84689	0
C -1.837892 1.136768 -5.13997	7
C -1.210048 3.308801 -4.30214	2
Н -2.562727 -0.240646 -3.64043	3
Н -1.947116 0.431356 -5.95860	б
Н -0.810406 4.304774 -4.47985	5
Н -1.080259 2.739981 -6.37501	5
C -1.320339 3.960439 -1.87370	1
Н -0.398052 4.513214 -2.09243	5
Н -1.137649 3.451892 -0.92063	0
C -2.469016 4.978801 -1.71101	4
Н -3.412208 4.450713 -1.51746	0
Н -2.608081 5.512373 -2.66159	7
C -2.210353 5.989097 -0.58609	1
Н -1.263701 6.512743 -0.78114	2
Н -2.071144 5.446658 0.35960	7
Н 1.434632 -1.693365 2.26041	7
C -3.340031 7.012564 -0.42965	4
Н -4.292183 6.518631 -0.19988	2
Н -3.127424 7.720267 0.37991	0
Н -3.480357 7.591342 -1.35106	7

INT1a			
EIM06-2	X/6-31G(d p)/6	CPCM(ether)]= -
1710 999	57173	er en (euler)]—
Zero-poir	ot correction-() 566329	
Thermal	correction to F	$n_{\rm ergy} = 0.601$	008
Thormal	correction to E	100 gy = 0.001	020
Thermal	correction to E	lillaipy – 0.00	02043 erav-
0 494821		noos mee En	cigy-
Fe	0.350852	0 151080	0.425007
N	1 061442	1 817449	-0 529137
N	1 471098	-1 004837	-0.818457
N	-0 497009	1 338082	1 805542
N	-0.072763	-1 467199	1 529698
C	0.731625	3.126617	-0.260773
C	1.579683	-2.372077	-0.794465
C	1.802132	1.845276	-1.688987
C	2.171526	-0.589764	-1.922811
C	-0.601395	2.710501	1.776452
C	0.245957	-2.774304	1.244155
C	-1.201303	0.927778	2.914345
C	-0.827397	-1.502221	2.677869
C	1.295182	4.000415	-1.262034
C	2.375679	-2.834131	-1.909762
С	1.959103	3.205494	-2.147717
С	2.743023	-1.726873	-2.610991
С	-1.382560	3.173635	2.898959
С	-0.316957	-3.653241	2.242660
С	-1.753440	2.069145	3.604652
С	-0.982298	-2.864726	3.131932
Н	1.187888	5.077835	-1.271787
Н	2.613142	-3.871260	-2.110749
Н	2.508379	3.496869	-3.034229
Н	3.345179	-1.664650	-3.508796
Н	-1.604104	4.213002	3.106449
Н	-0.202683	-4.729925	2.248956
Н	-2.342630	2.013909	4.511446
Н	-1.527732	-3.159558	4.019612
С	-0.037693	3.546733	0.818335
С	1.009865	-3.202215	0.164226
С	-1.358814	-0.391283	3.324420
С	2.324645	0.730391	-2.335119
Н	-0.215533	4.612858	0.921663
Н	1.177961	-4.270360	0.065357

Н	-1.939082	-0.567852	4.224979
Η	2.900633	0.904830	-3.239003
С	-5.781002	-0.616728	-2.241241
Η	-5.640410	0.232635	-2.922563
Η	-5.451819	-1.512998	-2.783214
С	-4.877441	-0.420641	-1.006412
Η	-5.204980	0.475511	-0.461023
С	-2.498950	-0.097446	-0.128886
Η	-2.827438	0.802234	0.420784
Η	-5.018597	-1.267985	-0.320929
Η	-2.640295	-0.948146	0.559939
С	-3.393122	-0.291384	-1.369494
Η	-3.061361	-1.188279	-1.909430
Η	-3.247211	0.558640	-2.049379
Ν	-1.122212	0.025542	-0.490115
0	2.368370	0.432244	1.585157
С	2.572706	0.573569	3.007924
Η	1.665313	0.981738	3.467539
Η	3.393025	1.281849	3.176407
Η	2.474364	1.301998	1.162034
С	2.917261	-0.783595	3.596274
Н	3.070464	-0.691820	4.677562
Η	3.835926	-1.178136	3.148835
Η	2.109174	-1.500051	3.421831
С	-7.246990	-0.746704	-1.884222
С	-8.068543	0.386478	-1.791037
С	-7.810910	-1.999770	-1.602079
С	-9.411712	0.273644	-1.425063
Η	-7.651051	1.366676	-2.012248
С	-9.153399	-2.118834	-1.235623
Η	-7.191402	-2.891334	-1.675039
С	-9.959348	-0.981017	-1.145277
Н	-10.031219	1.164772	-1.363062
Н	-9.570745	-3.100340	-1.025333
Н	-11.005092	-1.071644	-0.863794

INT1b

E[M06-2X/6-31G(d,p)/CPCM(ether)]= -1711.01292976 Zero-point correction= 0.565376 Thermal correction to Energy= 0.600836 Thermal correction to Enthalpy= 0.601781 Thermal correction to Gibbs Free Energy= 0.492742

Fe	0.798039	1.359037	-0.028810
Ν	2.496994	2.360066	-0.355661
Ν	1.382009	-0.048803	-1.329699
Ν	0.504028	2.487562	1.639396
Ν	-0.616973	0.051963	0.665665
С	2.889336	3.547120	0.229815
С	0.690507	-1.187699	-1.691335
С	3.465602	2.075432	-1.295513
С	2.498039	-0.023941	-2.138993
С	1.148354	3.658120	1.963876
С	-1.076195	-1.076681	0.018404
С	-0.513013	2.360218	2.559142
С	-1.505038	0.269931	1.699663
С	4.112297	4.021948	-0.367996
С	1.379149	-1.877621	-2.754252
С	4.475564	3.103944	-1.305494
С	2.505542	-1.162663	-3.023716
С	0.536099	4.273119	3.117169
С	-2.253743	-1.589382	0.670970
С	-0.492696	3.463803	3.490405
С	-2.516290	-0.757144	1.718785
Н	4.625085	4.929987	-0.077463
Н	1.040253	-2.800749	-3.206895
Н	5.345888	3.103410	-1.949284
Н	3.282562	-1.372718	-3.747600
Н	0.869473	5.196924	3.572675
Н	-2.792571	-2.476253	0.362646
Н	-1.183160	3.584985	4.315474
Н	-3.316351	-0.819712	2.445455
С	2.250100	4.170286	1.291784
С	-0.470996	-1.652345	-1.090732
С	-1.448632	1.333909	2.590901
С	3.477818	0.959213	-2.120802
Н	2.669702	5.104838	1.650746
Н	-0.917677	-2.554943	-1.495819
Н	-2.204806	1.372666	3.369023
Н	4.308341	0.854145	-2.811675
N	-0.249871	2.266870	-1.072772
0	1.882506	-1.145173	2.165330
С	1.819875	-1.061666	3.590640
Н	1.031634	-1.724592	3.979936
Н	1.576756	-0.036562	3.907584
С	3.170227	-1.475175	4.153271
Н	3.158227	-1.433643	5.248038

Η	3.959502	-0.807823	3.789669
Η	3.417307	-2.498090	3.848292
С	-0.384827	2.906300	-2.243737
С	-0.785738	4.274266	-4.687009
С	-1.581187	3.690405	-2.450799
С	0.578809	2.842603	-3.296183
С	0.375864	3.516278	-4.491169
С	-1.742620	4.349077	-3.666574
Η	1.474383	2.256072	-3.140814
Η	1.125073	3.453257	-5.276190
Η	-2.640779	4.943774	-3.819920
Η	-0.944746	4.804806	-5.621432
С	-2.644719	3.768867	-1.381135
Η	-3.240010	4.678027	-1.536375
Η	-2.171060	3.857173	-0.395952
С	-3.591375	2.549580	-1.366632
Η	-2.996690	1.636713	-1.233189
Η	-4.083215	2.464369	-2.346129
С	-4.653996	2.633405	-0.263603
Η	-5.241134	3.553997	-0.392745
Η	-4.153121	2.722247	0.710947
Η	1.031186	-0.844820	1.801674
С	-5.594148	1.423180	-0.244488
Η	-6.345932	1.513455	0.548447
Η	-6.126219	1.319399	-1.198427
Н	-5.035309	0.495123	-0.071864

INT2a

E[M06-2X/6-31G(d,p)/CPCM(ether)] = -				
1710.9	1710.99829055			
Zero-p	Zero-point correction= 0.565464			
Thermal correction to Energy= 0.600051				
Thermal correction to Enthalpy= 0.600995				
Thermal correction to Gibbs Free Energy=				
0.495476				
Ν	-2.112991	23.301363	-28.790109	

Ν	-2.112991	23.301363	-28.790109
С	-3.118253	22.256637	-28.815395
С	-2.815304	21.136593	-29.830413
С	-1.609679	20.237523	-29.478909
С	-0.272067	20.892529	-29.644284
0	-2.576940	27.017087	-27.334655
Η	-3.426271	27.342246	-27.677051
Ν	-0.766257	24.743747	-26.871507
Ν	-3.628050	24.458580	-26.729969

Ν	-0.995661	25.745808	-29.513620
С	1.107589	25.466882	-28.283790
С	-2.031759	23.872309	-24.953880
С	-5.741345	24.811318	-27.929977
С	-2.587873	26.248990	-31.318790
С	0.570603	24.960712	-27.103701
С	-3.315943	23.989170	-25.478387
С	-5.205337	25.286709	-29.123500
С	-1.305164	26.164579	-30.783893
С	1.347724	24.578724	-25.945861
С	-4.522643	23.648974	-24.757423
С	-5.979053	25.661862	-30.284535
С	-0.099690	26.527750	-31.497221
С	0.465135	24.123990	-25.014023
С	-5.566564	23.920959	-25.588441
С	-5.089054	26.056995	-31.237675
С	0.940072	26.318821	-30.642579
С	-0.852504	24.229292	-25.600901
С	-4.998358	24.424213	-26.818786
С	-3.770774	25.927544	-30.658856
С	0.370158	25.824626	-29.408881
Ν	-3.863430	25.459538	-29.369722
Fe	-2.306646	24.997162	-28.157029
Н	-4.078790	22.709910	-29.079867
Н	-3.256651	21.792374	-27.820370
Н	-2.667007	21.580369	-30.824421
Н	-3.706133	20.497377	-29.898055
Н	-1.654371	19.351703	-30.137326
Н	-1.738738	19.851971	-28.459466
Н	-1.185919	22.921305	-28.599654
Н	-0.155065	21.528910	-30.520788
Н	2.186269	25.581018	-28.334001
Н	-1.943899	23.482511	-23.943953
Н	-6.821997	24.727292	-27.864036
Н	-2.674057	26.605940	-32.341033
Н	-6.626691	23.801519	-25.402589
Н	-7.059570	25.622985	-30.345183
Н	-5.289473	26.408962	-32.242052
Н	-0.072598	26.894107	-32.515985
Н	1.997520	26.477032	-30.814352
Н	2.425458	24.655025	-25.874287
Н	0.668257	23.750831	-24.017959
Н	-4.547756	23.259927	-23.747119
С	-1.718201	29.095769	-28.360859

Η	-0.998097	29.907301	-28.204648
Н	-1.486977	28.601333	-29.308465
Н	-2.715207	29.548617	-28.435413
С	-1.649528	28.114829	-27.200082
Н	-1.856812	28.623755	-26.250052
Н	-0.665653	27.648213	-27.130891
С	0.876137	20.710588	-28.832623
С	2.085342	21.399868	-29.157417
С	0.907640	19.860170	-27.686239
С	3.232888	21.250626	-28.393482
Н	2.092394	22.055150	-30.025373
С	2.063455	19.717861	-26.929555
Н	0.016669	19.309233	-27.402105
С	3.235448	20.407747	-27.271197
Н	4.136020	21.789577	-28.668748
Н	2.056870	19.060847	-26.063328
Н	4.135385	20.290221	-26.674397

INT2b

_

E[M06-2X/6-31G(d,p)/CPCM(ether)]= -1710.99422569 Zero-point correction= 0.564434 Thermal correction to Energy= 0.599336 Thermal correction to Enthalpy= 0.600280 Thermal correction to Gibbs Free Energy= 0.496860

0.608653	0.502097	0.267943
2.257584	1.597183	-0.061896
1.223090	-0.805456	-1.141506
0.111133	1.672213	1.841079
-0.929898	-0.739622	0.757636
2.577565	2.782706	0.552635
0.535593	-1.912804	-1.578099
3.272018	1.345508	-0.954372
2.372263	-0.750304	-1.896323
0.720923	2.852463	2.187808
-1.336204	-1.843643	0.041748
-0.941094	1.516323	2.708769
-1.860494	-0.571075	1.757910
3.820872	3.298638	0.025146
1.265743	-2.565735	-2.640876
4.256166	2.401987	-0.902998
2.409546	-1.850862	-2.830949
0.035400	3.457394	3.308440
	0.608653 2.257584 1.223090 0.111133 -0.929898 2.577565 0.535593 3.272018 2.372263 0.720923 -1.336204 -0.941094 -1.860494 3.820872 1.265743 4.256166 2.409546 0.035400	0.6086530.5020972.2575841.5971831.223090-0.8054560.1111331.672213-0.929898-0.7396222.5775652.7827060.535593-1.9128043.2720181.3455082.372263-0.7503040.7209232.852463-1.336204-1.843643-0.9410941.516323-1.860494-0.5710753.8208723.2986381.265743-2.5657354.2561662.4019872.409546-1.8508620.0354003.457394

С	-2.544144	-2.389543	0.613897
С	-0.991613	2.625214	3.635946
С	-2.864934	-1.605691	1.682361
Н	4.290525	4.220320	0.345095
Н	0.936496	-3.460100	-3.154886
Н	5.154889	2.436917	-1.505904
Η	3.210670	-2.034323	-3.535921
Η	0.321885	4.391738	3.774686
Η	-3.063117	-3.263233	0.239981
Н	-1.724591	2.735478	4.425291
Н	-3.701101	-1.704174	2.363220
С	1.854862	3.381780	1.580254
С	-0.663624	-2.383467	-1.050030
С	-1.856752	0.467735	2.683942
С	3.342991	0.241674	-1.799026
Н	2.231739	4.323698	1.967427
Н	-1.092965	-3.269189	-1.508609
Н	-2.648901	0.478535	3.426342
Н	4.204680	0.166999	-2.455350
Ν	-0.520196	1.512391	-0.796246
0	1.671873	-0.716801	1.762683
С	2.968801	-1.358871	1.669530
Н	3.209655	-1.522254	0.615066
Η	2.903130	-2.333432	2.165423
С	4.011472	-0.486239	2.345925
Η	4.996032	-0.961870	2.270289
Η	3.774109	-0.348150	3.406165
Н	4.066282	0.496599	1.869141
С	-0.405678	2.388908	-1.858259
С	-0.231358	4.133931	-4.088125
С	-1.268199	3.526315	-1.958246
С	0.531916	2.171895	-2.893799
С	0.618195	3.029528	-3.986241
С	-1.162376	4.363429	-3.070892
Н	1.176146	1.305436	-2.834414
Н	1.348076	2.826793	-4.766635
Н	-1.822374	5.226605	-3.134688
Н	-0.171320	4.806176	-4.939495
С	-2.273064	3.846140	-0.866971
Η	-2.675171	4.858228	-1.058215
Н	-1.762476	3.927564	0.107089
С	-3.411073	2.871726	-0.743629
Н	-1.372325	1.688273	-0.268680
Η	-3.738514	2.357709	-1.647180

С	-4.345296	2.919772	0.424413
Η	-4.958046	3.841039	0.373607
Η	-3.766602	3.016912	1.355979
Η	0.976945	-1.395138	1.816792
С	-5.282318	1.707922	0.517566
Η	-4.712512	0.780221	0.643355
Η	-5.968204	1.803063	1.366964
Η	-5.887287	1.609099	-0.391886

P1a

E[M06-2X/6-31G(d,p)/CPCM(ether)]= -1711.05336838 Zero-point correction= 0.572279 Thermal correction to Energy= 0.605238 Thermal correction to Enthalpy= 0.606182 Thermal correction to Gibbs Free Energy= 0.508138

-1.116416	22.801133	20 559550
	==	-30.338330
-0.314385	21.501090	-30.826803
0.888969	21.590578	-29.867910
0.328480	22.408297	-28.674216
-2.143906	27.012356	-27.650766
0.547127	25.871634	-28.235337
-1.375273	24.562051	-26.562160
-1.385131	26.001687	-30.347243
0.913329	26.866100	-30.452579
0.919408	25.157747	-25.913756
-3.684805	23.735646	-26.445459
-3.682469	25.415950	-30.988395
1.326672	26.517147	-29.167184
-0.341319	24.621870	-25.656606
-4.075280	24.028774	-27.750961
-2.434853	25.986637	-31.233610
2.635816	26.797377	-28.617842
-0.755029	24.065345	-24.386510
-5.401468	23.788089	-28.283533
-2.055442	26.634038	-32.471404
2.636342	26.318170	-27.342050
-2.052038	23.674681	-24.533185
-5.399582	24.256374	-29.561983
-0.761274	27.034493	-32.324353
1.328562	25.742303	-27.111954
-2.430557	23.986677	-25.894138
	0.888969 0.328480 -2.143906 0.547127 -1.375273 -1.385131 0.913329 0.919408 -3.684805 -3.682469 1.326672 -0.341319 -4.075280 -2.434853 2.635816 -0.755029 -5.401468 -2.055442 2.636342 -2.052038 -5.399582 -0.761274 1.328562 -2.430557	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

С	-4.073341	24.786153	-29.808035
С	-0.351252	26.635633	-30.994511
Ν	-3.279018	24.617052	-28.701298
Fe	-1.360438	25.208944	-28.482379
Η	-1.083259	23.498891	-31.396253
Η	-2.166907	22.604484	-30.342600
Η	-0.003982	21.415465	-31.872378
Η	-0.922636	20.621414	-30.592278
Η	1.637017	27.373990	-31.084249
Н	1.642800	25.132162	-25.103298
Н	-4.426077	23.274758	-25.798396
Н	-4.420537	25.479826	-31.783398
Н	-2.704202	23.216578	-23.799631
Н	-6.215326	23.330834	-27.734013
Н	-6.211649	24.264026	-30.278864
Н	-2.705038	26.756980	-33.329493
Н	-0.131754	27.554645	-33.036093
Н	3.435201	27.299987	-29.148677
Н	3.436542	26.347017	-26.612443
Н	-0.125850	23.995786	-23.507493
С	-2.365015	29.395628	-27.143967
Η	-1.922756	30.380440	-27.334356
Н	-3.399508	29.405179	-27.503281
Η	-2.377052	29.237922	-26.058521
С	-1.555902	28.316577	-27.848290
Η	-0.515756	28.305885	-27.504859
Η	-1.554953	28.462312	-28.929650
С	-0.395883	21.497929	-27.694938
С	0.383756	20.871014	-26.707970
С	-1.751191	21.154390	-27.778880
С	-0.165035	19.926096	-25.841364
Н	1.438009	21.126249	-26.621910
С	-2.304923	20.206561	-26.912716
Н	-2.393357	21.641097	-28.502870
С	-1.516368	19.584455	-25.944552
Н	0.461523	19.458890	-25.085933
Н	-3.360452	19.960631	-26.996338
Н	-1.949211	18.847375	-25.273476
Н	1.125776	22.923362	-28.132316
Н	0.243010	24.065565	-29.768392
Н	1.276320	20.612646	-29.568926
Н	1.710903	22.150538	-30.332190
Н	-2.071988	26.771726	-26.709862

P₂b E[M06-2X/6-31G(d,p)/CPCM(ether)] = -1711.05390925 Zero-point correction= 0.570621 Thermal correction to Energy= 0.603943Thermal correction to Enthalpy= 0.604888 Thermal correction to Gibbs Free Energy= 0.507355 Fe 0.379977 0.444249 0.402194 Ν -0.025457 1.685154 1.914431 Ν 1.099485 -0.650282-1.141213Ν -0.214956 1.445068 2.046765 Ν -0.873815 -1.079988 0.871035 С 1.801414 3.124436 0.612285 С 0.633240 -1.863154 -1.590122С 2.645943 1.909863 -1.006721 С 2.169662 -0.334479 -1.943904 С 0.183156 2.697390 2.439268 С -1.111389 -2.220612 0.135913 С -1.039612 0.979692 3.040233 С -1.664408 -1.179947 1.993428 С 2.843341 3.919913 -0.004191 С 1.426780 -2.321498 -2.710453С 3.375601 3.160752 -1.001456 С 2.390227 -1.379647 -2.919040С -0.4258733.045088 3.707148 С -2.102334-3.041696 0.795003 С -1.173402 1.971938 4.087483 С -2.434776-2.4028501.952906 Η 3.128957 4.916147 0.310790 Η 1.264747 -3.249568 -3.245013 Η 4.184460 3.407556 -1.678247 Η 3.174263 -1.373095 -3.666404 Η -0.274915 3.981447 4.230382 Η -2.467259 -3.990600 0.421336 Η -1.770101 1.849619 4.983200 Η -3.133150 -2.718971 2.718194 С 1.086460 3.502859 1.747584 С -0.426643 -2.574332-1.026276 С -1.715271 -0.2389203.020200 С 2.895122 0.853529 -1.879859Η 1.298967 4.483517 2.164374 Η -0.700588 -3.514151 -1.497441 Η 3.865098 -2.360939 -0.462218

Η	3.704301	0.979724	-2.593799
Ν	-1.264076	1.238403	-1.064572
0	1.730624	-0.588704	1.704762
С	3.169617	-0.700975	1.564856
Н	3.435370	-0.604635	0.508491
Н	3.465906	-1.698002	1.910202
С	3.840335	0.372358	2.403282
Н	4.928622	0.297804	2.295751
Н	3.588446	0.252840	3.462609
Н	3.528666	1.369349	2.079463
С	-0.755986	1.842696	-2.275908
С	0.041532	3.413035	-4.428171
С	-1.000460	3.224113	-2.267161
С	-0.176663	1.224030	-3.378855
С	0.225904	2.028503	-4.453617
С	-0.589082	4.017551	-3.331618
Н	-0.045569	0.149007	-3.419234
Н	0.681463	1.560351	-5.322362
Н	-0.782547	5.087592	-3.328729
Н	0.358672	4.018777	-5.272701
С	-1.817444	3.553054	-1.040833
Н	-2.585015	4.311436	-1.220939
Н	-1.189646	3.892433	-0.204871
С	-2.419853	2.167787	-0.728826
Н	-1.617911	0.298662	-1.239449
Н	-3.186343	1.974712	-1.497682
С	-3.078395	1.991996	0.632252
Н	-2.422932	2.374016	1.415685
Н	-3.219926	0.923474	0.830093
Н	1.329514	-1.463531	1.570928
С	-4.437092	2.704100	0.700596
Н	-4.337308	3.785344	0.548573
Н	-5.129651	2.323175	-0.060464
Н	-4.901792	2.551017	1.680837

RC2a

NC2a					
E[M06-2X	E[M06-2X/6-31G(d,p)/CPCM(ether)] = -				
1710.9989	1710.99898058				
Zero-point	correction=	0.566426			
Thermal correction to Energy= 0.600994					
Thermal correction to Enthalpy= 0.601938					
Thermal correction to Gibbs Free Energy=					
0.495824					
N	-2.221773	23.404981	-29.402152		

С	-3.230321	22.393327	-29.399256
С	-2.730665	21.074100	-30.027097
С	-1.543698	20.417509	-29.305986
С	-1.856530	19.937657	-27.872357
0	-2.239508	27.177436	-28.059422
Н	-1.982523	27.716344	-28.826163
Ν	-0.316512	24.849912	-27.949450
Ν	-2.987802	24.515711	-27.038393
Ν	-1.305792	25.854403	-30.454189
С	1.061211	25.601839	-29.840793
С	-0.962634	23.964355	-25.756853
С	-5.355326	24.801674	-27.633114
С	-3.325701	26.296703	-31.773075
С	0.890175	25.085541	-28.559653
С	-2.341875	24.056365	-25.914041
С	-5.182735	25.270554	-28.930919
С	-1.946122	26.259807	-31.600891
С	1.976905	24.723750	-27.676075
С	-3.304896	23.697971	-24.898759
С	-6.264187	25.625672	-29.821763
С	-0.981111	26.642592	-32.605580
С	1.410770	24.259723	-26.527559
С	-4.538307	23.945105	-25.421242
С	-5.693787	26.033753	-30.988797
С	0.251218	26.453062	-32.056887
С	-0.021410	24.340666	-26.710159
С	-4.331852	24.448861	-26.759300
С	-4.262762	25.934680	-30.810929
С	0.039718	25.951370	-30.717963
Ν	-3.973369	25.465911	-29.552023
Fe	-2.160528	25.037488	-28.791710
Н	-4.111684	22.741943	-29.965126
Н	-3.585363	22.211336	-28.371185
Н	-2.447852	21.273288	-31.068835
Н	-3.578487	20.374787	-30.058088
Н	-0.703287	21.122442	-29.274040
Н	-1.204901	19.555888	-29.896567
Н	-2.722340	19.262499	-27.903104
Н	-2.146428	20.796006	-27.253998
Н	2.081025	25.732906	-30.190325
Н	-0.592697	23.580696	-24.810812
Н	-6.374388	24.697192	-27.273051
Н	-3.702097	26.646282	-32.729704
Н	-5.507423	23.805506	-24.958834

Η	-7.315247	25.567081	-29.568076
Н	-6.178718	26.382092	-31.892080
Η	-1.231145	27.006109	-33.594451
Н	1.222319	26.627065	-32.503344
Н	3.027632	24.819906	-27.919680
Η	1.899605	23.898088	-25.631589
Н	-3.051226	23.315549	-23.918024
С	-0.349435	28.357728	-26.985710
Н	-0.035619	28.809210	-26.037405
Η	0.367634	27.577039	-27.254690
Η	-0.316279	29.142591	-27.752239
С	-1.753842	27.788498	-26.847249
Η	-2.460389	28.573734	-26.547979
Η	-1.788024	26.996327	-26.096823
С	-0.683342	19.229763	-27.226953
С	-0.555641	17.834717	-27.294857
С	0.323930	19.957161	-26.574609
С	0.543780	17.183455	-26.730236
Н	-1.328991	17.252813	-27.792216
С	1.425520	19.311306	-26.009312
Н	0.240742	21.040118	-26.507142
С	1.539773	17.920488	-26.084983
Н	0.619814	16.100685	-26.791105
Н	2.192983	19.894039	-25.505898
Н	2.394672	17.416114	-25.642374

RC2b

KC20					
E[M06-	E[M06-2X/6-31G(d,p)/CPCM(ether)] = -				
1711.01	513944				
Zero-po	oint correction=	0.565739			
Therma	l correction to E	Energy = 0.600)543		
Therma	l correction to E	Enthalpy = 0.60	01487		
Therma	l correction to C	Jibbs Free En	ergy=		
0.49710	00		23		
Fe	0.786754	0.745042	0.382055		
Ν	2.569022	1.604411	0.052759		
Ν	1.143164	-0.588652	-1.087902		
Ν	0.547975	1.898892	2.038420		
Ν	-0.871468	-0.335526	0.911561		
С	3.100057	2.685519	0.716185		
С	0.310767	-1.596472	-1.517316		
С	3.483276	1.264646	-0.915639		
С	2.244476	-0.629712	-1.910564		
С	1.340297	2.945272	2.431154		

С	-1.449281	-1.362807	0.202774
С	-0.500079	1.861438	2.921852
С	-1.734295	-0.052511	1.944449
С	4.378771	3.040376	0.144290
С	0.898773	-2.280463	-2.646359
С	4.619776	2.155037	-0.862336
С	2.100504	-1.686435	-2.885391
С	0.781001	3.588000	3.600984
С	-2.696402	-1.753259	0.817155
С	-0.359965	2.912473	3.907989
С	-2.870809	-0.943583	1.900501
Н	5.002437	3.855196	0.489997
Н	0.442557	-3.113394	-3.166502
Н	5.480233	2.094950	-1.516895
Н	2.833812	-1.928103	-3.644552
Н	1.221402	4.436710	4.109140
Н	-3.339713	-2.547041	0.458586
Н	-1.053534	3.092365	4.719910
Н	-3.687897	-0.936326	2.610989
С	2.526058	3.324605	1.810272
С	-0.902189	-1.949780	-0.934159
С	-1.558244	0.957193	2.886294
С	3.342481	0.221238	-1.826105
Н	3.061705	4.171203	2.229158
Н	-1.455668	-2.764122	-1.391972
Н	-2.320292	1.056154	3.653729
Н	4.147750	0.069121	-2.538432
Ν	-0.109743	1.857245	-0.634967
0	1.744478	-0.715759	1.811570
С	2.947997	-1.499794	1.630327
Н	3.136556	-1.626403	0.559346
Н	2.784979	-2.489585	2.071808
С	4.109598	-0.799195	2.313161
Η	5.027689	-1.380959	2.171944
Н	3.924900	-0.699136	3.388113
Н	4.265055	0.198066	1.891559
С	-0.226131	2.590591	-1.745789
С	-0.537901	4.173015	-4.073794
С	-1.342985	3.502296	-1.865073
С	0.706080	2.514361	-2.829557
С	0.545851	3.291069	-3.966457
С	-1.461204	4.264426	-3.023964
Н	1.542991	1.834382	-2.740325
Н	1.268553	3.214628	-4.774989

Н	-2.298188	4.954676	-3.108981
Н	-0.662209	4.785756	-4.962143
С	-2.377167	3.603039	-0.768993
Н	-2.843968	4.596034	-0.809383
Н	-1.890385	3.512927	0.209024
С	-3.482974	2.530889	-0.873512
Н	-3.021370	1.535675	-0.834683
Н	-3.971425	2.613018	-1.855047
С	-4.536418	2.651302	0.234916
Н	-4.984603	3.654838	0.202443
Н	-4.040250	2.567009	1.212019
Н	0.971389	-1.305676	1.794715
С	-5.640102	1.593025	0.130415
Н	-5.221766	0.581804	0.205000
Н	-6.381577	1.708266	0.929875
Н	-6.169160	1.665415	-0.828154

TS1a

E[M06-2X/6-31G(d,p)/CPCM(ether)]= -1820.47131100 Zero-point correction= 0.574028 Thermal correction to Energy= 0.610724 Thermal correction to Enthalpy= 0.611668 Thermal correction to Gibbs Free Energy= 0.501557

Fe	0.602248	0.899615	0.650682
Ν	2.276997	1.800920	1.362247
Ν	1.728081	-0.185175	-0.617423
Ν	-0.447485	1.786858	2.129557
Ν	-0.992118	-0.225822	0.181386
С	2.386741	2.658158	2.436419
С	1.320562	-1.229928	-1.410765
С	3.525227	1.761106	0.780542
С	3.052495	0.026592	-0.915654
С	0.017207	2.628486	3.113360
С	-1.047399	-1.266122	-0.715987
С	-1.808284	1.709647	2.309499
С	-2.279096	-0.033964	0.623988
С	3.734866	3.160196	2.536037
С	2.416366	-1.689272	-2.232448
С	4.436263	2.617432	1.500623
С	3.487796	-0.903297	-1.933072
С	-1.077989	3.091722	3.932598
С	-2.402431	-1.752161	-0.830586

С	-2.212500	2.535799	3.423647
С	-3.168012	-0.980480	-0.008884
Н	4.081812	3.845945	3.298680
Н	2.355432	-2.506727	-2.939824
Н	5.478772	2.760261	1.245345
Н	4.489979	-0.944670	-2.340799
Н	-0.974904	3.762114	4.776543
Н	-2.710754	-2.573064	-1.465696
Н	-3.232541	2.647702	3.769146
Н	-4.233533	-1.041245	0.173626
С	1.342588	3.013555	3.282465
С	0.031917	-1.752649	-1.446861
С	-2.669588	0.888725	1.588918
С	3.882824	0.954242	-0.294392
Н	1.568094	3.689579	4.101408
Н	-0.154459	-2.580357	-2.124250
Н	-3.724436	0.927422	1.843302
Н	4.910159	1.013017	-0.640818
Ν	0.190468	3.756522	-0.407423
Ν	0.478678	4.343733	0.535013
С	1.498448	2.457953	-5.534200
Н	1.737188	3.522856	-5.413750
Н	2.422761	1.902636	-5.327408
С	0.436336	2.064048	-4.486771
Н	-0.491268	2.616735	-4.692374
С	-0.179681	1.946013	-2.012533
Н	-1.102207	2.510166	-2.215657
Н	0.193885	0.998691	-4.606898
Н	-0.428176	0.887621	-2.119701
С	0.892060	2.330376	-3.046543
Н	1.809053	1.766818	-2.834527
Н	1.136939	3.394502	-2.927044
Ν	0.218222	2.143913	-0.624297
0	1.253086	-0.723308	2.193337
С	0.503872	-1.192974	3.338102
Н	-0.199637	-0.414579	3.653618
Н	1.205050	-1.378766	4.160301
Н	1.975664	-0.152108	2.505798
С	-0.226669	-2.471401	2.966904
Н	-0.795100	-2.836492	3.829868
Н	0.482389	-3.249791	2.665079
Н	-0.924532	-2.296992	2.142958
С	1.052792	2.193314	-6.957049
С	0.350468	3.165882	-7.684217

1.299200	0.956188	-7.570749
-0.094822	2.911446	-8.983312
0.154994	4.134128	-7.227844
0.856365	0.695899	-8.869594
1.848159	0.191156	-7.025366
0.156466	1.673743	-9.581126
-0.633687	3.681260	-9.529908
1.062036	-0.268499	-9.327241
-0.185911	1.474789	-10.593170
	$\begin{array}{r} 1.299200 \\ -0.094822 \\ 0.154994 \\ 0.856365 \\ 1.848159 \\ 0.156466 \\ -0.633687 \\ 1.062036 \\ -0.185911 \end{array}$	1.2992000.956188-0.0948222.9114460.1549944.1341280.8563650.6958991.8481590.1911560.1564661.673743-0.6336873.6812601.062036-0.268499-0.1859111.474789

TS1b

E[M06-2X/6-31G(d,p)/CPCM(ether)] = -1820.47606862 Zero-point correction= 0.571115 Thermal correction to Energy= 0.609387Thermal correction to Enthalpy= 0.610331 Thermal correction to Gibbs Free Energy= 0.494222 Fe 0.472053 0.724918 -0.091014 Ν 2.047016 1.906103 -0.507624 Ν 1.303865 -0.725289-1.247118 Ν 0.018152 1.942403 1.465165 -0.731546 Ν -0.681746 0.714060 С 2.304207 3.160232 0.007663 С 0.819123 -1.997389-1.461629 С 3.013133 1.698020 -1.470461 С 2.356816 -0.578734-2.123974С 0.536509 3.193861 1.714129 С -0.944124 -1.9705050.250048 С -1.004295 1.777649 2.374018 С -1.659781 -0.501951 1.727312 С 3.441113 3.749091 -0.649606 С 1.578359 -2.657956 -2.492547С 3.881319 2.841792 -1.565754 С -1.777228 -2.903873 2.532723 С 3.823754 -0.169741 2.800300 С -1.997835 -2.6028150.993540 С -1.126671 2.944789 3.209622 С -2.442475 -1.692938 1.906413 Η 3.844442 4.726800 -0.419214 Η 1.396270 -3.667494 -2.838104 Η -2.244421 4.720969 2.919854 Η 3.297577 -3.657764 -1.912795 Η 0.054919 4.808208 3.190245

Η	-2.342502	-3.615431	0.827889
Η	-1.851217	3.056674	4.005963
Η	-3.225389	-1.806371	2.645185
С	1.596927	3.772204	1.031733
С	-0.231574	-2.582856	-0.769798
С	-1.798141	0.645757	2.493295
С	3.155077	0.550260	-2.236572
Н	1.909245	4.766287	1.334517
Н	-0.506025	-3.598692	-1.034723
Н	-2.568253	0.648985	3.257752
Н	3.959851	0.527954	-2.964169
Ν	-2.278724	0.897173	-1.675805
Ν	-2.822355	-0.006486	-1.227480
Ν	-0.822599	1.474569	-1.412616
0	1.823966	-1.118795	2.600593
С	2.548151	-2.321369	2.330500
Η	2.815206	-2.379990	1.264955
Н	1.931786	-3.202439	2.567204
С	3.805768	-2.322555	3.184482
Η	4.385053	-3.236344	3.011965
Н	3.548987	-2.271212	4.248345
Η	4.437013	-1.460687	2.941135
С	-0.652425	2.644011	-2.199688
С	-0.166653	4.914201	-3.789704
С	-1.299780	3.868025	-1.891420
С	0.209287	2.582836	-3.311452
С	0.464393	3.705357	-4.095334
С	-1.039076	4.981667	-2.703040
Η	0.680594	1.632411	-3.541347
Η	1.140917	3.635883	-4.943169
Η	-1.527495	5.925396	-2.467811
Н	0.017985	5.798748	-4.393778
С	-2.271654	4.000829	-0.739465
Η	-2.079395	4.947704	-0.216181
Н	-2.096675	3.195635	-0.020230
С	-3.750673	3.979749	-1.179891
Η	-3.952586	3.049608	-1.727131
Н	-3.928904	4.800045	-1.889895
С	-4.725196	4.102309	-0.001612
Н	-4.513697	5.030344	0.548942
Η	-4.541614	3.279704	0.704234
Η	1.042405	-1.094578	2.022342
С	-6.195530	4.087338	-0.433589
Η	-6.866968	4.175047	0.428600

Н	-6.416441	4.918770	-1.114598
Н	-6.444096	3.155801	-0.957084

TS2a			
E[M06	5-2X/6-31G(d,p))/CPCM(ethe	r)]= -
1710.9	6742569		
Zero-p	oint correction=	= 0.561017	
Therm	al correction to	Energy= 0.59	4784
Therm	al correction to	Enthalpy= 0.:	595729
Therm	al correction to	Gibbs Free E	nergy=
0.4939	00		
Ν	-2.320466	23.136089	-28.743342
С	-3.365418	22.149725	-28.883638
С	-3.021034	21.117013	-29.976439
С	-1.661420	20.460265	-29.697354
С	-0.555557	21.508286	-29.634766
0	-2.555857	26.902471	-27.328292
Η	-3.293448	27.276051	-27.839131
Ν	-0.839605	24.529244	-26.786562
Ν	-3.704328	24.352614	-26.697945
Ν	-0.977378	25.488019	-29.459843
С	1.084471	25.174758	-28.167384
С	-2.169842	23.718449	-24.886828
С	-5.775072	24.815059	-27.933249
С	-2.509436	26.067648	-31.292306
С	0.506954	24.704612	-26.992267
С	-3.437853	23.880593	-25.436974
С	-5.199092	25.264578	-29.118788
С	-1.241212	25.918766	-30.736444
С	1.248643	24.316015	-25.813081
С	-4.672750	23.605868	-24.735055
С	-5.938262	25.669288	-30.292229
С	-0.007529	26.237200	-31.421724
С	0.334249	23.895308	-24.896282
С	-5.686783	23.924847	-25.585850
С	-5.018688	26.012157	-31.237764
С	1.003086	25.999759	-30.539377
С	-0.967029	24.032066	-25.513121
С	-5.072124	24.390629	-26.809493
С	-3.715533	25.821462	-30.643354
С	0.386847	25.530322	-29.318251
Ν	-3.847204	25.373867	-29.348747
Fe	-2.340639	24.808187	-28.118376
Η	-4.309436	22.650361	-29.136735

Η	-3.534645	21.618042	-27.929141
Η	-2.997963	21.619909	-30.952803
Η	-3.812239	20.358524	-30.019258
Н	-1.434135	19.718277	-30.477403
Η	-1.722706	19.906650	-28.752134
Н	-1.227271	22.501890	-29.053891
Η	-0.368896	21.960770	-30.614550
Η	2.166749	25.257507	-28.193243
Н	-2.115447	23.335270	-23.871993
Н	-6.859582	24.785933	-27.884964
Н	-2.562509	26.422028	-32.317705
Н	-6.754696	23.862750	-25.417057
Η	-7.018603	25.683105	-30.366201
Η	-5.189978	26.365115	-32.247166
Н	0.057067	26.600919	-32.439775
Η	2.068808	26.127113	-30.683819
Η	2.326452	24.361804	-25.719852
Η	0.505229	23.527780	-23.892081
Н	-4.735050	23.228124	-23.722051
С	-1.349733	28.862569	-28.236102
Η	-0.605038	29.621479	-27.969302
Н	-0.991267	28.314440	-29.111728
Η	-2.274578	29.388423	-28.506402
С	-1.578370	27.926919	-27.057711
Η	-1.905403	28.492418	-26.175219
Н	-0.665863	27.387273	-26.797379
С	0.699617	21.234566	-28.903881
С	1.922620	21.735721	-29.398516
С	0.735130	20.505810	-27.696040
С	3.124234	21.508159	-28.730239
Н	1.921179	22.304373	-30.325503
С	1.936629	20.280555	-27.025557
Н	-0.186169	20.114789	-27.273989
С	3.139278	20.776638	-27.538595
Н	4.051685	21.898240	-29.142022
Η	1.934392	19.713951	-26.097796
Н	4.074836	20.595824	-27.016387

TS2b

E[M06-2X/6-31G(d,p)/CPCM(ether)]= -1710.97079311 Zero-point correction= 0.560320 Thermal correction to Energy= 0.594318 Thermal correction to Enthalpy= 0.595262

0.4940/5			
Fe	0.625537	0.956074	0.129973
Ν	2.143491	2.180649	-0.341501
Ν	1.298672	-0.378555	-1.237929
Ν	0.175881	2.107824	1.723854
Ν	-0.712041	-0.421593	0.782901
С	2.369420	3.429112	0.181384
С	0.674952	-1.546665	-1.618089
С	3.146972	1.960414	-1.252372
С	2.417501	-0.266216	-2.035293
С	0.660170	3.369598	1.966944
С	-1.063456	-1.584118	0.140003
С	-0.727350	1.844866	2.723511
С	-1.500971	-0.354688	1.905665
С	3.530955	4.027339	-0.439390
С	1.412148	-2.176535	-2.687533
С	4.022205	3.109736	-1.317068
С	2.500203	-1.392509	-2.934033
С	0.042134	3.920127	3.152695
С	-2.110811	-2.261972	0.870553
С	-0.806946	2.967794	3.631212
С	-2.369971	-1.508190	1.975411
Н	3.918612	5.010439	-0.203353
Н	1.132535	-3.108041	-3.163562
Н	4.892457	3.186325	-1.956824
Н	3.289155	-1.545342	-3.659790
Н	0.255370	4.900021	3.561240
Н	-2.562001	-3.200523	0.573727
Н	-1.439570	3.007883	4.509190
Н	-3.082797	-1.696782	2.768435
С	1.654810	4.004426	1.227955
С	-0.447987	-2.090911	-1.001941
С	-1.494583	0.688054	2.827639
С	3.299164	0.810385	-2.022434
Н	1.946569	5.002690	1.540319
Н	-0.831065	-3.025224	-1.401238
Н	-2.172224	0.612164	3.672637
Н	4.144418	0.772653	-2.702947
Ν	-0.588502	1.824327	-0.936974
0	2.207934	-0.141701	1.377177
С	2.126444	-0.587631	2.750802
Н	2.648536	-1.547949	2.835575
Н	1.076248	-0.740981	3.019898

Thermal correction to Gibbs Free Energy= 0.494675

С	2.776583	0.449271	3.650072
Η	2.708069	0.129446	4.696124
Η	2.276354	1.417055	3.551457
Η	3.834321	0.575460	3.395057
С	-0.522769	2.615806	-2.068954
С	-0.461940	4.249249	-4.386854
С	-1.401009	3.737536	-2.197422
С	0.356456	2.337631	-3.142485
С	0.390355	3.147962	-4.274072
С	-1.356458	4.523059	-3.347377
Η	1.001081	1.473209	-3.078007
Η	1.080242	2.906539	-5.079237
Η	-2.035347	5.369651	-3.428681
Η	-0.441779	4.877686	-5.272818
С	-2.366260	4.020865	-1.071386
Η	-3.166554	4.690185	-1.421113
Η	-1.854527	4.549405	-0.251352
С	-2.943866	2.725620	-0.529105
Η	-1.743611	2.055944	-0.456154
Η	-3.449055	2.141245	-1.308045
С	-3.726935	2.806956	0.765003
Η	-4.359292	3.711028	0.724027
Η	-3.045098	2.967155	1.610360
Η	2.189378	-0.915003	0.788635
С	-4.622510	1.591715	1.028285
Η	-4.037322	0.667894	1.076263
Η	-5.162695	1.697303	1.976356
Η	-5.366996	1.476731	0.230776

XI. NMR Spectra

S107

NMR spectrums for standard products:

NMR for the preparative-scale enzymatic reaction:

XII. References

- 1. Kille, S.; Acevedo-Rocha, C. G.; Parra, L. P.; Zhang, Z.-G.; Opperman, D. J.; Reetz, M. T.; Acevedo J. P. Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis. *ACS Synth. Biol.* **2013**, *2*, 83–92.
- Gibson, D. G.; Young, L.; Chuang, R.-Y.; Venter, J. C.; Hutchinson III, C. A.; Smith, H. O. Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat. Methods* 2009, *6*, 343–345.
- 3. Vatsis, K. P.; Peng, H.-M.; Coon, M. J. Replacement of active-site cysteine-436 by serine converts cytochrome P450 2B4 into an NADPH oxidase with negligible monooxygenase activity. *J. Inorg. Biochem.* **2002**, *91*, 542–553.
- Seyfried, P.; Heinz, M.; Pintér, G.; Klötzner, D.-P.; Becker, Y.; Bolte, M.; Jonker, H. R. A.; Stelzl, L. S.; Hummer, G.; Schwalbe, H.; Heckel, A. Optimal destabilization of DNA double strands by single-nucleobase caging. *Chem. Eur. J.* 2018, *24*, 17568–17576.
- 5. Blair, L. M.; Sperry, J. Palladium-catalyzed heteroannulation approach to 1,2-Bis(3-indolyl)ethanes. *Synlett* **2013**, *24*, 1931–1936.
- Hardouin, C.; Kelso, M. J.; Romero, F. A.; Rayl, T. J.; Leung, D.; Hwang, I.; Cravatt, B. F.; Boger, D. L. Structure–Activity Relationships of α-Ketooxazole Inhibitors of Fatty Acid Amide Hydrolase. *J. Med. Chem.* 2007, *50*, 3359–3368.
- Kuijpers, P. F.; Tiekink, M. J.; Breukelaar, W. B.; Broere, D. L. J.; van Leest, N. P.; van der Vlugt, J. I.; Reek, J. N. H.; de Bruin, B. Cobalt-porphyrin-catalysed intramolecular ring-closing C-H amination of aliphatic azides: a nitrene-radical approach to saturated heterocycles. *Chem. Eur. J.* 2017, 23, 7945–7952.
- 8. Nguyen, Q.; Sun, K.; Driver, T. G. Rh₂(II)-catalyzed intramolecular aliphatic C–H bond amination reactions using Aryl Azides as the N-atom source. *J. Am. Chem. Soc.* **2012**, *134*, 7262–7265.
- 9. Zhang, H.-Y.; Mao, L.-L.; Yang, B.; Yang, S.-D. Copper-catalyzed radical cascade cyclization for the synthesis of phosphorated indolines. *Chem. Commun.* **2015**, *51*, 4101–4104.
- 10. Gotor-Fernández V.; Fernández-Torres, P.; Gotor, V. Chemoenzymatic preparation of optically active secondary amines: a new route to enantiomerically pure indolines. *Tetrahedron Asymmetry* **2006**, *17*, 2558–2564.
- 11. Liu, Z.; Calvó-Tusell, C.; Zhou, A. Z.; Chen, K.; Garcia-Borràs, M.; Arnold, F. H. Dualfunction enzyme catalysis for enantioselective carbon-nitrogen bond formation. *Nat. Chem.* **2021**, *13*, 1166–1172.
- 12. Grimme, S. Exploration of chemical compound, conformer, and reaction space with metadynamics simulations based on tight-binding quantum chemical calculations. *J. Chem. Theory Comput.* **2019**, *15*, 2847–2862.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.; Peralta, Jr., J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.;

Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2016.

- Luchini, G.; Alegre-Requena, J. V.; Funes-Ardoiz, I.; Paton, R. S. GoodVibes: automated thermochemistry for heterogeneous computational chemistry data. *F1000Research* 2020, 9, 291–305.
- 15. Case, D. A.; Betz, R. M.; Cerutti, D. S.; Cheatham, III, T. E.; Darden, T. A.; Duke, R. E.; Giese, T. J.; Gohlke, H.; Goetz, A. W.; Homeyer, N.; Izadi, S.; Janowski, P.; Kaus, J.; Kovalenko, A.; Lee, T. S.; LeGrand, S.; Li, P.; Lin, C.; Luchko, T.; Luo, R.; Madej, B.; Mermelstein, D.; Merz, K. M.; Monard, G.; Nguyen, H.; Nguyen, H. T.; Omelyan, I.; Onufriev, A.; Roe, D. R.; Roitberg, A.; Sagui, C.; Simmerling, C. L.; Botello-Smith, W. M.; Swails, J.; Walker, R. C.; Wang, J.; Wolf, R. M.;X. Wu, L. Xiao and P.A. Kollman (2016), AMBER 2016, University of California, San Francisco.)
- 16. Søndergaard, C. R.; Olsson, M. H. M.; Rostkowski, M.; Jensen, J. H. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. *J. Chem. Theory Comput.* **2011**, *7*, 2284–2295.
- Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. *J. Chem. Theory Comput.* 2015, *11*, 3696–3713.
- 18. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. *J. Chem. Phys.* **1983**, 79, 926–935.
- 19. Li, P.; Jr. Merz, K. M. MCPB.py: a python based metal center parameter builder. *J. Chem. Inf. Model.* **2016**, *56*, 599–604.
- (a) Bayly, C. I., Cieplak, P., Cornell, W. D.; Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. *J. Phys. Chem.* **1993**, *97*, 10269–10280. (b) Besler, B. H., Merz, K. M.; Kollman, P. A. Atomic charges derived from semiempirical methods. *J. Comput. Chem.* **1990**, *11*, 431–439. (c) Singh, U. C.; Kollman, P. A. An approach to computing electrostatic charges for molecules. *J. Comput. Chem.* **1984**, *5*, 129–145.
- 21. Darden, T., York, D.; Pedersen, L. Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems. *J. Chem. Phys.* **1993**, *98*, 10089–10092.