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1. Ionic Charges on PEO4-LiTFSI 

Simulations of ionic diffusion require charges less1 than the purely ionic charge of ±1 in order 

to account for shielding effects. The choice of charge is, in general, non-unique and requires a 

QM-based simulation on a representative system. 

Here, a PEO4-LiTFSI cluster (Figure S1) was built and a lithium charge of +0.70 was obtained 

using the electrostatic potential (ESP) method at the B3LYP/6-31G** level of theory (Table S1). 
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Figure S1. Representative PEO4-LiTFSI cluster used for charge calculations. 

Thus, we elected to use ionic charges of ±0.7. The TFSI charges were taken from ESP charges 

on an isolated TFSI- molecule, scaled by a factor of 0.7 in order to maintain a neutral system. 

Charges on the polymer were taken directly from the OPLS2005FF.2 

Table S1. Molecular dynamics charges on PEO and LiTFSI. Polymer charges are from the 

OPLS2005 FF and LiTFSI charges are determined from ESP charges obtained from DFT 

calculations. 

 

These charges are also in reasonable agreement with Mulliken charges and a set of charges later 

developed using the PQEq method.3  

PEO  Li+  TFSI- 

Atom FF  Atom FF  Atom FF 

C +0.14  Li +0.70  O -0.34 

H -0.03     S +0.61 

O -0.40     N -0.45 

      C +0.22 

      F -0.09 
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2. Computational Procedure for Building Polymer Structures 

After construction, each polymer cell was equilibrated using a standard procedure based on the 

Scaled-Effective-Solvent (SES) method,4,5 which allows relaxation of the polymer chains. The 

steps in the initial equilibration procedure are as follows: 

1. Construct a PEO-LiTFSI structure at 60% of the experimental density in an amorphous 

builder 

2. Minimize for 300 steps to avoid clashes 

3. Run NVT at 10 K for 20 ps to give the system an initial velocity 

4. Run NPT at 300 K for 200 ps to equilibrate the lattice parameters 

5. Minimize for 300 steps to avoid clashes 

6. 500 ps of NVT at 300 K with non-bond (Coulomb, van der Waals) interactions scaled down 

to 20% of their original value to allow the polymer chains to relax 

7. Minimize for 300 steps to avoid clashes 

8. Run NPT at 300 K for 100 ps to re-equilibrate the lattice parameters 

The equilibrated structure from step 8 is then used as the initial structure for simulations at 360, 

400, 440 and 480K. To account for the higher temperature, two additional steps of equilibration 

are performed.  

9. Run 1 ns of NPT at the target temperature to equilibrate lattice parameters 

10. Run 10 ns of NVT at the target temperature to equilibrate polymer. 
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After the equilibration process is completed, a production simulation is run for 115-400 ns.  

3. Mean-Squared-Displacement (MSD) Plots for All Simulations 

The MSD (Å2) is defined as the average squared displacement of the center of mass of the ion 

over all points in the trajectory separated by the corresponding time (ns). The MSD curves for 

individual ions are shown as grey lines and the average of the collection of ions is shown as a red 

curve. The Fickian regime of the MSD is identified as largest continuous group of times where the 

loglog slope is with 0.1 units of 1.0. To ensure a robust fit, if the Fickian regime (shown in blue) 

is less than 10% of the totally trajectory length, it is evenly extended to 10% of the trajectory in 

the ±t directions. This method yielded results in agreement with other fitting schemes, such as 

apparent diffusion coefficient,5 while ensuring that diffusion coefficients are obtained from truly 

Fickian diffusion.  
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Figure S2. MSD plots and predicted ionic diffusion coefficients for PEO-LiTFSI. 

4. Computationally Predicted Li Diffusion Coefficients, compared to Impedance 

Spectroscopy (IS) and Nuclear Magnetic Resonance (NMR) Experiments  

Although the absolute diffusion coefficient obtained from polymer simulations depends greatly 

on parameters such as ionic charges,6 the relative diffusion coefficients are useful for predicting 

physical trends.7 The Li diffusion coefficients (Figure S3) obtained from these simulations are in 

excellent agreement with the IS measurements.9 However both the theory and the IS experiments 

are a factor of ~5 slower than experimental NMR.8 
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Figure S3. Diffusion coefficients obtained from simulation (red), NMR (green), and IS (purple) 

measurements.  

4. Plots of Activation Energies for Li and TFSI Ionic Diffusion 

     

                                       a                                                                 b 

 Figure S4. Li and TFSI activation energies over a range of chain lengths, N=23, 45, 100, 450 (a) 

and concentrations r=0.02, 0.04, 0.06 and 0.08 Li:EO (b). The computed activation energy depends 
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weakly on chain length and concentration within this regime, in agreement with experimental 

measurements.10  

The predicted activation energies for Li and TFSI ionic diffusion are shown in Figure S4 as a 

function of chain length and ionic concentration. These values are in the range reported by Gorecki 

et al.,10 (Table S2) and suggest that the computed diffusion coefficients are transferable across a 

range of temperatures.  

Table S2. Experimental lithium and TFSI activation energies (Ea) at high molecular weight (N≈ 

20,000) obtained by Gorecki et al.10 with pulsed magnetic field gradient measurements for r=0.05, 

0.10, 0.13, and 0.17 Li:EO.  

 r=0.05 r=0.10 r=0.13 r=0.17 

ELi (eV) 0.38 0.39 0.40 0.43 

ETFSI (eV) 0.43 0.45 0.40 0.49 
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