Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 26, 2006 | metadata_only
Journal Article

Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods


We present a one-parameter family of approximation schemes, which we refer to as local maximum-entropy approximation schemes, that bridges continuously two important limits: Delaunay triangulation and maximum-entropy (max-ent) statistical inference. Local max-ent approximation schemes represent a compromise—in the sense of Pareto optimality—between the competing objectives of unbiased statistical inference from the nodal data and the definition of local shape functions of least width. Local max-ent approximation schemes are entirely defined by the node set and the domain of analysis, and the shape functions are positive, interpolate affine functions exactly, and have a weak Kronecker-delta property at the boundary. Local max-ent approximation may be regarded as a regularization, or thermalization, of Delaunay triangulation which effectively resolves the degenerate cases resulting from the lack or uniqueness of the triangulation. Local max-ent approximation schemes can be taken as a convenient basis for the numerical solution of PDEs in the style of meshfree Galerkin methods. In test cases characterized by smooth solutions we find that the accuracy of local max-ent approximation schemes is vastly superior to that of finite elements.

Additional Information

© 2005 John Wiley & Sons. Received 17 December 2004. Revised 27 April 2005. Accepted 17 August 2005. The authors gratefully acknowledge the support of the Department of Energy through Caltech's ASCI ASAP Center for the Simulation of the Dynamic Response of Materials, and the support received from NSF through an ITR grant on Multiscale Modelling and Simulation and Caltech's Center for Integrative Multiscale Modelling and Simulation.

Additional details

August 22, 2023
August 22, 2023