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In single-cell RNA-seq, cell-type assignment [1] is the task of associating a
collection of cells with cell types that are defined in terms of marker genes [2].
Therefore, the assignment depends on identifying, for each cell, the markers
it expresses. Formally, markers for cell types are encoded as an n × k binary
matrix M where entry Mij specifies whether gene i is a marker for cell type
j. A gene expression matrix is an n×N matrix E where Eij is a real positive
number specifying, in some units, the abundance of gene i in cell j for n genes
and N cells. In other words, the markers for a cell type j correspond to subsets
of 2[n] corresponding to the genes that are present and the expression of each
cell is a vector in Rn.

A cell marker function is a function that reports for each gene expression
vector corresponding to a cell, its markers genes, i.e. a function f : Rn → 2[n].
For a given marker matrix M and an expression matrix E, such a function can
be used to identify the markers expressed in each cell, and therefore allow for the
association of the cell with one of the cell types. In analogy with the axioms for
clustering suggested in [3], we posit that a cell marker function should satisfy:

1. f(αc) = f(c) for a gene expression vector c and every real positive scaling
factor α. This is called scale invariance.

2. For all A ⊆ 2[n], there exists a gene expression vector c such that f(c) = A.
This is called richness.

3. If f(c) = A ⊆ 2[n] for some gene expression vector c, and c′ is another
gene expression vector with c′(i) ≥ c(i) when i ∈ A and c′(i) ≤ c(i) when
i /∈ A, then f(c′) = f(c) = A. This is called consistency

Biologically and technically, the scale-invariance property reflects the fact
that gene expression matrices are estimates of relative abundances of genes.
Richness is the mathematical requirement that cell marker functions are sur-
jective. Biologically, this means that in principle, any combination of genes
constitutes a set of markers for some kind of cell. Consistency reflects an es-
sential property of markers: if a cell expresses a marker, then if the amount of
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that marker gene increases, the marker gene should still be considered a marker.
Similarly, if a gene is not a marker gene for a cell then if the gene is expressed
less it should not switch to being a marker gene.

In analogy with the impossibility result for clustering from [3]:

Theorem 1. Let n ≥ 2. No cell marker function f : Rn → 2[n] can simultane-
ously satisfy scale-invariance, richness and consistency.

Proof: By richness, there must exist a gene expression vector c such that
f(c) = {1, 2, . . . , n}. Since n ≥ 2, there must exist another gene expression

vector c′ such that f(c′) ̸= f(c). Let α = maxic(i)
minic′(i)

and let c′′(i) = αc′(i). Note

that c′′(i) ≥ c(i) for all i, and therefore by consistency f(c′′) = f(c). By scale-
invariance f(c′′) = f(c′). Since f(c) and f(c′) are both equal to f(c′′), it follows
that f(c) = f(c′), which is a contradiction.

This proof mimics the proof of Kleinberg’s theorem by [4]. It is the formaliza-
tion of the incompatibility of the relative changes facilitated by scale-invariance
and the absolute differences allowed by consistency if richness is to be required.
The theorem does not mean that there is no meaningful approach to defin-
ing marker genes. Rather, it highlights choices that must be considered when
deciding on a method to select marker genes.
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