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Brownian ratchets produce directed motion through rectification of thermal fluctuations and have been used
for separation processes and colloidal transport. We propose a flashing ratchet motor that enables the trans-
duction of electrical energy into rotary micromechanical work. This is achieved through torque generation
provided by boundary shaping of equipotential surfaces. The present device contrasts to previous implemen-
tations that focus on translational motion. Stochastic simulations elucidate the performance characteristics of
this device as a function of its geometry. Miniaturization to nanoscale dimensions yields rotational speeds in
excess of 1 kHz, which is comparable to biomolecular motors of similar size.

DOI: 10.1103/PhysRevE.79.030105 PACS number�s�: 05.40.Jc, 87.85.Qr, 07.10.Cm

Miniaturization of devices to nanometer length scales
greatly enhances the influence of thermal fluctuations. While
this presents a fundamental limitation in some applications
�1�, it also facilitates the development of new devices that
utilize Brownian motion in energy transduction �2�. One ex-
ample that has received considerable attention in recent years
is the flashing on-off ratchet �3�. These ratchets utilize asym-
metric sawtooth-shaped potentials generated by barriers or
external fields to partially rectify diffusive motion. Several
implementations of on-off ratchets that provide translational
motion and sorting capabilities have been presented �4–8�.
The novel mechanism of Brownian motors is that their per-
formance depends significantly on the diffusion of the par-
ticles or system �9�. Such a method is also believed to drive
some biological motors �10�. Artificial molecular rotors have
also been studied with reports of ratchetlike mechanisms
�11�. These molecular rotors ultimately rely on charge distri-
butions and conformational chemistry to form the ratchet
potential landscape, and as such the nature of this energy
landscape is largely speculative and is not open to direct
measurement or manipulation.

In this Rapid Communication, we propose a design for a
rotary flashing on-off Brownian ratchet that is amenable to
modern microfabrication techniques. We take a fundamen-
tally different approach by exploiting the geometry of equi-
potential surfaces. This achieves the necessary spatially vary-
ing potential to provide diffusion-induced rotary motion. To
our knowledge, flashing ratchets have not been previously
implemented for rotation. By utilizing rotary motion, our
proposition presents a paradigm shift in the design and
implementation of Brownian motors, which will find poten-
tial applications in energy conversion at the nanoscale. The
scalability of our design facilitates tunability of the motor
characteristics and thus implementation in practice. Unlike
nanomechanical devices that are essentially miniaturizations
of macroscopic three-phase motors �12�, the electrodynamic
ratchet motor we describe is designed to operate in a highly
damped environment and takes advantage of the inherent
Brownian motion at small length scales. The use of a single

stator also potentially improves durability and simplicity in
practical operation.

This device is also in contrast to that of van den Broek
and Van den Broeck �13�, who recently proposed a chiral
Brownian motor that requires two mechanically connected
rotors to be isolated in two separate heat baths �at different
temperatures�. Complexity in implementation of such a de-
vice is circumvented in the present work since all compo-
nents operate at the same temperature. This facilitates imple-
mentation using microelectromechanical system �MEMS�
and nanoelectromechanical system �NEMS� technologies at
length scales greater than molecular dimensions where
Brownian motion is still prevalent.

Consider the cylindrical Brownian ratchet motor in Fig. 1.
An outer stator comprises Ns teeth of asymmetric geometry,
while the inner rotor has Nr teeth. Since both the stator and
rotor are conductors, they admit electric potentials with an
applied voltage of �V�t�. As the rotor is constrained to rotate
about the z axis, it will experience a torque, which would
otherwise be absent if either the stator or rotor was perfectly
circular.

An oscillating electrical potential �V�t�=V0 sin�2��t� is
applied to the motor to avoid undesirable electrolytic effects
in the suspending medium. We consider the case where the
frequency of oscillation is relatively small such that the elec-
trostatic approximation holds for length scales below
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FIG. 1. Cross section of stator-rotor configuration with Ns=Nr

=4. Rotor protrusions are set to 0.1R0 in radial length and 0.1
�2� /Nr in angular span. The asymmetry factor of sawtoothlike
stator boundary is �s=0.05 ��s=0.5 is symmetric� and the mini-
mum radial gap between stator and rotor is 0.05R0. The potential
difference between rotor and stator switches between �V�t�
=V0 sin�2��t� for on state and 0 for off state. �r is angular position.
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100 �m, yet much greater than the frequency of the fastest
on-off cycling, i.e., 10 kHz��	100 MHz. Effects due to
the magnetic field components can then be ignored in the

Maxwell stress tensor, i.e., TJ�
�E� E� − �1 /2�E2IJ�. The result-
ing torque along the axis of the rotor, at a particular rotor
position �r, is thus �= �1 /2�
���RM

2 Lz�0
2�ErE�d�, assuming

that the gap between the stator and rotor behaves as a linear
medium with permittivity 
��� under the applied field. The
axial length of the rotor is denoted as Lz, whereas RM is the
radius of a cylinder enclosing the rotor that forms the inte-
gration surface. The inherent geometric asymmetry in the
motor induces a torque; the integral of which gives the an-
gular potential energy U��r�. This potential energy was cal-
culated using the finite-element method within the electro-
static approximation: at each rotor position �r, the Laplace
equation was solved numerically �14� within the gap be-
tween the rotor and the stator. The electric field components
�Er ,E�� were readily obtained by finite differencing.

We introduce the following dimensionless parameters �de-

noted by the hat symbol�: r̂=r /R0, �̂=R0�, V̂
=�
Lz / �2kBT�V, and �̂=� / �kBT�, where R0 is a characteristic
radius of the rotary motor �see Fig. 1�. The Laplace equation,
torque �, and corresponding potential-energy function U are
then converted to dimensionless form as follows:

�̂2V̂ = 0, �1a�

�̂��r� =
RM

R0
�

0

2� 	 �V̂

� r̂

�V̂

��



r=RM

d� , �1b�

Û��r� = − �
0

�r

�̂��r��d�r�. �1c�

The torque and potential energy increase with the square
of the motor size. For the purpose of illustration, the follow-
ing results assume the shape constants as depicted in Fig. 1.
When there is a match in the periodicity of the stator and
rotor, i.e., Ns=Nr, the periodicity of the resulting potential
landscape is the same. In the case of a mismatch, a higher
resultant periodicity is observed, which can be predicted us-
ing harmonic analysis. We approximate the rotor teeth as a
ring of Nr test particles rigidly connected together with the
regular spacing of 2� /Nr. The stator is represented as a per-
fect sawtooth potential with a geometric asymmetry �s that
the rotor “particles” experience. It can be shown that the
resulting number of periods in the potential Np is given by

Np =
NsNr

gcf�Nr,Ns�
= lcm�Nr,Ns� , �2�

where gcf�greatest common factor and lcm� lowest com-
mon multiple.

Merkle �15� also arrived at this result for rotational mo-
lecular bearings using number theory. However, Ref. �15�
does not include an expression for the change in barrier

height Û0 �see Fig. 2�. Using the harmonic theory above, this
can be approximated as

Û0 � 
Ns

Np
�2

. �3�

For example, a motor with Ns=4 and Nr=6 yields Np=12
periods for the potential landscape using Eq. �2�, although

the barrier height Û0 is reduced by 1 order of magnitude
when compared to the matched case of Ns=Nr=12. This de-

crease in Û0 can be readily compensated by increasing the
applied voltage or immersing the motor in a medium of
higher permittivity, enabling similar performance to be at-
tained.

Consider the example motor in Fig. 2 with Ns=4, Nr=6,
R0=10 �m, and Lz=10R0 operating in water at 25 °C. To
obtain a barrier height of U0=50kBT, an applied voltage of
3.7 mV is required when operating in ac mode. This is to be
compared to the matched case of Ns=Nr=12, which requires
1.4 mV. Thus, through slight adjustment of the applied volt-
age, identical barrier heights are practically attainable.

To elucidate the performance of this motor for different
stator-rotor configurations, with an applied external torque
�ext, the system was simulated using the Fokker-Planck equa-
tion. We introduce the dimensionless time variable
t̂= tkBT /�r= tDr, where �r is the coefficient in the rotational
Stokes’ law �=�r
. With the aim of maximizing the mean
angular velocity 
̄, the “off” duration of the applied voltage
is chosen such that the rotor diffuses an angle �p�p in this
time, i.e., t̂off= ��p�p�2 /2, where �p is the effective asymme-
try of the resulting potential and �p=2� /Np.

When the ratchet potential is switched on, the rotor
must traverse the remaining period to admit net rotation.
This �larger� angle then dictates the “on” time

t̂on= ��1−�p��p�2 / Û0. From this qualitative picture, an esti-
mate for the average angular velocity can then be deter-
mined, 
̄̂�Np /�p

2, which is valid in the high potential limit

�Û0�1� and strong asymmetry ��p�0.5�.
In the high-damping limit, where inertia is negligible, the

Fokker-Planck equation can be used to describe the evolution
of the system,

��

� t̂
= −

�

��r
�D̂1�� +

�2

��r
2 �D̂2�� , �4�

where ���r , t̂� is the probability density of the rotor being at

position �r at time t̂. The drift D̂1 and diffusion D̂2 coeffi-
cients are given by

FIG. 2. Configuration with Ns=4, Nr=6 giving 12 effective
periods. Sawtoothlike potential has asymmetry �p=0.36 calculated
from relative position of the peak to the period �p. The geometric

stator asymmetry is �s=0.05. V̂0=8.5 gives peak-to-peak height
U0=30kBT. ��s=2� /Ns and �p=2� /Np�.
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D̂1��r, t̂� = �−
�Û

��r
− �̂ext �ratchet on�

− �̂ext �ratchet off� ,
� �5a�

D̂2 = D̂r = 1. �5b�

Equation �4� was solved using the path-integral method
�16�. Initially, the dependence of the maximum rotor speed
on the stator-rotor configuration was explored, i.e., without
an applied external torque, �ext=0. The barrier height of each
�Ns ,Nr� configuration was normalized to U0=50kBT. For
each configuration, an initial random distribution ���r ,0�
=1 /2� was evolved over 20 on-off cycles, t̂cycle= t̂on+ t̂off.
The first cycle was ignored in the subsequent analysis to
minimize transients.

The time-averaged value 
̄̂ over this 19-cycle time inter-
val was calculated using


̄̂ � ��
̂��r
�t̂ =

1

T̂
�

0

T̂ �
0

2�

���r, t̂�
̂��r, t̂�d�rdt̂ , �6�

where the instantaneous rotor speed was derived from the

continuity equation 
̂��r , t̂�= D̂1− �1 /���� /��r. From the
above discussion, it follows that 
̄̂�p

2 should vary linearly
with the effective periodicity Np. This is verified by the data
in Fig. 3 when the asymmetry is strong, i.e., �p�0.5. How-
ever, for weak asymmetries, �p→0.5, directed diffusion is
greatly reduced leading to violation of this scaling law. The
fact that the potential walls �Fig. 2� are not perfectly linear
and sawtooth in nature is another unaccounted detail in the
derivation of this scaling. Table I illustrates that, in general,
mismatches with Nr�Ns give higher velocities than those
with Nr	Ns. This is because cases where Nr�Ns have
slightly stronger asymmetry in the potential.

Although increasing the number of ratchet periods by em-
ploying a mismatched configuration can enhance the rotor
speed, much of this improvement is offset by reduced asym-
metry. The result is that speeds peak at an intermediate value
of Np=12 for Nr�Ns. For example, the configuration

of Ns=3,Nr=4 yielding Np=12 provides a 13% improve-
ment in maximum speed over the matched configuration
�Ns=Nr=4� for identical barrier heights.

Consider a microscopic �Ns=3,Nr=4� motor in water at
25 °C, with dimensions R0=10 �m and Lz=10R0. An ap-
plied voltage amplitude of V0=5.3 mV is required to create
a ratchet potential of U0=50kBT, resulting in a maximum
speed of 
̄=1.0�10−5 Hz. From the relation 
=Dr
̂, we
find that the rotor speed scales as 
̄�1 / ��R0

3�, where � de-
notes the dynamic viscosity of the fluid. Consequently, if
technological improvements allowed the fabrication of a 20-
nm-radius motor, it could operate at 1300 Hz, comparable to
sodium-driven bacterial flagellar motors of the same size
�17�.

Next, we examine the effect of applying an external
torque. Motors of different �Ns ,Nr� configurations were
simulated up to a stopping torque �stop��r�p�1 /2−�p� / toff;
this formula is derived for piecewise-linear sawtooth poten-
tials �3�. Using the above analysis, this formula reduces to
�̂stop�Np�1−2�p� /�p

2. Power-law fits of the stopping torque
data in Table II show qualitative agreement with this scaling
law. The matched configurations resist the greatest torques
due to their high potential asymmetry. For the example
�Nr=Ns=4� configuration above with a barrier height of
50kBT, a stopping torque of 37 pN nm is obtained.

For U0�50kBT, simulations yield a monotonically de-
creasing speed with increasing external torque. For much
higher potentials, matched configurations with Np	4 give
multivalued behavior where several values of torque produce
identical motor speeds. The precise mechanism for this in-
triguing behavior is unclear but appears to arise from the
“coarse” nature of low periodicity potential landscapes and
the rotary geometry; this effect is eliminated as the periodic-
ity is increased. Figure 4 is one example for a Ns=Nr=3
configuration with U0=120kBT.

Finally, we assess the efficiency of this ratchet motor. The

instantaneous power input is defined, Q̇̂in��Û /�t̂, while the
instantaneous work output is the product of the torque and

the angular speed, i.e., Ẇ̂out� �̂ext
̂. The time averages for

TABLE I. Averaged maximum rotor speeds of different stator-
rotor combinations. Combinations with Ns,r=1 were not evaluated
�rows with dashes�. U0=50kBT and no external torque imposed.

Np

Ns=Nr Nr	Ns Nr�Ns

�p 
̄̂max Ns Nr �p 
̄̂max Ns Nr �p 
̄̂max

2 0.15 1.60

3 0.18 2.20

4 0.21 2.66

5 0.23 3.00

6 0.26 3.29 3 2 0.29 2.71 2 3 0.29 2.82

10 0.32 3.86 5 2 0.38 2.52 2 5 0.36 2.80

12 0.34 3.99 4 3 0.38 2.91 3 4 0.36 3.01

15 0.36 5.67 5 3 0.40 2.77 3 5 0.40 2.87

17 0.38 3.99

20 0.38 4.67 5 4 0.42 2.90 4 5 0.42 2.77
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FIG. 3. For the same barrier height Û0 �and neglecting changes
in �p�, increasing the number of ratchet periods increases the aver-
age rotor speed. Solid triangles ��� denote Nr=Ns with a power-law
fit 
̄̂�p

2 =0.036Np
0.99�0.064. The fit for the mismatched Nr�Ns data

��� gave a nonlinear result 
̄̂�p
2 =0.097Np

0.56�0.080.
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these quantities were calculated in the manner of Eq. �6� and

the time-averaged efficiency given by �̄� Ẇ̂
¯

out / Q̇̂
¯

in. Each
stator-rotor configuration was simulated as the torque �ext
was increased. For each �ext, the average input or output
power and efficiency were calculated. In all cases, the input
power, output work, and efficiency reach a maximum for
intermediate values of applied torque. These peak values are
listed in Table II, showing decreasing maximum efficiency
with increasing effective periodicity Np. The matched con-
figurations exhibit higher efficiency due to the stronger
asymmetry in their potential.

We have presented an electrodynamic design for a
Brownian ratchet rotary motor. This provides significant ad-
vantages over previous proposals that require different com-

ponents of the motor to be immersed in isolated heat baths of
different temperatures. Actuated rotation contrasts to previ-
ous works that have focused almost exclusively on transla-
tional motion. The scaling dependence of this motor was also
elucidated, with the speed varying as the inverse cube of its
radial size. This strong dependence allows for a dramatic
enhancement in speed through miniaturization to the nano-
scale; speeds comparable to protein motors are attainable.
This simple design allows for great tunability in performance
characteristics and implementation using MEMS and NEMS
technologies over a wide range of length scales.
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TABLE II. Maximum values of input and output power and
efficiency from intermediate values of the external torque. Mis-
matched combinations are italicized. U0=50kBT.

Ns Nr Np �p Q̇̂
¯

in,max Ẇ̂
¯

out,max �̄max �̂stop

2 2 2 0.15 80 1.5 0.021 7.6

3 3 3 0.18 170 2.6 0.018 8.9

4 4 4 0.21 270 3.8 0.016 9.0

5 5 5 0.23 370 4.6 0.013 8.3

2 3 6 0.29 390 3.4 0.0093 5.4

6 6 6 0.26 480 5.0 0.011 7.4

2 5 10 0.36 830 2.7 0.0033 4.0

10 10 10 0.32 1100 5.7 0.0055 6.2

3 4 12 0.36 1200 3.2 0.0027 4.3

12 12 12 0.34 1400 5.7 0.0041 5.9

3 5 15 0.40 1600 2.6 0.0016 3.7

15 15 15 0.36 2000 5.6 0.0028 5.7

17 17 17 0.38 2400 5.2 0.0021 5.2

4 5 20 0.42 2600 2.4 9.2�10−4 3.4

20 20 20 0.38 3400 6.9 0.0020 6.0
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FIG. 4. �a� Torque-speed relationship at very high potential U0

=120kBT for Ns=Nr=3 shows multistable behavior where the aver-
age speed remains constant for 7	�̂ext	9. �b� Peak power output
and efficiency also occur at this range.
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