The Burst-Like Behavior of Aseismic Slip on a Rough Fault: The Creeping Section of the Haiyuan Fault, China
Abstract
Recent observations suggesting the influence of creep on earthquakes nucleation and arrest are strong incentives to investigate the physical mechanisms controlling how active faults slip. We focus here on deriving generic characteristics of shallow creep along the Haiyuan fault, a major strike‐slip fault in China, by investigating the relationship between fault slip and geometry. We use optical images and time series of Synthetic Aperture Radar data to map the surface fault trace and the spatiotemporal distribution of surface slip along the creeping section of the Haiyuan fault. The fault trace roughness shows a power‐law behavior similar to that of the aseismic slip distribution, with a 0.8 roughness exponent, typical of a self‐affine regime. One possible interpretation is that fault geometry controls to some extent the distribution of aseismic slip, as it has been shown previously for coseismic slip along active faults. Creep is characterized by local fluctuations in rates that we define as creep bursts. The potency of creep bursts follows a power‐law behavior similar to the Gutenberg–Richter earthquake distribution, whereas the distribution of bursts velocity is non‐Gaussian, suggesting an avalanche‐like behavior of these slip events. Such similarities with earthquakes and lab experiments lead us to interpret the rich dynamics of creep bursts observed along the Haiyuan fault as resulting from long‐range elastic interactions within the heterogeneous Earth's crust.
Additional Information
© 2014 Seismological Society of America. Manuscript received 6 August 2014; Published Online 30 December 2014. The Dragon program (ID 2509 and 5305) supported R. Jolivet's work, through the Young Scientist fellowship. Funding was provided by the Agence Nationale de la Recheche (ANR) Extraction et Fusion d'Information et de Données d'Interférométrie Radar (EFIDIR) and Programme National de Télédétection Spatiale (Centre National d́'Etudes Spatiales [CNES]), and ANR-JCJC-0011-01 grant. This study was funded by the Labex OSUG@2020 (Investissement d Avenir ANR10-LABX56). We thank Knut Jørgen Måløy for helpful discussions on the long-tail distributions of velocity fluctuations.
Attached Files
Published - 480.full.pdf
Files
Name | Size | Download all |
---|---|---|
md5:7a65121edcd4782701926c26c0a4ac1c
|
592.6 kB | Preview Download |
Additional details
- Eprint ID
- 55643
- DOI
- 10.1785/0120140237
- Resolver ID
- CaltechAUTHORS:20150309-115500103
- 2509
- Young Scientist fellowship Dragon program ID
- 5305
- Young Scientist fellowship Dragon program ID
- ANR-JCJC-0011-01
- Agence Nationale de la Recheche (ANR)
- Centre National d́'Etudes Spatiales (CNES)
- ANR10-LABX56
- Labex OSUG@2020
- Created
-
2015-03-09Created from EPrint's datestamp field
- Updated
-
2021-11-10Created from EPrint's last_modified field