Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 16, 2021 | Submitted
Report Open

Perturbation-based Regret Analysis of Predictive Control in Linear Time Varying Systems


We study predictive control in a setting where the dynamics are time-varying and linear, and the costs are time-varying and well-conditioned. At each time step, the controller receives the exact predictions of costs, dynamics, and disturbances for the future k time steps. We show that when the prediction window k is sufficiently large, predictive control is input-to-state stable and achieves a dynamic regret of O(λ^kT), where λ<1 is a positive constant. This is the first dynamic regret bound on the predictive control of linear time-varying systems. Under more assumptions on the terminal costs, we also show that predictive control obtains the first competitive bound for the control of linear time-varying systems: 1+O(λ^k). Our results are derived using a novel proof framework based on a perturbation bound that characterizes how a small change to the system parameters impacts the optimal trajectory.

Additional Information

Yiheng Lin, Yang Hu, Haoyuan Sun, Guanya Shi, and Guannan Qu contributed equally to this work.

Attached Files

Submitted - 2106.10497.pdf


Files (385.1 kB)
Name Size Download all
385.1 kB Preview Download

Additional details

August 20, 2023
October 23, 2023