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I. EIGENMODES OF A TWO-RING COUPLED RESONATOR

In this section we study the coupling between the two coupled rings and analyze the mode frequencies of the
compound system. Eigenfrequencies of coupled resonators have traditionally been calculated from a coupled-mode
perspective, where modal coupling are calculated as off-diagonal matrix elements. However, this approach becomes
unfeasible in the current system as one longitudinal mode will couple to infinitely many modes from the opposite
ring because mode number matching is not required. The dependence of coupling with respect to wavelength is also
difficult to implement. To circumvent these problems, we instead use a transfer function formalism to determine the
mode frequencies.

The resonator schematic is shown in Fig. S1. LA and LB are the circumferences of the right and left ring,
respectively, Lco is the length of the coupling region, c is the speed of light in vacuum, and nwg(ω) is the effective
phase index of the fundamental mode in the SiN waveguide at optical angular frequency ω. By defining a single
index along the waveguide, we have neglected the geometric dispersions resulting from bending the waveguide. These
have been shown to be small compared to the geometric dispersion induced by waveguide confinement. We now
assume that light with a single frequency is propagating in the system. At the points opposite to the coupling region,
the field amplitude in each ring is denoted as ψI,A and ψI,B. These amplitudes can be assembled into a vector as
ψI = (ψI,A, ψI,B)

T, where T denotes the transpose of a vector or matrix. Similarly, the field just before the coupling
part can be found as (

ψII,A

ψII,B

)
=

(
einwgω(LA−Lco)/(2c) 0

0 einwgω(LB−Lco)/(2c)

)(
ψI,A

ψI,B

)
(S1)

For the coupling section, we denote the coupling rate per unit length as gco. The coupling depends on ω, and is
assumed to be uniform along the coupling section (i.e., boundary effects from adiabatic bends are included in the
effective coupling length). The field after the coupling section can be expressed with a matrix exponential:(

ψIII,A

ψIII,B

)
= exp

[
iLco

(
nwgω/c gco
gco nwgω/c

)](
ψII,A

ψII,B

)
(S2)

Finally, returning to the points opposite to the coupling region, the field reads(
ψIV,A

ψIV,B

)
=

(
einwgω(LA−Lco)/(2c) 0

0 einwgω(LB−Lco)/(2c)

)(
ψIII,A

ψIII,B

)
(S3)

For modes in the system, we require the state to reproduce itself after one round trip:

ψIV = eiΘψI (S4)

This requires finding the eigenvalues of the roundtrip transfer matrix T , which is the product of the previous three
transfer matrices:

ψIV = TψI, T = einwgωL/c

(
e−inwgω∆L/c cos(gcoLco) i sin(gcoLco)

i sin(gcoLco) einwgω∆L/c cos(gcoLco)

)
(S5)
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FIG. S1. Schematic of the two-ring coupled resonator. Left panel: Top view of the coupled resonator with key points marked.
Right panel: Schematic of the resonator with straightened waveguides (not to scale). Segment lengths and field amplitudes
have been marked.
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FIG. S2. Eigenfrequency plots for the two-ring coupled resonator. a-c Relative frequency (normalized to D1,m), relative FSR
(normalized to ϵD1,m) and relative D2 (normalized to ϵ2D1,m) plots for gcoLco = 0.3. d-f Similar plots but with gcoLco = 1.0.
The horizontal axis is defined as ϕm = 2πϵm. Relative mode frequency, FSR and D2 for individual rings before coupling have
been superimposed (black dashed lines). The relative FSR is found by differentiating the relative frequency, and the relative
D2 is found by differentiating the relative FSR.

where L = (LA +LB)/2 and ∆L = (LB −LA)/2. Each one of the two eigenvalues defines a transverse mode family of
the system. Furthermore, when the accumulated phase Θ equals an integer multiple of 2π, a longitudinal mode can
be found at the corresponding frequency. Diagonalizing the T matrix gives

Θ = nwgωL/c∓ arccos[cos(gcoLco) cos(nwgω∆L/c)] (S6)

Now we define a mode number associated with the average length of the rings:

m ≡ nwgωL

2πc
(S7)

The relation can be inverted to give a solution of ωm dependent on m. When m is an integer, ωm would be the mode
frequencies for a ring resonator with length L. As gco ≪ ω/c and ∆L ≪ L, the phase contribution related to the
coupling varies slowly compared to the nwgωL/c part. This allows us to approximate the coupled mode frequencies
using ωm, and the eigenfrequencies ωm,± can be solved as:

2πm = nwgωm,±L/c∓ arccos[cos(gcoLco) cos(nwgωm,±∆L/c)]

≈ nwgωm,±L/c∓ arccos[cos(gcoLco) cos(nwgωm∆L/c)] (S8)

ωm,± = ωm ±
[
L

c

∂(nwgω)

∂ω

]−1
∣∣∣∣∣
ω=ωm

× arccos

[
cos(gcoLco) cos

(
2π

∆L

L
m

)]
= ωm ± D1,m

2π
arccos [cos(gcoLco) cos (2πϵm)] (S9)

where D1.m is the local FSR that depends on ωm and ϵ = ∆L/L is the length contrast of the rings. The result shows
that the mode structure can be seen as splitting off from the length-averaged resonator modes, where the splitting
gap is determined by gco and modulated with respect to mode number with period ϵ−1. Note that Eq. (2) in the
main text is obtained by replacing the mode number m with the relative mode number µ in Eq. (S9). Such a variable
change is valid when µ is referenced to a frequency degeneracy of the rings.

To gain insight into the model, Fig. S2 plots mode frequency, FSR and the second-order dispersion parameter D2

relative to ωm for different values of gco as predicted by Eq. (S9). In these plots ωm has been subtracted from the
mode frequencies, and only the contributions associated with FSR difference of the two rings and the coupling are
considered. The D1,m is also approximated as a constant. The FSRs of the transverse modes show a typical avoided
crossing behavior as shown in Fig. S2b and S2e. The FSR of one mode continuously transitions to the other mode
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FIG. S3. Illustration of mode hybridization in the coupling region. This figure reproduces Extended Data Fig. 2a and 2b from
the main text. a Fitted optical resonance frequency dispersion of the coupled resonator (solid curves) and fitted mode frequency
dispersion of the single rings (red and blue lines) plotted versus relative mode number µ. These plots are the same as Fig. 2c
in the main text. b Cross-sectional view of simulated electric field amplitudes in the coupled region at mode numbers indicated
in panel a by the black points. The right (left) waveguide belongs to ring A (B). At the crossing center (I, II, V and VI),
two waveguides have the same field intensity and the opposite (same) phase for the anti-symmetric (symmetric) mode. When
hybrid mode frequencies meet the single-ring resonances (III and IV), the electrical field at the coupled region is contributed
by a single ring.

at the avoided crossing, and similar to the coupling itself, this process is also periodic in the frequency domain. The
calculated D2 shows spikes at the avoided crossing center, and the positive spike can be used to counter the normal
dispersion present in the averaged resonator dispersion. Smaller gco leads to higher peak D2 with smaller crossing
bandwidth. To get a larger crossing bandwidth, gco could be increased at the expense of lower D2, but the maximum
bandwidth is half the modulation period (i.e. the Vernier FSR) as the effect of the neighboring crossings set in and
shifts the D2 in the opposite direction.

In addition to the mode frequency, the mode compositions can also be derived from the transfer matrix T . As the
change of mode profile is large enough across the measured optical bandwidth, the mode compositions has an impact
on soliton power distribution in the rings (as in Fig. 1b in the main text), and complements FSRs and dispersions
when describing the dispersion characteristics. The eigenvectors of T read,

ψI ∝

(√
sin(α± ϕm)

2 sinα cosϕm
, ∓

√
sin(α∓ ϕm)

2 sinα cosϕm

)T

, ϕm = 2πϵm, α = arccos [cos(gcoLco) cosϕm] (S10)

This gives the relative field intensities in the non-coupled regions of the rings for a particular mode. Another point of
interest is the center of the coupled region. Here the field can be found as

ψco ∝
(
cos(gcoLco/2) i sin(gcoLco/2)
i sin(gcoLco/2) cos(gcoLco/2)

)(
e−iϕm/2 0

0 eiϕm/2

)
ψI ∝

(√
sinα± sinϕm

2 sinα
, ∓

√
sinα∓ sinϕm

2 sinα

)T

(S11)

Similarly, the optical field at any point z in the rings can be calculated and is denoted as ψA(B)(z). The fractional
energy contribution from ring A (ηA) reads as

ηA =

∫
A
|ψA(z)|2dz∫

A
|ψA(z)|2dz +

∫
B
|ψB(z)|2dz

(S12)

which is used to color Fig. 2b and Fig. 2c in the main text.
There are some special cases of ϕm that lead to simplified field distributions and are demonstrated in Fig. S3. For

example, if ϕm/π is an integer (crossing centers), the modes become purely symmetrical and anti-symmetrical:

ψI ∝ (
√
1/2,∓

√
1/2)T, ψco ∝ (

√
1/2,∓

√
1/2)T, (S13)

Points I, II, V, and VI in Fig. S3b belong to these cases. Points II and V are symmetric modes formed by the two
rings, with equal mode intensities and the same phase. On the other hand, points I and VI are anti-symmetric modes,
with equal mode intensities but opposite phase. These results happen to agree with coupled-mode calculations when
only the pair of degenerate longitudinal modes from each ring are considered. However, while the energy is equally
distributed in the two rings in the same way as the reduced coupled-mode theory predicted, other longitudinal modes
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still participate in the coupling because the wavevector in the coupled region differs from that in the uncoupled region.
On the other hand, if ϕm/π is a half-integer (halfway between crossing centers), then at the center of coupling position
the field is entirely within a single ring:

ψI ∝ (cos(gcoLco/2),∓ sin(gcoLco/2))
T, ψco ∝ (1, 0)T, or ψI ∝ (sin(gcoLco/2),± cos(gcoLco/2))

T, ψco ∝ (0,−1)T,
(S14)

Points III and IV in Fig. S3b belong to these cases.
An interesting feature of the field distribution is that, for a single continuous branch, the field compositions exchange

parity at the next degeneracy point, and the anti-symmetric mode now becomes the symmetric mode (from point I
to V) and vice versa (from point II to VI). The change of parity shows that the modes repeat themselves every two
Vernier periods (every two degeneracy points) instead of one, in agreement with Eq. (S9). While the parity exchange
is obvious after plotting the dispersion (Fig. S3a), it can also be understood from a mode number argument. We
consider the total phase accumulated in ring A for a specific mode divided by 2π, which should be an integer and
denoted as mA. This is the “mode number” for ring A for the specific mode. Similarly mB could be defined. These
two numbers equal to the respective mode numbers of the closest uncoupled modes, which can be seen by adiabatically
turning off the coupling. For a single Vernier period, the total mode number changes by an odd number. However,
going to the next longitudinal mode by changing the frequency alone changes both mA and mB by one. The only way
to induce a separate mode number change is to create a zero in the field amplitude somewhere in the respective ring,
which is indeed the case for points III and IV shown in Fig. S3b. Considering that the individual mode numbers are
about equally distributed around the averaged-length mode number m (e.g. |(mB −m)− (m−mA)| ≤ 1), the extra
increment of mB and decrement of mA should have taken place alternatively between the Vernier periods, indicating
the mode branch switches mode compositions for each Vernier period.

II. EIGENMODES OF A THREE-RING COUPLED RESONATOR

In this section we study the mode frequencies of the three-ring coupled resonator. Although the derivation is similar
to that of the two-ring resonator, we will highlight some features of the coupled system that are not obvious in the
two-ring case. The result can also be readily generalized to multi-ring arrangements.
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FIG. S4. Schematic of the three-ring coupled resonator. Left panel: Top view of the coupled resonator with key points marked.
Right panel: Schematic of the resonator with straightened waveguides (not to scale). Segment lengths have been marked.

The schematic for the three-ring coupled resonator is shown in Fig. S4 along with definitions of segment lengths.
Unlike the two-ring case, there is no explicit symmetry to take advantage of, and the segmentation method is chosen
to reduce calculation complexity. We can assemble the field amplitudes from ring C, A and B, in that order, into a
vector and find the transfer matrix for each section:

ψII = exp

inwgω/c

LC1 0 0
0 LA1 0
0 0 LB1

ψI (S15)

ψIII = exp

iLco

nwgω/c 0 0
0 nwgω/c gco
0 gco nwgω/c

ψII (S16)
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FIG. S5. Eigenfrequency plots for the three-ring coupled resonator, showing relative frequency (normalized to D1,m) versus ϕ1.
Parameters are a gcoLco = 0.3 and ϕ2 = 0; b gcoLco = 0.3 and ϕ2 = 0.4; c gcoLco = 1.0 and ϕ2 = 0.4.

ψIV = exp

inwgω/c

L2 0 0
0 L2 0
0 0 L2

ψIII (S17)

ψV = exp

iLco

nwgω/c gco 0
gco nwgω/c 0
0 0 nwgω/c

ψIV (S18)

The overall round-trip transfer matrix is the product of the previous four matrices and reads

T =

einwgωLC/c cos(gcoLco) ieinwgωLA/c cos(gcoLco) sin(gcoLco) −einwgωLB/c sin2(gcoLco)
ieinwgωLC/c sin(gcoLco) einwgωLA/c cos2(gcoLco) ieinwgωLB/c cos(gcoLco) sin(gcoLco)

0 ieinwgωLA/c sin(gcoLco) einwgωLB/c cos(gcoLco)

 (S19)

where we defined the total length of ring C, LC = LC1 + L2 + 2Lco, and LA and LB are defined similarly. Note that
the dependence on individual segment lengths LC1, LA1, LB1 and L2 have disappeared from T , indicating that the
relative position of the couplers on ring A does not matter for eigenfrequency calculations. This is because propagating
the same distance for all three components provides only a global phase for the state, which can be moved past the
coupler. Mathematically, the coupling matrix commutes with the propagation matrix, which is proportional to the
identity matrix for identical ring cross sections:Lco

nwgω/c 0 0
0 nwgω/c gco
0 gco nwgω/c

 , nwgω/c

L2 0 0
0 L2 0
0 0 L2

 = 0 (S20)

For the coupler itself, the propagating part (diagonal elements) also commute with the pure coupling part (off-diagonal
elements), although different couplers do not commute. Therefore, the system is equivalent to propagating along the
entire length of individual rings, followed by two point couplers with the same coupling ratios as the original couplers.
This argument works for all coupled resonators with identical ring cross-sections coupled in a chain or tree topology,
and provides a degree of freedom for placing the rings in the design phase.

Following the two-ring analysis, we define an averaged length for the resonators and its associated mode number:

L ≡ LC + LA + LB

3
, m ≡ nwgωL

2πc
(S21)

We will also need to define two length differences. For the current design, we have LC +LB ≈ 2LA, and the following
contrast definitions become convenient:

ϵ1 =
LB − LC

2L
, ϵ2 =

LC + LB − 2LA

6L
(S22)

With these notations, T can be written as

T = e2πmi

ei(−ϕ1+ϕ2) cos(gcoLco) ie−2iϕ2 cos(gcoLco) sin(gcoLco) −ei(ϕ1+ϕ2) sin2(gcoLco)
iei(−ϕ1+ϕ2) sin(gcoLco) e−2iϕ2 cos2(gcoLco) iei(ϕ1+ϕ2) cos(gcoLco) sin(gcoLco)

0 ie−2iϕ2 sin(gcoLco) ei(ϕ1+ϕ2) cos(gcoLco)

 (S23)
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FIG. S6. Dispersion of the three-ring resonator. a Measured dispersion for the three-ring resonator. The topmost branch is
also shown in Fig. 1e in the main text. b Mode frequencies relative to the averaged frequencies (circles). Solid curves show the
fitted result using the three-ring model, and are in excellent agreement with the data. Dashed lines indicate frequencies of the
individual rings before coupling.

with ϕ1 = 2πϵ1m and ϕ2 = 2πϵ2m. For the current design, ϵ1 ≈ 3 × 10−3 and ϵ2 ≈ 1.5 × 10−6, which ensures a
slowly-varying phase contributed by the coupling. The eigenfrequencies are given by

ω = ωm − D1,m

2π
θ (S24)

where eiθ is given by the roots to the cubic characteristic equation:

x3−(e−2iϕ2 cos(gcoLco)+2eiϕ2 cos(ϕ1)) cos(gcoLco)x
2+(e2iϕ2 cos(gcoLco)+2e−iϕ2 cos(ϕ1)) cos(gcoLco)x−1 = 0, x ≡ eiθ

(S25)
The unitary nature of T ensures that all three roots for x lie on the complex unit circle.

As ϵ2 ≪ ϵ1 for the current design, ϕ2 varies much more slowly compared to ϕ1 and we will take ϕ2 to be a constant
to simplify the discussions below. Fig. S5 plots the relative frequencies for some parameter combinations. In the
case of ϕ2 = 0 (Fig. S5a), the mode frequencies of ring A coincides with the averaged frequency, and the mode
frequencies of ring A and B are symmetrically distributed around the averaged frequency. As a result, the coupled
frequency spectrum resembles that of the two-ring resonator. A key difference here is that the two gaps opened have
different widths. For crossings at integer ϕ1/(2π) locations, ring A participates in the coupling, and the total gap is

approximately 2
√
2gcoLco ×D1,m/(2π) for small gcoLco. For the other crossings at half-integer ϕ1/(2π) locations, the

mode from ring A is half an FSR away from ring C and B, and the coupling becomes indirect. Here the gap width
is approximately (gcoLco)

2 ×D1,m/(2π) for small gcoLco, which is second order in the coupling strength. A nonzero
ϕ2 = 0 breaks the frequency-domain symmetry and leads to additional avoided crossings (Fig. S5b). For stronger
coupling strengths, the bandwidths of the crossings expand and merge with the other crossings (Fig. S5c) similar
to the two-ring case. Here the frequency dispersion become smoother and have less overall coupling-contributed
dispersion.

Figure S6a shows the measured dispersion data for the three-ring resonator. The topmost branch is used for soliton
generation and is also shown in Fig. 1e in the main text. Fitting the averaged frequency (not plotted) gives an
averaged FSR of 19.9711 GHz and a second-order dispersion parameter of 282.7 kHz, consistent with the two-ring
results. After subtracting the averaged frequency, Fig. S6b shows the relative frequency with a similar structure of
Fig. S5c. Using the exponential decaying coupling model as described in the methods (gco = gco,0 exp(−µ/µg)), the
fitted result for the relative frequencies also shows good agreement with the measured data. The fitted parameters
are gco,0Lco = 0.985, µg = 1175 and ϕ2 = 0.216.
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