12
SUPPLEMENTARY MATERIAL
D
ERIVATION OF
A
LTERNATIVE
M
ODEL
In this section, we explore the parameter estimation for
an alternative model. Specifically, letting
M
i
be the set of
missing voxels of patch
y
i
, we treat
y
M
i
i
as latent variables,
instead of explicitly modeling a low-dimensional representa-
tion
x
. We show the maximum likelihood updates of the model
parameters under the likelihood (5). We employ the Expecta-
tion Conditional Maximization (ECM) [14], [18] variant of
the Generalized Expectation Maximization, where parameter
updates depend on the previous parameter estimates.
The complete data likelihood is
p
p
Y
;
θ
q
¹
i
̧
k
π
k
N
p
y
O
i
i
,y
M
i
i
;
μ
O
i
k
,
Σ
O
i
O
i
k
q
.
(25)
The
expectation step
updates the statistics of the missing
data, computed based on covariates of the known and unknown
voxels:
γ
ik
IE
r
k
i
s
π
k
N
p
y
O
i
i
;
μ
O
i
k
,
Σ
O
i
k
q
°
k
π
k
N
p
y
O
i
i
;
μ
O
i
k
,
Σ
O
i
k
q
(26)
p
y
ij
IE
r
y
ij
s
#
y
ij
if
y
ij
is observed
μ
ij