Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 13, 2015 | Submitted + Published
Journal Article Open

The Next Generation of Crystal Detectors


Crystal detectors have been used widely in high energy and nuclear physics experiments, medical instruments and homeland security applications. Novel crystal detectors are continuously being discovered and developed in academia and in industry. In high energy and nuclear physics experiments, total absorption electromagnetic calorimeters (ECAL) made of inorganic crystals are known for their superb energy resolution and detection efficiency for photon and electron measurements [1]. A crystal ECAL is thus the choice for those experiments where precision measurements of photons and electrons are crucial for their physics missions. Examples are the Crystal Ball NaI(Tl) ECAL, the L3 BGO ECAL and the BaBar CsI(Tl) ECAL in lepton colliders, the kTeV CsI ECAL and the CMS PWO ECAL in hadron colliders and the Fermi CsI(Tl) ECAL in space. For future HEP experiments at the energy and intensity frontiers, however, the crystal detectors used in the above mentioned ECALs are either not bright and fast enough, or not radiation hard enough. Crystal detectors have also been proposed to build a Homogeneous Hadron Calorimeter (HHCAL) to achieve unprecedented jet mass resolution by duel readout of both Cherenkov and scintillation light [2], where development of cost-effective crystal detectors is a crucial issue because of the huge crystal volume required [3]. This contribution discusses several R&D directions for the next generation of crystal detectors for future HEP experiments.

Additional Information

© 2015 IOP Publishing. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd. This work was supported in part by the US Department of Energy Grant DE-FG03-92-ER40701.

Attached Files

Published - 1742-6596_587_1_012055.pdf

Submitted - 1308.4937.pdf


Files (3.4 MB)
Name Size Download all
2.8 MB Preview Download
606.8 kB Preview Download

Additional details

August 20, 2023
October 24, 2023