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ABSTRACT: Nitrogenases, the enzymes that convert N2 to NH3, also catalyze the reductive coupling of CO to yield hydrocarbons.
CO-coordinated species of nitrogenase clusters have been isolated and used to infer mechanistic information. However, synthetic
FeS clusters displaying CO ligands remain rare, which limits benchmarking. Starting from a synthetic cluster that models a cubane
portion of the FeMo cofactor (FeMoco), including a bridging carbyne ligand, we report a heterometallic tungsten−iron−sulfur
cluster with a single terminal CO coordination in two oxidation states with a high level of CO activation (νCO = 1851 and 1751
cm−1). The local Fe coordination environment (2S, 1C, 1CO) is identical to that in the protein making this system a suitable
benchmark. Computational studies find an unusual intermediate spin electronic configuration at the Fe sites promoted by the
presence the carbyne ligand. This electronic feature is partly responsible for the high degree of CO activation in the reduced cluster.

Substrate activation at complex inorganic cofactors in
enzyme active sites has raised fundamental questions

about the role of the cluster structure on reactivity. For
example, the challenging conversion of N2 to NH3 by
nitrogenase enzymes occurs at FeMo cofactor (FeMoco) (M
= Mo, V, or Fe), which comprises complex double cubane
clusters with the MFe7S9C composition.1,2 Nitrogenases also
catalyze the reductive coupling of CO to form hydrocarbons
for M = Mo and V.3,4 Despite interest in these transformations,
the characterization of substrate-bound clusters is very rare,
which limits insight into the site of small molecule activation
and reaction mechanism.5−11 Only two CO-bound species of
FeMoco and FeVco have been characterized structur-
ally.9,10,12,13 Structural characterization of N2-derived species
remains debated.14−16

Synthetic models promise to facilitate a better understanding
of the impact of cluster structure on substrate binding and level
of activation.17−22 However, few examples of synthetic iron−
sulfur clusters with terminal or bridging N2 or CO ligands have
been reported, many of which possess multiple CO ligands that
drastically alter the electronic structure of the cluster and
complicate comparisons to FeMoco (Figure 1).23−29 Only one
type of FeS cluster with a single terminal CO ligand has been
characterized, ligated by three carbene ligands.30,31

Having accessed a partial synthetic analogue 1 of the cluster
core of FeMoco displaying a μ3-carbyne ligand with the
WFe3S3CR composition, where W is the isoelectronic analogue
of Mo,32 we targeted the coordination of nitrogenase
substrates (Scheme 1).33 Herein, we report the reactivity of
1 with isocyanides and CO, which affords an FeS cubane with
a single terminal CO. We characterize this cluster in two
oxidation states, which show a high level of CO activation, as
observed in the low CO stretching frequency (1751−1851
cm−1) by IR spectroscopy.
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Figure 1. Structures of FeS clusters with CO coordination: (a) CO-
bound FeMoco (PDB: 4TKV); (b) synthetic cluster with carbide
ligand;26,27 (c) Fe4S4 cluster with a single terminal CO;

30 (d) present
report. Local coordination sphere of Fe−CO moiety highlighted in
(a), (c), and (d).
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We employed isocyanides as isoelectronic analogues of CO
and substrates of nitrogenase34 that also allow for a more
controlled reactivity. Treating 1 with tBuNC or XylNC (Xyl =
2,6-dimethylphenyl) gives 2-tBu or 2-Xyl (Scheme 1),
respectively, through the insertion of isocyanide into the Fe−
C(vinyl) bond, which demonstrates rare examples of C−C

bond formation at an FeS cluster.35−38 Heating 2-tBu in THF
at 70 °C for 16 h leads to the formation of 3, where XRD and
NMR studies are consistent with the loss of a tBu radical
(leaving an η2-nitrile ligand).39 While determining the
protonation state of the N atom solely on the basis of XRD
is inconclusive, the short C−N bond length of 1.205(6) Å

Scheme 1. Syntheses of Clusters

Figure 2. Crystal structures of 2-tBu, 3, 4, and 4-K(18-crown-6). Ellipsoids are shown at 50% probability level. Hydrogen atoms, solvent
molecules, and the BAC ligand, except for the carbene C, are omitted for clarity.
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compared with ∼1.25 Å for η2-iminoacyl (see the Supporting
Information for additional literature comparison and support
by ATR IR spectroscopy) is indicative of an η2-nitrile motif.40
Loss of the tBu radical suggests a propensity for side-on nitrile
binding, which is an intriguing observation in the context of
the nitrogenase substrates displaying triple bonds, including
N2, acetylene, and isocyanides.

41 The conversion from 2-tBu to
3, which involves the loss of a tBu radical, formally represents
one-electron oxidation of the WFe3 metal core. In contrast to
2-tBu, 2-Xyl is stable under the same conditions, which is
consistent with a lower tendency to lose the more reactive aryl
radical.42

With 3 in hand, we explored reactions with CO. Cluster 3
reacts with 1 atm CO to form 4 within 5 min, which shows
substitution of one bis(diisopropylamino)cyclopropenylidene
(BAC) ligand with CO (83% yield, Scheme 1) in an
uncommon instance of carbene lability.43 The average Fe−
C(μ3) distance remains similar to 2-tBu and 3 at 1.95 Å, but
the range for the individual bond lengths increases to 1.88−
2.00 Å (compared with 1.92−1.95 Å in 2-tBu and 1.95−1.96 Å
in 3), which suggests that the carbyne ligand, and potentially
the carbide in FeMoco, has the ability to accommodate distinct
electronic demands of different Fe centers through structural
changes.44 This is in contrast to spectroscopic studies
suggesting that the central carbide serves to maintain the
rigid core structure.8,45

To the best of our knowledge, 4 is the only well-
characterized example of a heterometallic MFe3S3(CR) cubane
cluster bearing a single terminal CO ligand. This provides an
opportunity for benchmarking the impact of structure and
coordination environment relative to FeMoco. The THF
solution IR spectrum of 4 displays a prominent peak at 1851
cm−1, assigned as the C−O stretch (Figure 3) and confirmed
by 13CO labeling (ν13CO exp = 1807 cm−1, ν13CO calc = 1810
cm−1), thereby suggesting highly activated CO.
To study the effects of cluster oxidation state on the level of

CO activation, we reduced 4 with one equivalent of KC8 or
potassium naphthalenide to yield 4-K (S = 3/2, see the
Supporting Information) (Scheme 1). As expected, the CO
bond length increases upon reduction from 1.15(1) to
1.198(3) Å. The solution IR spectrum of 4-K shows two C−
O bands at 1794 and 1751 cm−1 (Figure 3), which is
consistent with the crystal structure of 4-K displaying CO−K+

interactions disordered over two positions: terminal (36%
occupancy) (assigned as 4-Kterminal) and η2 (64% occupancy)
(assigned as 4-Kη2). These isomers are collectively referred to
as 4-K. Chelation of K+ with 18-crown-6 results in the
formation of 4-K(18-crown-6). XRD shows that the K+ ion is
present in only one location and interacts end-on with the O
atom of CO (Figure 2). In agreement, the IR spectrum shows a
single band at 1782 cm−1 (Figure 3; ν13CO exp = 1740 cm−1

;
ν13CO calc = 1742 cm−1). The same band is observed upon
treatment with [2.2.2]cryptand, thereby suggesting that the K+

ion in 4-K(18-crown-6) does not impact CO activation
substantially.46

Both 4-K and 4-K(18-crown-6) exhibit highly activated CO
ligands coordinated to Fe in a terminal fashion. The interaction
with K+ in different binding modes affects the level of CO
activation in the 1794 and 1751 cm−1 range. Previous
computational work describes a semibridging CO ligand at
Fe2 in FeMoco with a frequency of 1718 cm−1,47 very close to
that assigned to the bridging CO in lo-CO at 1715 cm−1.48

This is slightly lower than the typical values observed for μ2-

CO ligands, which lie in the 1720−1850 cm−1 range.49

Hydrogen bonding between the carbonyl oxygen and the
nearby His195 residue is proposed to further activate CO.47

Similarly, in 4-K, the K+ cation can play the same role as the
hydrogen bonding network and lower the C−O stretching
frequency. Nevertheless, νCO values below 1800 cm−1 are
unprecedented for FeS clusters. For comparison, the CO
adducts of N-heterocyclic carbene (NHC)-supported Fe4S4
clusters reported by Suess and co-workers display C−O
stretching frequencies of 1832 cm−1 for the [Fe4S4]0 and 1902
cm−1 for the [Fe4S4]+ states.30 The local coordination
environment at each Fe (FeS2C in 4 and 4-K and FeS3 in
[Fe4S4]+,0) and oxidation state distribution between different
metal sites can contribute to the level of diatomic
activation.30,50,51

In order to understand the electronic structure origin of the
profound CO activation in these clusters, we employed
computational methods using broken symmetry density
functional theory (BS-DFT). Our computational procedure
detailed in the Supporting Information accurately assigns the
geometric, Mössbauer, and vibrational properties of 4 and 4-K.
Here, we highlight the impact of the carbyne, W3+ center, and a
K+ countercation with respect to the strong CO activation in 4-
K.
The carbyne has three anionic lone pairs oriented along the

Fe-bonding axes in its μ3-binding mode. The localized orbitals
characterize the carbyne lone pairs as σ-donors that stabilize
the intermediate spin (IS) state of the three formal Fe2+ (S =
1) centers. Observing the IS state at the Fe sites that do not
bind CO suggests that it is an innate property of the μ3-
carbyne ligand. The IS state in Fe2+ centers give full occupation
of its π-backbonding orbitals, consistent with the increased CO
activation in 4-K. In agreement, hyperfine sublevel correlation
(HYSCORE) spectra of 4-K(13CO) show small hyperfine
coupling to the 13C center of CO {A(13C) = [−0.5, 1.0, −0.5]
MHz; see the Supporting Information}. A partially occupied
Fe−CO backbonding orbital is expected to result in larger
coupling.5,52,53 In comparison, Fe centers in FeS clusters are

Figure 3. IR spectra of 4, 4-K, and 4-K(18-crown-6) (THF solution)
with νCO values shown. Dashed spectra correspond to 13CO-labeled
species with ν13CO in gray. The feature at 1830 cm−1 unchanged upon
13CO labeling is assigned to BAC.
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routinely assigned as high-spin because of their weak ligand
field environment, such as the S = 3/2 state assigned to the
CO-bound Fe1+ by Suess and co-workers.30

Furthermore, the Fe centers are preferentially ferromagneti-
cally coupled, which results in the equal delocalization of two
electrons among the three Fe atoms (Figure 4). This formally

lowers the oxidation state of the CO-bound Fe site from its
formal 2+ to 1.33+ charge and proportionately increases the
other Fe centers to 2.33+; their resonance states are illustrated
in the Supporting Information. This is analogous to the net
Fe2.5+ oxidation state resulting from the equal delocalization of
one electron between two Fe sites in formal Fe2+−Fe3+
dimers.54 This pairwise delocalization supports a reduced
state at the CO-bound center that is otherwise inaccessible
under biological conditions. Similarly, redox disproportiona-
tion has been proposed in previously reported [Fe6(μ6-
C)(CO)18] and Fe4S4(CO)(IMes)3 clusters, where Fe sites
of different oxidation states are within close proximity.30,55

The anionic charge of 4− supports strong noncovalent
interactions with its countercation. The geometry optimization
of 4-K preferentially binds K+ in an η2-conformation with
respect to the CO bond. The calculated CO stretching
frequency decreases from 1800 cm−1 without K+ to 1756 cm−1,
which is consistent with the distinct vibrational modes
observed in the IR spectrum of 4-K. The electronic structure
of the cluster is not impacted by K coordination, thereby
suggesting that it is a purely ionic interaction that stabilizes the
π-bonding of the CO ligand.
The CO lone pair can overlap with orbitals arising from the

Fe−W interaction assigned as purely covalent in 4− on the
basis of the localized orbitals (see Figure S34 for a graphical
representation). The Fe−W covalent interaction redistributes
electron density between the metal centers promoting the
electrostatic attraction with the CO lone pair and consequently
also enhances the π*-backbonding discussed above.56,57 The
other Fe centers exhibit bonding characters that are
intermediate of a covalent and magnetic interaction, analogous
to bonding properties detailed in the Mo3+ heteroatom of
FeMoco.58,59 In contrast, this is not observed for the cluster
reported by Suess and co-workers30 because of the

comparatively weak bonding interactions between Fe sites.
Overall, these factors contribute to the stronger CO activation
in 4− compared with these reported clusters with an average
metal oxidation state of 2+, despite the higher average metal
oxidation state of 2.25+ in 4−.30

In summary, we have reported a series of heterometallic
WFe3S3CR cubanes and demonstrated several types of
organometallic transformations and binding modes that are
rare for iron−sulfur clusters. These compounds show C−C
coupling, along with side-on binding of an organic nitrile
moiety at one Fe site. Furthermore, we characterized the first
example of a heterometallic iron−sulfur cluster with a single
terminally bound, highly activated CO ligand in two oxidation
states. Computation suggests an unusual carbyne-promoted
intermediate spin electronic configuration at all Fe sites, along
with a low oxidation state of 1.33+ for Fe(CO) in 4−. This
electron configuration affords full occupancy of the two π-
back-bonding orbitals to CO, which are responsible for the
high level of CO activation in the reduced clusters. The
negative charge of the cluster and the metal−metal covalency
were found computationally to also impact CO activation.
These findings provide a set of parameters to evaluate in future
studies for the conversion of substrates in nitrogenase.
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