Published October 2009 | Version public
Journal Article

Spatio-temporal Slip, and Stress Level on the Faults within the Western Foothills of Taiwan: Implications for Fault Frictional Properties

  • 1. ROR icon Institute of Earth Sciences, Academia Sinica
  • 2. ROR icon California Institute of Technology
  • 3. ROR icon National Taiwan University
  • 4. ROR icon ETH Zurich

Abstract

We use preseismic, coseismic, and postseismic GPS data of the 1999 Chi-Chi earthquake to infer spatio-temporal variation of fault slip and frictional behavior on the Chelungpu fault. The geodetic data shows that coseismic slip during the Chi-Chi earthquake occurred within a patch that was locked in the period preceding the earthquake, and that afterslip occurred dominantly downdip from the ruptured area. To first-order, the observed pattern and the temporal evolution of afterslip is consistent with models of the seismic cycle based on rate-and-state friction. Comparison with the distribution of temperature on the fault derived from thermo-kinematic modeling shows that aseismic slip becomes dominant where temperature is estimated to exceed 200° at depth. This inference is consistent with the temperature induced transition from velocity-weakening to velocity-strengthening friction that is observed in laboratory experiments on quartzo-feldspathic rocks. The time evolution of afterslip is consistent with afterslip being governed by velocity-strengthening frictional sliding. The dependency of friction, μ, on the sliding velocity, V, is estimated to be ∂μ/∂ln V = 8 × 10^(-3). We report an azimuthal difference of about 10–20° between preseismic and postseismic GPS velocities, which we interpret to reflect the very low shear stress on the creeping portion of the décollement beneath the Central Range, of the order of 1–3 MPa, implying a very low friction of about 0.01. This study highlights the importance of temperature and pore pressure in determining fault frictional sliding.

Additional Information

© 2009 Springer. Received: 15 September 2008; accepted: 3 March 2009; published online: 29 July 2009. We thank the editor, Dr. Y. Ben-Zion, Dr. J. C. Savage, and an anonymous reviewer for their constructive comments. We are grateful to many colleagues at the Institute of Earth Sciences, Academia Sinica, as well as the Central Weather Bureau for kindly provide geodetic and earthquake focal mechanism data. We have benefited from stimulating discussions with Mark Simons. This work was supported by the National Science Foundation grant EAR-0537625 to Caltech, the Gordon and Betty Moore Foundation, and the National Science Council of the Republic of China grant NSC 95-2119-M-001-064 –MY3. This is a contribution of Caltech Tectonics Observatory number 113 and the Institute of Earth Sciences, Academia Sinica, IESAS1335.

Additional details

Identifiers

Eprint ID
16414
Resolver ID
CaltechAUTHORS:20091020-152813715

Funding

NSF
EAR-0537625
Gordon and Betty Moore Foundation
National Science Council of the Republic of China
NSC 95-2119-M-001-064 –MY3

Dates

Created
2009-10-20
Created from EPrint's datestamp field
Updated
2021-11-08
Created from EPrint's last_modified field

Caltech Custom Metadata

Caltech groups
Caltech Tectonics Observatory, Caltech Tectonics Observatory. Taiwan Tectonics and Seismicity, Seismological Laboratory, Division of Geological and Planetary Sciences (GPS)
Other Numbering System Name
Institute of Earth Sciences, Academia Sinica
Other Numbering System Identifier
IESAS1335