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Supplementary Methods
This section gives additional details regarding the con-
vergence of the numerical methods used in this work.

Γ-point DMRG: finite size errors
There are a two types of finite size errors in the energy
in the Γ-point formulation of the bulk Rydberg system.
These can be associated with the Rydberg interaction
energy and the (emergent) kinetic energy.

As discussed in the Methods section (main text), the use
of the Γ-point basis induces a periodicity in the density-
density correlation function and thus in the numerator of
the Rydberg interaction term. This relation is exact for
classical crystals and it is also exact for quantum states
with such correlations (those that can be expressed ex-
actly in the supercell Bloch basis, which obviously need
not be classical crystals). However, one can imagine
that such periodic correlations are inaccurate for certain
quantum phases, such as the disordered phase.

As a metric for the error per site induced by the con-
strained form of the correlations, we compute the quan-
tity

∆e =
2 ·R6

b

ρex ·min(Lx, Ly)6
(〈n̂i〉 − 〈n̂i〉2). (1)

This is a measure of error for quantum crystals whose
correlations do not match those induced by the Bloch
basis. Note that ∆e is always positive, and it can be
systematically reduced by increasing the supercell size.

The other source of systematic error comes from the
effective itinerancy of the Rydberg atoms arising from
the σ̂x operator [1]. The error in the kinetic energy
of fermionic systems when using a Bloch basis is well
studied and understood to converge superalgebraically

with the supercell size Lx × Ly (see e.g. Ref. [2] and
references within). We expect a similarly rapid conver-
gence here, although the precise quantitative effect can
only be directly assessed through simulations. We have
carried out such checks extensively to ensure conver-
gence of our calculations, as discussed in the following
subsection and Supplementary Fig. 1.

Γ-point DMRG: convergence and physical
strategy
Despite the finite size effects discussed above, we find
that we can converge our calculations to sufficiently
high accuracy with reasonable bond dimensions and
manageable supercell sizes. Even in the very compli-
cated region of the phase diagram near δ = 5.0 −
6.0, Rb = 2.3, we can distinguish the ground-state or-
ders using a bond dimension of D = 1200, as shown
in Supplementary Fig. 1. However, although this is
enough to identify the ground state order, higher bond
dimensions would be needed to capture the phase transi-
tions with high precision; given the large region of phase
space explored here, we leave such detailed calculations
to future work.

The strategy used to generate the bulk phase diagram in
main text Fig. 2a, as well as the truncated interaction
phase diagram Fig. 2b, is as follows.

• For a given point in phase space (δ,Rb), run a
Dmax = 1000 simulation for all reasonable super-
cell sizes between 4 × 4 and 10 × 10, as well as
12× 9.

• Identify all supercells for which the ground state
has an energy per site within 10−2 of the lowest
energy.

• If there are competing orders, ensure these solu-
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(c)

Supplementary Figure 1: Convergence of Γ-point DMRG in the most difficult region of the phase diagram (δ,Rb) = (5.0−
6.0, 2.3). (a) Shows the convergence w.r.t. bond dimension of the largest truncated DMRG singular value (red) and the change
in energy per site relative to the energy obtained with bond dimension D − 200 (blue). (b) The energies per site of a large
variety of supercell sizes. This is adapted from Fig. 1 of the main text to highlight the relevant points. The connected dark green
points are the nematic phase, and lime green points are the low energy 3-star 1

6
-density crystalline phase. The inset shows the

convergence of the nematic phase energy w.r.t. supercell size and gaps to the other low energy solutions, whose density profiles
are shown in (c). Note that, between (a) and (b), the nematic phase is converged to below 10−5 accuracy while the competing
states differ in energy by at least 10−4.
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Supplementary Figure 2: Bipartite entanglement entropy of
various crystalline phases as δ increases. Each line is a slice
over δ values for a fixed Rb value. Black line segments de-
note when the ground state is in the disordered phase. Solid
colored line segments denote when the ground state is an or-
dered crystalline phase (same color classifications as the phase
diagram in main text). Dotted line segments denote the “tran-
sition zone” of a given line between the disordered phase and
an ordered phase. These are simply a result of the finite reso-
lution used to sample phase space in the phase diagrams.

tions are all sufficiently converged by requiring (i)
the largest singular value truncated during the fi-
nal DMRG sweeps is less than 10−8, and (ii) cor-
rections to the energy when increasing supercell
size (up to 12 × 9 maximally) are smaller than the
energy gap between competing states (Supplemen-
tary Fig. 1).

• The ground state phase is then identified by evalu-
ating simple density-based order parameters on the
largest supercell size which hosts the ground state
order.

The only time this convergence criteria is not satisfied
is for disordered phase solutions near the order-disorder
phase transition (largest truncated DMRG singular value
is ∼ 10−6), for which all large supercells show a disor-
dered solution. The classification of the phase in this
region is supplemented by analyzing the ground state
entanglement entropy, which shows a distinctive “drop”
when the phase becomes ordered (see Supplementary
Fig. 2).

Importantly, this strategy completely neglects possible
orders with unit cells larger than 10 × 10 or 12 × 9,
as well as non-periodic solutions. Although orders with
unit cells of this large size are not expected in the re-

Supplementary Figure 3: Examples of typical optimization
trajectories for long-range PEPS using different automatic dif-
ferentiation schemes. The blue line often occurs with a naive
implementation of the energy evaluation algorithms and use of
a line search which does not minimize gradient norm. The red
line can occur even when using a more sophisticated energy
evaluation including local norms and/or a multi-evaluation
cost function. The stable magenta and green lines result from
combining the four techniques discussed in the Methods sec-
tion (PEPS: stabilizing the optimization). The difference be-
tween the magenta and green curves reflects the quality of the
initial guess.

gion of the phase diagram under investigation in this
work due to the relatively high crystal densities (and
thus close spatial packing) [1, 3, 4], our study cannot
definitively rule out the stability of such solutions.

PEPS: convergence and physical strategy
Despite the simple procedure to generate initial guesses,
we were usually able to systematically converge PEPS
solutions according to the conventional protocol of in-
creasing D and χ until the energies corresponding to
multiple increasing (D,χ) pairs all vary by less than
0.01% relative to each other (e.g. see Supplementary
Fig. 5). In this study, we used maximal values ofD = 5,
χ = 100. However, for a small number of phase
points (δ,Rb) we encountered inconsistent convergence
of PEPS solutions (see Supplementary Fig. 4), where in-
creasingD and χ did not systematically result in finding
a PEPS with a lower energy, instead getting stuck in var-
ious local minima. We attribute this to the low quality
of the initial guesses for larger D and Rb.

In these cases when PEPS energies could not be system-
atically converged to within 0.01%, the observed order
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15 × 15 16 × 16

Supplementary Figure 4: Phase diagrams of 15 × 15 (a) and 16 × 16 (b) arrays, detailing convergence. Circular points
indicate systematic convergence with PEPS up to bond dimension D = 5, while triangles indicate intermittent convergence
with PEPS, requiring supplemental convergence checks using 2D DMRG. More details are available in Supplementary Note 4
and Supplementary Methods. Colors used in these plots correspond identically to the colors used in the main text to identify
phases.

of the various low-energy solutions was nonetheless the
same. The differing energies arose due small quanti-
tative differences such as single-site defects and varia-
tions in the local density 〈n̂i〉. To further increase cer-
tainty in the observed order, we also compared the PEPS
solutions to the results of 2D DMRG on the same fi-
nite lattice, since the convergence properties of DMRG
are much more well-understood. In all cases, the low-
energy PEPS solutions had similar energies to the ap-
proximate DMRG (relative difference < 1%), and they
all showed the same generic low-energy ground state or-
der. The energy gap between phases appeared to be suf-
ficiently large to allow for a tentative classification of the
order of this small number of phase points, even though
the DMRG was not necessarily converged to high pre-
cision (due to the wide lattices) and the PEPS conver-
gence could not be definitively confirmed. The uncer-
tainty in convergence highlights remaining challenges in
simulating complex large 2D interacting problems with
competing phases using tensor network techniques. The
relevant points in the finite lattice phase diagram are la-
belled by triangles in Supplementary Fig. 4, and in Fig.
4 of the main text.

Supplementary Figure 5: An example of systematic conver-
gence of PEPS on the 15 × 15 lattice for the frustrated star
phase at δ = 4.0, Rb = 1.9. The region between the hor-
izontal lines indicates a change in energy of 0.01% relative
to the lowest obtained value. The PEPS is deemed converged
because many simulations with increasing (D,χ) return en-
ergies that fall within this region. Note that the star phase,
like most ordered phases, is sufficiently converged by D = 3
due to the predominant mean-field character of most ordered
phases (discussed in main text).
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Supplementary Figure 6: Accuracy of 2D DMRG on the
9 × 9 and 13 × 13 finite lattices (open boundaries). The dis-
played regions of parameter space correspond exactly to the
computed regions in Fig. 5 (main text) and Supplementary
Fig. 14. The reported error is the largest truncated singular
value during the final DMRG sweeps (i.e. once converged).
Note that in the ordered regions the error is ∼ 10−9, and it
grows to ∼ 10−7 as the ground state becomes disordered on
the 13× 13 lattice due to increasing entanglement.

Supplementary Note 1
Nature of the bulk nematic phase
In this section we will focus on the nature of the ne-
matic phase and its stability in the thermodynamic limit
(TDL). The qualitatively mean-field nature of all other
ordered phases permits a variety of straightforward ar-
guments for their TDL stability.

The structure of the ground state nematic wavefunc-
tion in Fig. 3 (main text) suggests that itinerancy of
Rydberg excitations plays an important role in stabiliz-
ing this state. Since itinerancy of excitations and de-
fects emerges perturbatively [1], we will rewrite the 2D
Hamiltonian like,

Ĥ = ĤD + λĤQ

=
1

2

∑
i 6=j

R6
b

|~ri − ~rj |6
n̂in̂j −

∑
i

δn̂i

+ λ
∑
i

σ̂x
i .

Here the eigenstates of ĤD are classical crystals, while
λ ≡ Ω

2 = 1
2 .

To investigate the energy scales involved in the itinerant
processes, we can begin by performing non-degenerate

RSPT energy (4th order)

RSPT energy (4th order)

(a)

(b)

Supplementary Figure 7: Energies of various low-energy
classical crystals that are corrected up to 4th-order Rayleigh-
Schrodinger perturbation theory (RSPT), which includes ef-
fects of single excitation itinerancy. Results are shown for (a)
interactions up to nearest neighbor columns (|xi − xj | = 2 in
the 2D lattice), and (b) full long- range interactions. Compar-
ing to the 0th-order classical energies with long-range inter-
actions (Fig. 3d, main text), we see that the classically unfa-
vorable states (due to longer-range terms) are stabilized by the
perturbations. The energy scale of single-excitation itinerancy
is therefore larger than the long-range terms.

Rayleigh-Schrodinger perturbation theory (RSPT) start-
ing from a single column state crystal taken from the
quasi-degenerate exponential manifold of low energy
classical states, such as |ababab . . .〉, |abcabc . . .〉, etc
(see Fig. 3, main text). Since these initial states that
diagonalize ĤD are classical, with all sites having ex-
actly 〈n̂i〉 = 0 or 1, the first-order RSPT correction to
the wavefunction (second-order energy) allows local su-
perpositions of |0i〉 and |1i〉. This order of RSPT cap-
tures the energies of the mean-field ordered phases with
high accuracy. The second-order RSPT correction to
the wavefunction (4th-order energy) allows for effective
“hopping” of a single excitation or defect from site i to
another site j. The first- and third- order corrections to
the energy are zero when starting from a single column
state crystal. In Supplementary Fig. 7 we compute the
energies up to the 4th order RSPT correction for various
starting states, using all long-range interactions as well
as interactions truncated to only be between neighboring
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(a)

(b)

Supplementary Figure 8: Example of a perturbative hopping
process for a single excitation that emerges in the second-order
Rayleigh-Schrodinger correction to a crystalline initial wave-
function (fourth order energy). In (a) a single excitation in
an |ababab〉-type state can hop while only violating a single
Rydberg blockade constraint (denoted by a red line). In (b),
a single excitation in an |abcabc〉-type state must violate two
blockade constraints when hopping. These quantum fluctua-
tions generate entanglement that preferentially stabilizes the
|ababab〉-type states, despite their higher classical and mean-
field energy.

columns (|xi − xj | ≤ 2 on the 2D lattice; in this limit
the classical energies of all low-energy column states are
exactly degenerate). The states of type |ababab...〉 have
the lowest RSPT energies in both interaction schemes.
At the level of single-particle hopping, this is because
hops within a single column from excited site y to site
y ± 1 can be chosen to only violate 1 Rydberg block-
ade (Rb ∼ 2.3) constraint (the new excitation is 2 sites
away from a single excitation within its column, but still
at least

√
5 away from all excitations in other columns).

On the other hand, states with more |abc...〉 character
have some single excitation hops which must violate
two instances of the blockade (they can only hop to a
position at y ± 1 which is 2 sites from an excitation in
its own column and 2 sites from an excitation in the ad-
jacent column). See Supplementary Fig. 8.

By comparing the results (Supplementary Fig. 7) with
truncated interactions and full interactions, we can see
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Supplementary Figure 9: Stability of the nematic order
to additional single-site fields. The field is applied to only
one site, and favors excitation into the Rydberg state. It
can be understood as a modification of the Hamiltonian de-
tuning term on a single site (labelled k): −

∑
i δn̂i →∑

i 6=k[δn̂i] − (δ + h)n̂k. (a) Shows a measure of the
“sublattice imbalance” as a function of the field h. The
sublattice imbalance measures the difference in popula-
tion between the preferred column state and the others
(|a〉, |b〉, |c〉):

∑
cols[max(〈n̂〉|a〉, 〈n̂〉|b〉, 〈n̂〉|c〉) − 0.5 ·

max(〈n̂〉|a〉, 〈n̂〉|b〉, 〈n̂〉|c〉)]. Here, 〈n̂〉|x〉 measures the av-
erage density of Rydberg excitations within the sublattice de-
fined by the excitations of state |x〉, and max is the comple-
ment of the max() operation. The sublattice imbalance is 0
in the nematic state and 1 in a pure 2D crystal. (b) Shows the
ground state density profiles corresponding to representative
field strengths from (a). The red circle denotes the specific
site on which the field is applied. In (c)-(d), the field on the
initial site is fixed to 10−1, and a second field is applied to a
new site in a column that has still not collapsed to a classical
state.

that the energetic contributions of the quantum fluctua-
tion induced itinerancy are larger than those of the long-
range interactions, since the interaction favors |abc . . .〉
states while itinerancy favors |abab . . .〉 states. These
fluctuations generate entanglement within the column,
but also between adjacent columns because the direction
of low-energy hopping is highly dependent on the state
of the neighboring columns. Consequently, the large
weight of the |abab . . .〉 and related configurations in the
quantum ground-state (computed with DMRG) are due
to short-range entanglement. The above corresponds to
an order from disorder stabilization mechanism [5], and
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it is clearly stable in the TDL since it is a low-order per-
turbative process.

Each single initial crystal state for this perturbative
treatment is drawn from an exponentially large, quasi-
degenerate classical manifold (and there are 6 exactly
degenerate permutations of the |abab . . .〉 state). This
inhibits the applicability of non-degenerate perturbation
theory to provide a complete description of the true
quantum ground state. A more complicated question is
whether in the TDL, the short-range entangled ground-
state will contain strong fluctuations around only a sin-
gle non-classical configuration, or around multiple (e.g.
like different Neel states in a Heisenberg antiferromag-
net). At least at the level of the crystalline cell we can
treat, we find the weights distributed across the 6-fold
permutations of the |abab . . .〉 configurations (as well as
the exponential manifold around them). At this finite
simulation size, applying a small field does not collapse
the quantum state to one of the crystal states; quite a
large field is required (see Supplementary Fig. 9). (By
large, we mean of size 10−3 or larger on two sites,
while the energy difference between perturbation the-
ory (RSPT4) corrected classical configurations is on the
scale of 2 × 10−4 per site. However, we note that nor-
malising the applied field 10−3 on two sites, by the num-
ber of occupied sites in the classical crystals at this den-
sity, ∼ 24, makes the scales more comparable). Thus
fluctuations and entanglement are undoubtedly much
larger in this nematic phase than in the other ordered
phases. However, a full picture requires a finite-size
scaling analysis beyond our current calculations.

D=3 low-energy projectors and the entan-
glement spectrum
The character of the nematic phase has been extensively
discussed in terms of the classical configurations that
make up the quantum wavefunction. It has been pointed
out that all the low-energy (and thus the most relevant)
classical configurations can be described in a succinct
notation like |abcabc...〉 in terms of compositions of 3
individual column states |a〉 , |b〉, and |c〉 which are de-
fined in Fig. 3 of the main text. This notation is very
suggestive of the idea that a qualitative model for the
2D state can be written as a 1D MPS with a local Hilbert
space of dimension 3, spanning |a〉 , |b〉, and |c〉. A strik-
ing feature of the entanglement spectrum in the main
text is the presence of the 3 large eigenvalues, with a
1 : 2 degeneracy structure.

Supplementary Figure 10: Structure of the entanglement
spectrum for the 1D low-energy projector model of the ne-
matic order, as described in Supplementary Note 1 (low-
energy projectors subsection). Left: The entanglement struc-
ture when projectors are applied on every bond of the MPS,
in an open-boundary conditions style. Right: Entanglement
structure when an additional periodic projector is applied be-
tween the first and last site in the MPS. This type of interaction
is generally accounted for in the Γ-point basis calculations.
Note the similarity of these Schmidt spectra to the nematic
DMRG ground state shown in Fig. 3 of the main text.

To illustrate a possible origin of this pattern in the ne-
matic phase, we create a simple model state with a sim-
ilar entanglement spectrum. The strength of the inter-
actions where the nematic phase emerges (Rb = 2.3)
is such that configurations with adjacent columns in the
same state (e.g. |abcabb...〉) are much higher in energy
than all configurations without any identical adjacent
columns. The projector into the low energy subspace
thus removes all configurations with adjacent columns
in the same state. It can be written as a product of com-
muting two-site operators,

P =
∏
i

P̂i,i+1, (2)
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where P̂i,i+1 = 1− |aa〉 〈aa| − |bb〉 〈bb| − |cc〉 〈cc|.

First, we will briefly comment on the eigenspectrum of
P . Its eigenvalues are all positive integers, with the
smallest being 0. The number of 0 eigenvalues grows
as ∼ 2L, where L is the length of the 1D chain. These
eigenvalues correspond to all the possible arrangements
of the individual column states that do not violate any
constraint in Eq. (2). This reveals the origin of the ex-
ponential classical degeneracy that has been previously
discussed in the 2D system.

Concerning the entanglement spectrum, we can apply
the operator P to a simple product state |ψ0〉 (a D = 1
MPS) containing an equal mixture of all possible col-
umn states i.e. |ψ0〉 =

∏
i(λa|ai〉 + λb|bi〉 + λc|ci〉)

where |ai〉, |bi〉, |ci〉 represent states on column i. As
long as |λa| = |λb| = |λc|, then P |ψ0〉 has the en-
tanglement structure shown in Supplementary Fig. 10,
which is very similar to that seen in the 2D nematic
phase computed by DMRG.

Supplementary Note 2
Bulk phase diagram degenerate region
In the main text it was briefly mentioned that there is a
small region of the bulk phase diagram where the ne-
matic phase and 3-star phase become essentially degen-
erate. By this we mean that their gap becomes too small
to resolve within the estimated finite size error in the Γ-
point DMRG numerics. Using the ∆e finite size error
measure defined above, for [Rb = 2.3, Lx = 12, Ly =
9], we have ∆e ≈ 3 · 10−5 in the nematic phase and
∆e / 8 · 10−6 in the 3-star phase. An expanded view
(in δ) of the upper part of the bulk phase diagram is
shown in Supplementary Fig. 11. The degenerate region
emerges between the nematic phase and the 1

5 -staggered
phase near δ = 7.0, as indicated by the lime green color.

Supplementary Note 3
Bulk phase transitions
The disorder→order phase transitions that occur
throughout the bulk phase diagram have been char-
acterized as continuous phase transitions in previous
work [3]. Although full, precise characterization of all
bulk phase transitions is beyond the scope of this work,
we are able to estimate the order of some transitions us-
ing straightforward numerical differentiation of the en-
ergies. Supplementary Fig. 12 shows the first and sec-

Supplementary Figure 11: Expanded view of the large-
Rb part of the bulk phase diagram, computed with Γ-point
DMRG. For δ ≤ 5.0, this data is identical to Fig. 2a in the
main text. All colors correspond to the same phases as in the
main text Fig. 2. The small lime green region indicates the
degenerate zone where the gap between the 3-star and nematic
phases becomes very small.

ond derivatives of the energy as a function of δ, for var-
ious values of Rb, from simulations on an 8 × 8 super-
cell. The peaks in the second derivatives near the crit-
ical values of δ tentatively support the conclusions that
the disorder→star and disorder→striated phase transi-
tions are indeed second-order. However, this data is
also consistent with recent work [6] which shows that
although these two transitions appear continuous using
an 8×8 simulation cell, they adopt strong characteristics
of first-order transitions once the cell size is increased to
16× 16.

Supplementary Note 4
Finite phase diagram: 15× 15 and 16× 16
The phase diagram of the 15 × 15 lattice reported in
the main text contained many of the ground state or-
ders seen in the bulk phase diagram, but it also revealed
the strong finite-size effects induced by the boundary.
Due to the long-range van der Waals interactions, Ry-
dberg excitations at the edge of the array incur roughly
half of the energetic penalty that excitations in the in-
terior do, but lower the energy by an equal amount (δ).
Except at small values of Rb, this induces excitations
along the edge of the array to be more densely packed
than what would be expected from the bulk phase dia-
gram at a given point (δ,Rb). This generic effect causes
frustration between the boundary and interior of the fi-
nite lattices, which gives rise to the square classical or-
der and many defect-dominated states at large Rb, as
discussed in the main text. In these defect states, the op-
timal bulk density becomes so small relative to the opti-
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Supplementary Figure 12: Numerical evidence of second-
order phase transitions between the disordered phase and the
star (blue) and striated (cyan) phases, from simulations on an
8×8 supercell. Top: First derivative of the energy with respect
to δ. Bottom: Second derivative of the energy with respect to
δ. Both are estimated using standard finite difference formu-
las.

mal edge density that the ground states are permeated by
edge-induced defects, leaving only small regions of any
discernible order and making the precise configuration
very sensitive to small changes in Rb and δ.

In addition to the 15 × 15 lattice, we also studied two
slices (δ = 4.0, 5.0) of the phase diagram of the 16×16
lattice to probe for bulk-like ordered phases where the
15 × 15 system is dominated by defects. Specifically,
we focused on the Rb > 1.8 region, for which the re-
sults are shown in Supplementary Fig. 4b. We find a
clear region of the stability for the boundary-bulk frus-
trated 1

5 -stagger phase (red), for which the density pro-
file is shown in Fig. 4c of the main text. Along with a
small region of the 3-star phase (green and black), these
regions are unique to the 16 × 16 lattice (i.e. they are
not seen in 15× 15). There are also some common fea-
tures between the two array sizes, namely regions of the
star and 1

8 -stagger (gold) phase as well as many defect
states. This suggests that the defect states are an intrin-
sic part of the physics of medium-sized arrays.

Supplementary Figure 13: Distinguishing the striated and
square orders on the 13 × 13 lattice at the slice δ = 4.0. The
striated order parameter F̃(π, 0) − F̃(π/2, π) (red) is large
across the range Rb = 1.5− 1.85, but the density of quantum
fluctuations on the (1, 1)-sublatticeOsub (blue) decays to∼ 0
by Rb = 1.65, revealing the square order.

As reflected by the triangular markers in Supplemen-
tary Fig. 4b (which reflect inconsistent convergence) we
found it more challenging than the 15 × 15 lattice to
systematically converge the PEPS calculations with re-
spect to (D,χ), especially in the star phase (blue). In
part, this was due to the boundary itself being frustrated;
on an even-sided lattice it is not possible to place exci-
tations in all corners and also along all edges spaced
by a distance of 2. Because the corner excitations are
strongly pinned due to their reduced interaction penalty,
this causes the boundary to be frustrated and makes it
more difficult to prepare a good initial guess with our
rudimentary strategies.

Supplementary Note 5
Comparing to experiment: 9×9 and 13×13
lattices
The main text discussed discrepancies between our nu-
merical results on the 13 × 13 lattice and analysis re-
ported in a recent experiment [7], specifically concern-
ing the striated, square and star phases. It was noted
that the actual experimental data appears to agree with
our numerics, but the interpretation of the data offered
in Ref. [7] is inconsistent with ours. This section details
the effect of the approximations made in the numerics
of Ref. [7] on the interpretation of the data, and how
relaxing those approximation leads to the interpretation
described in our main text.
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Context
In Ref. [7], the experimental data on the 13× 13 square
lattice was primarily understood with respect to DMRG
calculations performed on the 9 × 9 lattice (all open
boundaries), in which interactions were truncated to
zero beyond a distance of 2. The experimental results
of Ref. [7] are reproduced in Supplementary Fig. 14a,
and they are compared to our numerical results on 9× 9
and 13 × 13 lattices (Supplementary Fig. 14b-d). The
region of the phase diagram that was studied included
domains of stability for the disordered, checkerboard,
striated, and star phases. The square “phase” was not
separately reported, although it may be considered the
classical limit of the striated phase.

We also introduce here a useful order parameter for de-
tecting the star phase,

Ostar =
∑
x,y

(〈n̂x,y〉 − 〈n̂y,x〉)2/N, (3)

whereN = Lx ·Ly . Ostar detects a symmetry breaking
that occurs in the star phase but not in the disordered,
checkerboard, striated, or square phases. On a finite lat-
tice, this provides a clean way to define the star phase
separate from the other orders in this set. We also re-
capitulate the definition of the order parameters defined
in [7] and used in Supplementary Fig. 14,

F̃(k1, k2) = (F(k1, k2) + F(k2, k1))/2 (4)

F(k1, k2) = |
∑
x,y

exp(i(k1x+ k2y))〈n̂x,y〉|/N. (5)

Star phase stability
In Supplementary Fig. 14c, we recompute the main 9×9
phase diagram numerical results used in [7], which use
truncated interactions. The bright region in F̃(π, π/2)
predicts a large domain of stability for the star phase,
which is corroborated by the value of Ostar. This data
was used in [7] to draw the expected phase boundary in
the 13 × 13 experimental data seen in Supplementary
Fig 14a. However, Supplementary Fig. 14d shows the
analogous results on the 9 × 9 lattice when including
all long-range interactions. Surprisingly, the star phase
gets completely destabilized! This illustrates the hazard
of interpreting the experimental data from smaller lattice
simulations.

Unlike the 9× 9 lattice, we observe that the 13× 13 lat-
tice phase diagram has a qualitative difference: it hosts a

nonzero domain of star phase even when accounting for
all long-range interactions. As pointed out in the main
text, F̃(π, π/2) is not a sensitive order parameter for
the star phase as it appears on finite lattices, but Ostar

does reveal the tiny stable region of the star phase (see
Supplementary Fig. 14b).

Square and striated phases
The overestimation of the extent of the star phase by us-
ing numerics from the 9× 9 lattice with truncated inter-
actions also results in an underestimation of the extent of
the striated order parameter, F̃(π, 0)−F̃(π/2, π), since
F̃(π/2, π) is the star order parameter used in [7] (see
Supplementary Fig 14c). These 9× 9 results were used
in [7] to interpret the striated phase domain in the exper-
imental data, so the boundary drawn in Supplementary
Fig. 14a is too small. In fact, the extent of the exper-
imental data for F̃(π, 0) − F̃(π/2, π) (Supplementary
Fig. 14a) is significantly larger than the drawn boundary,
corresponding much more closely to the numerical data
on the 13 × 13 including long-range interactions (Sup-
plementary Fig. 14b), as mentioned in the main text.

In this work, we distinguish a region of classical square
order from the striated phase where the square order
contains (almost) no quantum fluctuations on the (1, 1)-
sublattice, which are an essential feature of the striated
phase in the bulk. F̃(π, 0) − F̃(π/2, π) does not help
distinguish between square and striated orders, and no
classical square order was reported in Ref. [7]. In Sup-
plementary Fig. 13 we show that a large part of the
bright region in F̃(π, 0) − F̃(π/2, π) on the 13 × 13
lattice should be interpreted as a classical square order
by plotting,

Osub =

{
4
N

∑
x,y〈nx,y〉 ifx mod 2 = 1, y mod 2 = 1

0 else

which detects the deformation of the density on the
(1, 1)-sublattice. This sublattice is defined in terms of
a 2× 2 cell, as in [7].

Numerical accuracy
All numerical results in Supplementary Figs.13-14 were
computed using DMRG. It was possible to study the
13 × 13 lattice using DMRG because we only investi-
gated a low-entanglement region of the phase diagram.
The level of accuracy for these calculations is shown
in Supplementary Fig. 6 in terms of the largest trun-
cated singular value during the DMRG sweep. In the
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ordered regions of the results, the largest truncated sin-
gular value is below 10−9, which is generally consid-
ered accurate.
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Supplementary Figure 14: Detailed comparison to experimental phase diagram. The (a) row directly reproduces the experi-
mental phase diagram on the 13× 13 lattice (data extracted from Ref. [7] Fig. 4). Rows (b)-(d) show analogous numerical data
on 9×9 and 13×13 lattices, where (b) and (d) are results from simulations containing all long-range interactions and (c) shows
results using interactions truncated to zero beyond distance 2. This is identical to the truncation scheme used in numerics in
Ref. [7]. The first three columns show all three order parameters used in [7] to distinguish the phase diagram, while the fourth
column shows a new, more precise order parameter for the star phase. Red dots in (a) denote the phase boundaries assigned
in [7], while the cyan dotted lines in (b)-(d) indicate the subset of parameter space that was computed.
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