Null space conditions and thresholds for rank minimization
- Creators
- Recht, Benjamin
- Xu, Weiyu
- Hassibi, Babak
Abstract
Minimizing the rank of a matrix subject to constraints is a challenging problem that arises in many applications in machine learning, control theory, and discrete geometry. This class of optimization problems, known as rank minimization, is NP-hard, and for most practical problems there are no efficient algorithms that yield exact solutions. A popular heuristic replaces the rank function with the nuclear norm—equal to the sum of the singular values—of the decision variable and has been shown to provide the optimal low rank solution in a variety of scenarios. In this paper, we assess the practical performance of this heuristic for finding the minimum rank matrix subject to linear equality constraints. We characterize properties of the null space of the linear operator defining the constraint set that are necessary and sufficient for the heuristic to succeed. We then analyze linear constraints sampled uniformly at random, and obtain dimension-free bounds under which our null space properties hold almost surely as the matrix dimensions tend to infinity. Finally, we provide empirical evidence that these probabilistic bounds provide accurate predictions of the heuristic's performance in non-asymptotic scenarios.
Additional Information
© 2010 Springer and Mathematical Optimization Society. Received: 21 April 2009; Accepted: 26 April 2010; Published online: 12 October 2010. This work was supported in part by the Office of Naval Research under grants N00014-08-1-0749 and MURI N-00014-08-1-0747, by the National Science Foundation under grants CCF-0729203 and CNS-0932428, by the David and Lucille Packard Foundation, and by Caltech's Lee Center for Advanced Networking.Additional details
- Eprint ID
- 23202
- DOI
- 10.1007/s10107-010-0422-2
- Resolver ID
- CaltechAUTHORS:20110401-112500555
- Office of Naval Research (ONR)
- N00014-08-1-0749
- Office of Naval Research (ONR)
- N00014-08-1-0747
- NSF
- CCF-0729203
- NSF
- CNS-0932428
- David and Lucile Packard Foundation
- Caltech Lee Center for Advanced Networking
- Created
-
2011-04-04Created from EPrint's datestamp field
- Updated
-
2021-11-09Created from EPrint's last_modified field