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Inertia Properties of Indefinite Quadratic Forms 
Ali H. Sayed, Babak Hassibi, and Thomas Kailath 

Abstract-We study the relation between the solutions of two 
estimation problems with indefinite quadratic forms. We show 
that a complete link between both solutions can be established 
by invoking a fundamental set of inertia conditions. While these 
inertia conditions are automatically satisfied in a standard Hilbert 
space setting, they nevertheless turn out to mark the differences 
between the two estimation problems in indefinite metric spaces. 
They also include, as special cases, the well-known conditions for 
the existence of H--filters and controlers. 

I. INTRODUCTION 

IVEN two invertible Hermitian matrices {II, W}, a col- G umn vector y, and an arbitrary matrix A of appropriate 
dimensions, we study the relation between the following two 
minimization problems with quadratic cost functions: 

min[z*II-lz + (y - Az)*W-l(y - Ax)] (1) 

where z is a column vector of unknowns, and 

min{II - KAII - IIA*K* + K[AIIA* + W ] K * }  (2) 

where K is a matrix. The symbol "*" stands for Hermitian 
conjugation. Moreover, and contrary to standard quadratic 
minimization problems, the weighting matrices II and W are 
allowed to be indefinite. For this reason, solutions to (1) and 
(2) are not always guaranteed to exist. However, when they 
exist, the expressions for the solutions, and the conditions for 
their existence, can be related via a fundamental set of inertia 
conditions. Here, by the inertia of an invertible Hermitian 
matrix X, we mean a pair of integers, I + ( X )  and I - ( X ) ,  
that are equal to the number of strictly positive and negative 
eigenvalues of X, respectively. 

The significance of the relations to be established between 
problems (1) and (2) is the following. It often happens in 
applications that one is interested in solving problems of the 
form (l), with indefinite weighting matrices. A prominent 
example that has received increasing attention in the last 
decade is the class of Hm-filtering and control problems 
[l]; in this context, the II matrix in (1) is restricted to be 
positive-definite, and the W matrix is of, the special diagonal 
form W = diag.{-y21, I}, for a given positive constant y2. 
Here we shall allow for arbitrary indefinite weighting matrices 
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P, W>. 

On the other hand, problems of the form (2) are charac- 
teristic of state-space estimation formulations, where a so- 
called Kalman filter procedure is available as an efficient 
computational scheme for determining the solution in the 
presence of state-space structure [2]. By relating the solutions 
of (1) and (2), we shall then be able to apply Kalman- 
type algorithms to the solution of (l), as well as obtain a 
complete set of inertia conditions that will automatically test 
for the existence of solutions to (l), without discarding the 
information from the solutioin of (2). 

The inertia conditions folllow as special cases of a basic 
result that tells us how the inertia of the matrices II and 
W is affected by transformations of the form (AIIA* + 
W) and (II-l  + A*W-lA). The reason for choosing these 
transformations is because the positivity of these matrices 
is equivalent to necessary and sufficient conditions for the 
solvability of the problems (1) and (2). Hence, by studying 
how their inertia depends 011 {II, W}, we shall be able to 
conclude how the choice of { II, W} affects the solvability of 
problems (1) and (2). The next conclusion follows by invoking 
Sylvester's law of inertia [3] iind the matrix inversion formula. 
Also (II @ W) denotes diagonal {II, W}. 

Theorem I: The following inertia equalities hold: 

I+(II @ W) = I+[(II-' + A*W-lA) @ (AIIA* + W ) ]  
I-(II @ W )  = I-[(II-' + A*W-lA) @ (AIIA* + W ) ]  

if, and only if, (AHA* + W )  is invertible. 

11. TWO INDEFMITE ESTIMATION PROBLEMS 

We shall refer to problem (1) as the indefinite-weighted 
least-squares problem (IWLS, for short). The indefiniteness 
arises from the presence of the indefinite weighting matrices 
{II, W}. Consequently, a bilinear form a*W-lb is not guar- 
anteed to satisfy the postivity condition a*W-'a > 0 for all 
nonzero column vectors a. We thus say that C", coupled with 
a bilinear form a*W-lb with W indefinite, is an indefinite 
metric space [4]. 

Let J ( x )  denote the quadratic cost function that appears in 
(1). Every 2 at which the gradient of J ( z )  with respect to 
x vanishes is called a stationary point of J ( z ) .  A stationary 
point 2 may or may not be a minimum of J ( x ) ;  it is unique 
if, and only if, [II-l + A*W--lA] is invertible, in which case, 
it is given by 2 = [II-l + A*W-lA]-lA*W-ly. This point 
will be a minimum iff (II-l  + A*W-lA) > 0. 

We shall refer to (2) as the equivalent estimation problem 
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(or EE, for short). It arises in the following context. Con- 
sider column vectors {y, v, z }  that are linearly related via 
the expression y = Az + U, for some A, and where the 
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individual entries {y,, v,) z,} of {y, w )  z }  are all elements 
of an indefinite metric space, say, K: ' (note that we are using 
boldface letters to denote the variables of the EE problem). 
The variables {v, z }  can be regarded as having Gramian 
matrices {W, 11} and cross-Gramian zero, W = (v, w ) x / ,  
II = ( z ,  z ) K / ,  and ( z ,  W ) K /  = 0. Under these conditions, 
it follows from the linear model that the Gramian matrix of 
y is equal to (y, y)x! = AIIA* + W .  Let J ( K )  denote 
the quadratic cost function that appears in (2). It is then 
immediate to see that J (  K )  can be interpreted as the Gramian 
matrix of the vector difference (z  - Ky), viz., J ( K )  = 
(z  - Ky,  z - K y ) ~ r .  Every K" at which the gradient of 
a * J ( K ) a  with respect to a*K vanishes for all columns a is 
called a stationary solution of J ( K ) .  A stationary point K" 
may or may not be a minimum. 

Hence, solving for the stationary solutions K" can also be 
interpreted as solving the problem of linearly estimating z from 
y, which is denoted by i = K"y. This estimate is uniquely 
defined if K" is unique. It is said to be the optimal linear 
estimate if K O  is the unique minimizing solution. 

A unique stationary solution K" exists iff(AIIA* + W )  is 
invertible. This gives KO = [II-' + A*W-'A]-lA*W-l, 
and 2 = [II-' + A*W-lA]-lA*W-ly. Moreover, KO is a 
minimum (and i is optimal) iff(AIIA* + W )  > 0. 

Comparing the expressions for i and i, we see that if 
we make the identifications i c) 2 and y tf y, then both 
expressions coincide. This means that the IWLS problem and 
the EE problem have the same expressions for the stationary 
points, 2 and 2. But while a minimum for the IWLS problem 
(1) exists as long as (II-' + A*W-lA) > 0, the equivalent 
problem (2) requires (W + AEA*) > 0. 

A question of interest then is the following: given that one 
problem has a unique stationary solution, say, the EE problem, 
and given that this solution has been computed, is it possible 
to verify whether the other problem, say, the IWLS problem, 
admits a minimizing solution without explicitly checking for 
its positivity condition? The answer follows from Theorem 1: 
the IWLS problem (1) will have a unique minimum 2 (i.e., 
(n-l + A*W-'A) > 0, iff 

1- [W + AHA*] = 1- [II @ W ]  (3) 

1+[W + AIIA*] = I+[II @ W ]  - n (4) 

where n x n is the size of II. 
The importance of the above conclusion is that it allows us 

to check whether a minimizing solution exists to the rwLS 
problem (1) by comparing the inertia of the Gramian matrix 
of the equivalent problem, viz., (W + AEA*), with the inertia 
of (I3 @ W ) .  This is relevant because, as we shall see in the 
next section, when state-space structure is further imposed, we 
can derive an efficient procedure that allows us to keep track 
of the inertia of (W + ADA*). In particular, the procedure 
will produce a sequence of matrices {Re, i }  such that 

Inertia (W + AHA*) = Inertia (Re, 0 @ Re, 1 @ Re, . , .) 

Therefore, "all" we need to do is compare the inertia of the 
given matrices II and W to that of the matrices {Re,,} that 
are made available via the recursive procedure. 

In summary, by establishing an explicit relation between 
both problems (1) and (2), we are capable of solving either 
problem via the solution of the other. In the special case of 
positive-definite quadratic cost functions, this point of view 
was exploited in [5] to great effect in order to establish a close 
link between known results in Kalman filtering theory and 
more recent results in adaptive filtering theory. In particular, 
it was shown in [5] that once such an equivalence relation is 
established, the varied forms of (fixed- and order-recursive) 
adaptive filtering algorithms can be obtained by writing down 
different variants of the Kalman filter. The discussion in this 
letter, while it provides a similar connection for indefinite 
quadratic cost functions, shows that a satisfactory link requires 
an additional set of inertia conhtions. 

m. bJCORPORATING STATE-SPACE STRUCTURE 

Now that we have established the exact relationship between 
the two basic optimization problems (1) and (2), we shall 
proceed to study an important special case of the EE problem 
(2) that arises in a state-space context. 

We consider vectors {yz, x,, U%, U,} ,  all with entries in K:', 
and assume that they are related via the state-space equations 

with 

(it::]; [':],..= [ Q z S z j  0 R,&, 0 y ]  
2 0  2-0 0 0 no 

where S,, is the Kronecker delta function that is equal to unity 
when i = 3 and zero otherwise. The matrices {Q,, R,, no} 
are possibly indefinite: no is n x n, Qz is m x m, and R, 
is p x p .  

The state-space structure (5) leads to a linear relation 
between the vectors { y z } ~ o  and the vectors (20, uz}:i1. 
More explicitly, if we collect the {yz} and the {U,}  into 
two column vectors, say, y = col{yo, . . .  , y N }  and v = 
col {WO,. . . , v ~ } ,  and define ZN = col {XO, U O ) .  . . , u N - ~ } ,  

it then follows from the state-space equations (5 )  that y = 
AZN + PI, where A is a block-lower triangular matrix. More- 
over, the Gramian matrices of the variables { z ~ )  v} so defined 
are ( Z N ,  Z N ) I C '  = (IIo @ Q O  . . .  @ Q N - I ) ,  and (w, W ) K '  = 
( R O B - .  . RN).  More compactly, we shall write ( Z N ,  ZN)K I = 

Let R, = (y, y ) ~ !  denote the Gramian matrix of the 
vector y, R, = W + AIIA*, and assume that R, is (block) 
strongly regular. We have shown in [2] that the matrix R, is 
congruent to (Re, 0 @ Re, 1 @ .  . @ Re, N ) ,  where the Re, are 
computed via a Kalman-type procedure: Start with Po = IIo 
and repeat: KP,, = F,P,H,*R$, Re, , = R, + H,P,H,*, and 
P,+1 = F,P,F: +G,Q,G,* - Kp, ,Re, ,K;, ,. (These recursions 
can also be used to recursively update the estimate of 2 ~ ,  but 

Il and (w, W ) ~ I  = W .  
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we shall omit the details here and focus only on the solvability 
conditions (3) and (4); see (7)). 

Now, in view of the discussion in Section 11, the solution 
2~ has the same expression as the solution 2~ of a related 
minimization problem of the form (I), which, in view of the 
state-space relations (3, can be seen to be given by 

min xp,lxo 
Z N = C O l  { D o ,  U O , ’ . . , U N - ~ }  

N N - 1  I 

j=O J j = O  

subject to xg+l = F3x3 + G,u,. We shall denote the above 
cost function by J N .  Accordingly, we shall write J, to denote 
a similar cost function where the two sum indices run up to i 
and ( i  - l), respectively, and where the independent variable 
is z, = col{xo, U O , . - . , U , - ~ } .  

It now follows from the inertia conditions (3) and (4) that 
JN has a minimum with respect to (50, U,, . . . , U N - I }  iff 

I- [n @ W ]  = I- {Re, 0 @ . . . @ Re, N }  

I+[n @ WI = I+{Re, o CB . . . @ Re, N }  + + mN. 

For example, in the special case no > 0 and Q, > 0, we 
get II > 0 and I+(II) = n + mN,  and the above becomes 

I-{& @ ’ * *  @ R N }  = I-{&,o @ * ”  @ & , N }  

I+ { RO @ 3 . . @ R,} = I+ { Re, 0 @ . . . @ Re, N }  ‘ 

More generally, we are interested in checking whether all 
the J, have minima. The following follows from a recursive 
application of (3) and (4). 

Theorem 2: All J,  have minima if, and only if, 

1- [no e Ro] = I- {Re, o } , I+ [no Ro] = I+ {Re, 0 1 + n 

and, for i = 1, 2 , . . . , N ,  

I-{Q,-i R,} = I-{&,,} (6) 
I + { Q z - l @  &} = I+{Re,j} + m. (7) 

It may happen in some applications that the last term in 
the definition of the quadratic cost function J,  also includes 
the extra term u:Q;lu,, say C~=,U;&;’U~. In this case, 
the unknown variable U ,  only appears in the quadratic term 
u:Q;’u,, and it thus follows that minimization with respect 
to the U ,  further requires the positivity of Q,. This motivates 
us to consider the following two corollaries. 

Corollary 1: Assume funther that the {Q,}L=;;l are 
positive-definite and that IT0 :> 0. Then all J,  have minima if, 
and only if, Inertia{&} = 1nertia{Re,,} for 0 5 i 5 N .  In 
this case, it also follows that P, 2 0 for 0 5 i 5 N .  

The next statement further assumes that the {F,} are in- 
vertible. 

Corollary 2: Consider the same setting as in Corollary 1, 
and assume further that the {F,} are invertible. Then the 
following two statements provide equivalent necessary and 
sufficient conditions for all the J, to have minima: 

i) 
ii) 

P;’ + H,*R;~H, > 0, 

P,+1 - G,Q,G: >. 0, 

for o 5 i 5 N .  
for 0 2 i 5 N .  

It follows in the minimum case that, for all i ,  P,+1 > 0. 
Conditions of the form i) in Corollary 2 are the ones most 

cited in H”-applications. Here, we see that they are related to 
the inertia conditions of Corollary 1 and, more generally, to the 
conditions of Theorem 2. The inertia conditions of Corollary 1 
also arise in the Hoo-context [I] where R, is further restricted 
to the form R, = (-y21 @ I ) .  Here, we have derived these 
conditions as special cases of the general statement of Theorem 
2, which holds for arbitrary indefinite matrices {DO, Q,, R,} 
[7]. Note also that testing for i) in Corollary 2 not only requires 
that we compute the P, via a RYccati recursion, but also that we 
invert P, and R, at each step and then check for the postivity of 
P,-’ + H,* R,- H, . The inertia tests of Corollary I or Theorem 
2, on the other hand, employ the quantities Re, , and R,, which 
are p x p matrices (as opposed to P,, which is n x n). These 
tests can be used as the basis for alternative computational 
variants that are based on square-root ideas [6]. 

REFERENCES 

M. Green and D. J. N. Limebeer, Linear Robust Control. Englewood 
Cliffs, NJ Prentice-Hall, 1995. 
B. Hassibi, A. H. Sayed, and T. Kailath, “Recursive linear estimation in 
Krein spaces-Paxt I Theory,” in Proc. Con$ Decision Contr., vol. 4, 
San Antonio, TX, Dec. 1993, pp. 3489-3494; to appear in IEEE Trans. 
Automat. Contr., 1996. 
G. Golub and C. F. Van Loan, Matrix Computations, 2nd ed. Balti- 
more, MD: Johns Hopkins University Press, 1989. 
I. Gohberg, P. Lancaster, and L. Rodman, Matrices and Indejnite Scalar 
Products. Basel: Birkhauser Verlag, 1983. 
A.H. Sayed and T. Kailath, ‘‘A state-space approach to adaptive RLS 
filtering,” IEEE Signal Processing Mag., vol. 11, no. 3, pp. 1840,  July 
1994. 
B. Hassibi, A. H. Sayed, and T. Kailath, “Square-root arrays and 
Chandrasekhar recursions for If problems,” in Proc. Con$ Decision 
Conrr., vol. 3, Orlando, E, Dec. 1994, pp. 2237-2242. 
A. H. Sayed, B. Hassibi, and T. Kailath, “Fundamental inertia conditions 
for the solution of Hm-problenns,” in Pmc. Amer. Contr. Con$, Seattle, 
WA, June 1995; see also “Inertia conditions for the minimization of 
quadratic forms in indefinite metric spaces,” to appear in Operator 
Theory: Advances and Applicalions, 1996. 


