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Methods

Datasets and Pre-processing

All datasets used in this study are listed in Table A, and were chosen to cover a range of
sequencing platforms, experiment sizes, and experimental designs. For certain datasets, links to
saved pre-processed matrices (also used in the github Colab notebooks) are provided in Table B.

Dataset Technology Cells Label Metadata Download Link

Ex and In Utero Mouse Embryo E10.5 10x Genomics v3 56,528 Cell Type, Growth Condition https://ftp.ncbi.nlm.nih.gov/geo/series/GSE149nnn/GSE149372/suppl/

Ex and In Utero Mouse Embryo E8.5 10x Genomics v3 6,205 Cell Type, Growth Condition https://ftp.ncbi.nlm.nih.gov/geo/series/GSE149nnn/GSE149372/suppl/

SMART-Seq Mouse VMH Neurons SMART-Seq v4 3,850 Cell Type, Sex https://data.mendeley.com/datasets/ypx3sw2f7c/3

10x Mouse VMH Neurons 10x Genomics v2 41,580 Cell Type, Sex https://data.mendeley.com/datasets/ypx3sw2f7c/3

10x Developing Mouse Brain 10x Genomics v1 292,495 Cell Type http://mousebrain.org/downloads.html

Developing C. elegans Embryo (Neural Lineage) 10x Genomics v2 1,075 Cell Type, Pseudotime http://staff.washington.edu/hpliner/data/

Mouse Primary Motor Cortex (MOp) MERFISH 6,963 Cell Type, Spatial Coordinates https://caltech.app.box.com/folder/134209256308

Human Embryo Forebrain 10x Genomics v1 1,711 Cell Type https://github.com/tarachari3/GFCP_2022/blob/main/notebooks/data/hgForebrainGlut.loom

CEL-Seq Human Pancreatic Islet Cells CEL-Seq 1,276 Technology http://cb.csail.mit.edu/cb/scanorama/data.tar.gz

SMART-Seq2 Human Pancreatic Islet Cells SMART-Seq2 2,989 Technology http://cb.csail.mit.edu/cb/scanorama/data.tar.gz

inDrop Human Pancreatic Islet Cells inDrop 8,569 Technology http://cb.csail.mit.edu/cb/scanorama/data.tar.gz

Human Monocytes Drug Combo 10x Genomics v2 29,360 Cell Condition (Drug Combo) https://figshare.com/articles/dataset/PopAlign_Data/11837097

Mouse Neural Stem Cells (NSCs) 96-plex 10x Genomics v2 21,232 Cell Condition (Drug Combo) https://data.caltech.edu/records/a73n8-3pa89

Mouse Embryonic Stem Cells (ESCs) with DMSO 10x Genomics v2 904 None https://zenodo.org/record/7694182

Table A. Dataset Metadata. Datasets used across all analyses.

For the SMART-Seq and 10x mouse VMH datasets, cells were filtered according to the steps
outlined in [37]. Unless already provided, the top 2000 highly-variable genes (HVGs) were identi-
fied for all datasets using Scanpy’s highly variable genes [59]. Counts were log-normalized, unless
previously transformed, with the log-count matrices representing the ‘ambient’ data for metric com-
parisons (see below). Thus unless otherwise indicated, ‘ambient’ space refers to the log-normalized
count matrices filtered for HVGs. All count matrices were mean-centered and scaled before appli-
cation of Picasso or principal component analysis (PCA). All PCA analysis was performed using
sklearn TruncatedSVD to 50 dimensions by default. 15 dimensions was used for the PCA of the
integrated mouse embryo E10.5 dataset and 100 dimensions for the pancreatic islet datasets, to
facilitate direct comparison to the original studies [8,10].

The t-SNE and UMAP algorithms were applied to the higher dimensional PCA embeddings with
default settings. This sequence of dimension reduction by PCA first, prior to reduction to 2D by
UMAP/t-SNE, is denoted as ‘PCA-preprocessing’. The effect of a single parameter (n neighbors)
change is shown for UMAP embeddings in Fig 5,6 and Fig P,R-V, but we did not adjust parameters
beyond this. As per the discussion in [35], though slight changes in these aesthetic parameters
can drastically impact low-dimensional embeddings, the choice of parameters for tuning is often
informed by empirical observations/prior knowledge leaving open the question of which metric(s) to
use for determining ‘optimal’ parameters. Notably this tuning is also contradictory to the common
use or desire of such techniques to produce ‘unsupervised’ representations of the data.
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Name DOI Link

MERFISH MOp

metadata.csv https://data.caltech.edu/records/2063

counts.h5ad https://data.caltech.edu/records/2064

10x VMH Neurons

metadata.csv https://data.caltech.edu/records/2065

tenx.mtx https://data.caltech.edu/records/2072

var.csv https://data.caltech.edu/records/2066

tenx raw.mtx https://data.caltech.edu/records/2073

SMART-Seq VMH Neurons

metadata.csv https://data.caltech.edu/records/2067

smartseq.mtx https://data.caltech.edu/records/2071

smartseq raw.mtx https://data.caltech.edu/records/2070

gene names.npy https://data.caltech.edu/records/2068

smartseq.csv https://data.caltech.edu/records/2075

C. elegans Developmental Lineage

counts.mtx https://data.caltech.edu/records/2060

cells.csv https://data.caltech.edu/records/2061

genes.csv https://data.caltech.edu/records/2062

Developing Mouse Brain

gene names.npy https://data.caltech.edu/records/2069

dev all hvg.mtx https://data.caltech.edu/records/2043

dev all raw.mtx https://data.caltech.edu/records/2044

lamannometadata.csv https://data.caltech.edu/records/2045

Human Monocytes Drug Combo

mats.npy https://doi.org/10.22002/fax8y-08e55

popAlign meta.csv https://doi.org/10.22002/8hmwb-4q107

Table B. Availability of Processed Data. Links to DOI registered data for any externally pre-processed data
used for analyses.

Local Jaccard Distances

For comparisons of nearest neighbor overlaps in PCA and PCA-preprocessed or non-preprocessed

t-SNE/UMAP spaces we measured the Jaccard distance defined as 1 − |A ∩B|
|A ∪B|

where A,B rep-

resent the sets of each cell’s 30 nearest neighbors, unless otherwise denoted, in the ambient and
latent spaces respectively. A Jaccard distance of 0 denotes completely overlapping sets, and 1 de-
notes completely non-overlapping sets of neighbors. All embeddings were generated three times to
accommodate the non-deterministic nature of these reduction methods.

Global Cell ‘Type’ Neighbor Rankings

Cell ‘type’ here refers to provided cell annotations, either corresponding to cell types or cell
conditions (in the case of the drug combination, multiplexed datasets). To measure preservation
of cell type neighbors, we calculated Kendall’s Tau correlation of each cell type’s neighbor ranking
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(ranking of which other cell types are its nearest neighbors) to the ambient space rankings, PCA
space rankings (for PCA-preprocessed embeddings), and between all pairs of UMAPs for Fig Pb.
We used the average of all L2 (Euclidean) (as in Fig 2b) or L1 (as in Fig C) pairwise distances
between cells of each cell type to rank the cell type neighbors for each type. As described in the
main text we also used the L1 norm for its desirable properties in higher dimensions/transcriptomic
applications, and to reduce sensitivity to outliers [29-32,34]. All embeddings were generated three
times (n=3).

(Equi)Distance Analysis

To find equidistant cells within cell types, we selected cells from within sizeable cell types to
narrow the search space, as the algorithm we used, namely clique detection in undirected graphs,
is time consuming due to the underlying problem being NP-complete. The cell types we investi-
gated were ‘Esr1 6’ in the 10x VMH dataset and ‘Chondrocytes and Osetoblasts’ in the integrated
embryo E10.5 dataset. We calculated all pairwise distances between the cells in the ambient (gene
expression) space, using the L2 (Euclidean) distance as this is the default metric for determining
neighbors in the t-SNE [4] and UMAP [5] algorithms.

Using these pairwise distances we then defined an adjacency graph where two cells were ‘adja-
cent’ when their distance fell within certain distance criteria. Given the distribution of distances
produced, we defined adjacency in three different ways. We sub-selected for ‘near’ pairs of cells
that all had distances within a half of a standard deviation around the 0.1 quantile mark i.e. all
equivalently close to each other. Likewise, for ‘far’ cells we selected for cell pairs around the 0.9
quantile mark, and for ‘mid-range’ we selected cell pairs around the mean distance (using the same
filtering radius of within a half of a standard deviation). This filtering for small, medium, and large
distances helps to limit the size of the search space when looking for cliques of mutually equidistant
cells (below), as well as reveal the diversity of equidistant cell-cell relationships.

We used sklearn pairwise distances for the pairwise calculations. In each of the three adjacency
matrices (for ‘near’, ‘far’, and ‘mid-range’ cells) we looked for cliques, namely subsets of cells in
which all cells are connected (adjacent) to each other. To find cliques we used the find cliques
function from the networkx package to detect cliques in undirected graphs.

We used two metrics to assess distortion of equidistant cells in two dimensions. The first is the
variance of the pairwise distances between cells in each group, as compared to the variance of the
distances in the ambient space. We also calculated the ratio of the maximum to minimum distance
between cells in each group (the ‘max/min ratio’), a quantity for which we derived a lower bound
(see Theorem 1 in the Note) :

D

d
≥
√

n− 2

2
.

All variance and min/max comparisons were done in the ambient space, the PCA-preprocessed
spaces, and the final UMAP/t-SNE spaces, generated with and without pre-processing by PCA-
reduction. The ambient space for the integrated embryo E10.5 data is the ‘Variance-Stabilized
and Scaled’ data (as opposed to solely ‘Log-Normalized’ counts), as this was used as input for the
original UMAP embedding in [8], and accompanies the analysis in Fig 2c, 3a.
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These distortion metrics were also measured between every cell and its 10 nearest neighbors
to demonstrate distortion outside of groups of necessarily equidistant cells. The sklearn Nearest-
Neighbors function was used to find these 10 neighboring cells for max/min ratio calculations in
the embedded versus ambient spaces.

Mixing Analysis

All calculations to assess mixing were replicated with the L2 and L1 metrics (for nearest neighbor
determination). To assess mixing for the integrated E10.5 data and pancreatic islet cell datasets,
the fraction of each cell’s 30 nearest neighbors in its same condition/batch was calculated in the
ambient and reduced spaces.

We used the Scanorama correct() [10] and MNN mnnCorrect()[50] methods to batch-correct the
datasets in Fig 3 after highly variable gene selection, then performed standard PCA and non-linear
2D reduction.

Metrics for Cluster Relationships

For testing prediction/classification capabilities of embeddings, we used the 50 nearest neighbors
of the designated ‘unlabeled’ cells (30% of the dataset) to determine its cell label (either cell type
or condition). We implemented this with the sklearn KNeighborsClassifier. For UMAP Supervised
(UMAP Sup.), see https://umap-learn.readthedocs.io/en/latest/supervised.html, we pro-
vided labels for 70% of the cells.

For inter- and intra-type distances we use the inter-type distances from the cell ranking analysis
above (i.e. average pairwise distance between cells of the different types) and calculate intra-type
distances as the average pairwise distance between cells within each type). To provide a quantita-
tive measure on the separation of these distance distributions we use the two-sample Kolmogorov-
Smirnov test statistic with higher values indicating greater separation (less overlap). Again, ‘type’
refers to cell type or condition annotations, denoted for each dataset.

To assess malleability of cluster structures the log-normalized in-utero E10.5 data was reduced
to 50D with PCA and projected to 2D with UMAP. Only the n neighbors parameter was changed,
as this is one of the most commonly tuned parameters.

For the MNIST dataset, we embedded the data into two dimensions without PCA-preprocessing,
as that is not standard for non-biological data. ‘Color Controlled’ plots were generated by plotting
the majority cell type in each k-means cluster first then plotting the cells that were obscured on
top. We also used the k-means function from sklearn to determine clusters (where k is the number
of desired digits) from the two-dimensional embeddings, and measured the digit neighbor rankings
and intra-digit correlations as described for the inter- and intra-type calculations above.
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Density-Based Analysis

For the density/contour plot analysis we embedded the log-normalized and integrated ex- and
in-utero E8.5 dataset varying the n neighbors (perplexity) parameter for UMAP or t-SNE. Con-
tours were generated using the kdeplot function from seaborn.

Trajectory Analysis

Using the velocyto package, we generated the RNA velocity embedding for the forebrain dataset
used in [23], following Fig 7 in [55]. Only the n neighbors parameters were varied for the final, 2D
embedding step.

The Swiss Roll was generated following code from https://github.com/scikit-learn/scikit-learn/

blob/bac89c2/sklearn/datasets/samples_generator.py, and subsequently reduced from 3D to
2D with UMAP and a varying n neighbors parameter.

Picasso Embedding & Metrics

The autoencoder network used in the Picasso algorithm is outlined below. The input is a
centered/scaled count matrix X ∈ Rn×g, n cells by g genes. The input is passed through two
fully-connected layers of 128 nodes and d nodes respectively with d = 2 by default. Batch normal-
ization, the ReLU activation function, and dropout regularization are applied between the layers.
The second layer represents the latent representation in Rn×d denoted as Z. The final linear,
decoder layer produces X̂ ∈ Rn×g. No activation function or bias terms are used between the la-
tent and decoder layer as the decoder output solely represents a linear transform of the latent space.

Mini-batch training was employed, with a default batch size of 128, though larger batch sizes
were used for some Picasso embeddings. Adam optimization [61] was used for network training
with a default learning rate of 10−3 and weight-decay term of 10−5.

We defined two loss functions: LShapeAware and LReconstruction, which balance the fit of the input
points to the desired shape coordinates and reconstruction error in the decoder output as compared
to the input. S ∈ Rp×d represents the coordinates comprising the desired shape, where d = 2 and
p ≥ n. The latent space Z is also limited to d = 2 dimensions. The pairwise distance matrix
D ∈ Rn×p represents Euclidean distances between the cell coordinates in Z and shape coordinates
S such that

dij = ∥zi − sj∥2.

Using D, we define a Boolean, n× p adjacency matrix A, where
∑

Ai = 1. This matrix uniquely
specifies an adjacent coordinate point for every cell, in a bipartite graph mapping the n cells to
the p coordinates. A is determined by the linear sum assignment SciPy package, which assigns a
shape coordinate to each cell by solving the minimization problem:

min
∑
i

∑
j

dijaij
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where aij = 1 iff row i is assigned to column j. Thus,

LShapeAware =
∑

A⊙D.

Picasso performs this minimization to attempt to map cells to their closest, unique shape coordi-
nates. The reconstruction loss is the L2 norm of the difference between the reconstructed and input
data:

LReconstruction = ∥X̂−X∥2.

The total loss then incorporates both loss functions, balancing their contributions with f , a user-
defined fraction weighting the effect of each term on the resulting embedding:

L = f ∗ LShapeAware + (1− f) ∗ LReconstruction. (1)

The inter-type (or inter-sex) distances were calculated as the distances between the type cen-
troids, or average distances between cells of each sex within each type. Intra-type (or intra-sex)
distances were calculated as the average pairwise distance between cells within the types, or within
the sexes within each type. Both L2 and L1 distance metrics are provided for these analyses. Pear-
son correlation was reported between these distances in the embedded spaces and the corresponding
ambient space.

MCML Embedding & Metrics

‘MCML’ (multi-class multi-label) denotes a semi-supervised, label-aware methodology which di-
rectly incorporates the label-aware cost into the latent space structure. Similar to Picasso, MCML
uses an autoencoder network with a centered/scaled count matrix X ∈ Rn×g, n cells by g genes, as
input. For MCML embeddings C is the set containing label vectors for each class k, C : {c1, ..., ck}.
Classes can be discrete or continuous, and multi-dimensional in the case of continuous classes (e.g.
cell type, sex, condition, location).

The input is passed through two fully-connected layers of 128 nodes and d nodes respectively
with d = 50 by default. Batch normalization, the ReLU activation function, and dropout regu-
larization are applied between the layers. The second layer represents the latent representation in
Rn×d denoted as Z. The final linear, decoder layer produces X̂ ∈ Rn×g. No activation function or
bias terms are used between the latent and decoder layer as the decoder output solely represents a
linear transform of the latent space, for if such interpretability is desired. Mini-batch training was
employed with a default batch size of 128. Adam optimization was used for network training with
a default learning rate of 10−3 and weight-decay term of 10−5.

For MCML we used two loss functions: LLabelAware and LReconstruction, where LReconstruction

is as defined in (1). For LLabelAware, we utilized the Neighborhood Component Analysis (NCA)
algorithm from [75]. For all cells a pairwise probability matrix P ∈ Rn×n was created where

pij =
exp(−∥zi − zj∥2)∑
l exp(−∥zi − zl∥2)

,
∑
j

pij = 1.
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For discrete labeled data (e.g. cell type names) we defined LDiscrete for all pairs of cells i, j
where

LDiscrete =
∑
k

∑
ij pij1ij∑
ij 1ij

where 1ij(ck) :=

{
1 if ck,i = ck,j ,

0 otherwise .

Only the probabilities of cell pairs which are of the same label, for each class k, were summed
and normalized to the total number of these cell pairs (which represents the maximum value of the
numerator). For continuous classes of labels, such as spatial coordinates or pseudotime values, we
used a separate loss function, LContinuous. A probability weight matrix W ∈ Rn×n was generated
for every pair of cells such that

wij =
exp(−∥ck,i − ck,j∥2)∑
l exp(−∥ck,i − ck,l∥2)

,
∑
j

wij = 1.

In place of the indicator function, the weights biased the masking of the original probability matrix
P towards closer pairs of cells. Probabilities were also normalized to the maximum of the numerator
(treating the weights W as constants):

LContinuous =
∑
k

∑
ij wijpij∑

imax(wi)
.

The final loss function was

LLabelAware = LDiscrete + LContinuous

L = −f ∗ LLabelAware + (1− f) ∗ LReconstruction. (2)

LLabelAware was negated for minimization and was additionally weighted by a constant factor
of 10 in comparison to LReconstruction. This factor can be additionally optimized via a parameter
grid-search.

For comparisons between the MCML and sklearn’s NCA, we ran both methods on the 10x VMH
neuron and MERFISH MOp datasets, and MCML was run with f = 1 (no reconstruction error)
and sklearn’s NCA with default settings, to produce 50 dimensional latent space representations
incorporating cell type labels only. The NCA loss [75], represented by LDiscrete, was measured for
the generated latent spaces (‘NCA Likelihood’).

To assess label transfer/prediction in MCML spaces compared to standard embedding spaces
(PCA and LDVAE [60]) and SCANVI [76], a common annotation/label transfer method), we used
MCML to balance both sex (female/male) and behavioral condition (e.g. aggression, mating, not
receptive) of the animals used in the 10x VMH neuron dataset. We measured neighborhood struc-
ture in these emebddings by the fraction of cells’ neighbors in the same label (for the condition labels
or the sex labels), as with the mixing metrics above. Higher fractions (close to 1) denote neighbors
all within the same label, as desired. We used the KNeighborsClassifier described above to pre-
dict sex and condition labels for 20% unlabeled cells, with SCANVI only provided the condition
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label (as it is not clear how designate multiple categories of labels). For prediction using SCANVI,
we used their default reference mapping approach outlined here https://docs.scvi-tools.org/
en/stable/tutorials/notebooks/scarches_scvi_tools.html. MCML Ref. utilizes a reference
mapping approach akin to SCANVI, where labeled data is embedded, and nearest neighbors labels
are then designated for the query (unlabeled) data. However, MCML can also embed all the data
together (MCML Full), with only partial labels given for the subset of labeled cells (i.e. using
semi-supervision).

We utilized the MCML Full approach to embed the C. elegans developing neurons dataset and
MERFISH MOp data with continuous labels, pseudotime coordinates or spatial coordinates re-
spectively. We used Jaccard distance to measure the retention of these continuous neighbors in the
embedded spaces, for the unlabeled cells. We then generated embeddings with cell type only, cell
type and spatial labels, or spatial only and used the KNeighborsClassifier to determine accuracy of
prediction of both features for unlabeled cells.

To extend this to bMCML (biased MCML), we simplified the targeted reconstruction loss to
utilize only one term. Here L is defined by the Pearson correlation of the inter- or intra-distances
(see below) of a particular class to the ambient data. X, b represents the vector of the specified
inter-/intra-distances in the ambient space and b̂ represents those same distances calculated for
the reconstruction X̂.

L = −
∑

i(b̂i −
¯̂
b)(bi − b̄)√∑

i(b̂i −
¯̂
b)2(bi − b̄)2

. (3)

Relative Contrast Analysis of L1 & L2 Norms

As described in [30], given a set ofN points (or cells) in d dimensions (genes), the meaningfulness
of an Lk norm, in terms of distinguishing proximity, can be measured by its relative contrast value
defined as:

Dmaxk
d
−Dmink

d

Dmink
d

(4)

where Dmaxk
d
is the maximum Lk distance amongst all points (in dimension d) to a common

point, chosen to be the origin without loss of generality. Likewise, Dmink
d
is the minimum Lk dis-

tance amongst all points to the same common point.

This essentially represents how distinguishable the max and min distance in this set of points
are from each other, where values closer to 0 denote less difference or contrast. We calculated this
metric for the gene count matrices of the datasets in Fig 8, across n=5 random subsets of 1000
HVGs from the ∼2000 HVGs of each dataset.
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Figures

Distortion of Necessary Properties

Fig A. Jaccard Distance Across PCA Dimensions. a) Left column, Distributions of Jaccard distances of
neighbors compared to the ambient data, for the 10x VMH neurons, for PCA-preprocessed or non-preprocessed
2D embeddings, with increasing PCA dimensions for preprocessing the data down the column. Right column,
Distributions of Jaccard distances of neighbors compared to the higher dimensional PCA spaces, for the 10x VMH
neurons, for PCA-preprocessed 2D embeddings. b) Left and right columns as defined before, with Jaccard distance
distributions for the ex-utero E8.5 dataset. c) Left and right columns as defined before, with Jaccard distance
distributions for the MERFISH MOp dataset.
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Fig B. Jaccard Distance Across Datasets and Neighbors. a) Violin plots display kernel density estimate
of Jaccard distance distributions, compared to ambient neighbors, for the higher dimensional PCA space, and the
following 2D spaces with reduction by t-SNE or UMAP. Distributions shown across datasets of increasing sample
size (cell number). Box plot overlaid in black, with the median denoted by the white dot. Whiskers denote 1.5x the
interquartile range. Jaccard distances calculated for each cell’s 30 nearest neighbors. b) Violin plots, as in (a), display
kernel density estimate of Jaccard distance distributions, compared to ambient neighbors, for the higher dimensional
PCA space, and the following 2D spaces with reduction by t-SNE or UMAP. Jaccard distance distributions show
across a range of k nearest neighbors. Datasets of in vivo samples versus cell culture samples are denoted. c) Violin
plots, as in (a), display kernel density estimate of Jaccard distance distributions, compared to ambient neighbors,
for 2D spaces constructed directly from ambient space, PCA, t-SNE or UMAP. Jaccard distance distributions show
across a range of k nearest neighbors.
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Fig C. Cell Type Rankings Across Metrics. a) (Left) Kendall’s Tau correlation of cell type neighbor rankings
(of MERFISH MOp embedded data) to ambient data. (Right) Kendall’s Tau correlation of cell type neighbor rankings
(of MERFISH Mop embedded data) to the higher dimensional PCA embedding. Rankings calculated with L1 distance
metric instead of L2 as shown in Fig 2b. b) (Top Left) Kendall’s Tau correlation of cell type neighbor rankings (of
ex-utero E8.5 embedded data) to ambient data. (Top Right) Kendall’s Tau correlation of cell type neighbor rankings
(of ex-utero E8.5 embedded data) to the higher dimensional PCA embedding. Rankings calculated with L2 distance
metric. (Bottom Left, Right) Same plots as ‘Top’ plots with rankings calculated with L1 distance metric. Whiskers
denote 1.5 times the IQR. Plots for n=3 different rounds of embeddings.
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Fig D. Cell ‘Type’ Rankings and Separation Across Datasets with L2. a) Violin plots display kernel density
estimate of Kendall’s Tau correlation distributions of cell ‘type’ neighbor rankings , compared to ambient rankings, for
the (Top) higher dimensional PCA space, and the following 2D spaces with reduction by t-SNE or UMAP. (Bottom)
Distributions of ranking correlations in comparison to the PCA 50D space. Cell ‘type’ can be either cell labels of
condition or explicit cell type labels from the samples. Distributions shown across datasets of increasing sample size
(cell number). Box plot overlaid in black, with the median denoted by the white dot. Whiskers denote 1.5x the
interquartile range. Cell distances calculated with L2 metric b) K-S statistic calculated between inter and intra-cell
‘type’ distances, where ‘type’ can be either cell labels of condition or explicit cell type labels from the samples. All
plots for n=3 different rounds of embedding.
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Fig E. Cell ‘Type’ Rankings and Separation Across Datasets with L1. a) Violin plots display kernel density
estimate of Kendall’s Tau correlation distributions of cell ‘type’ neighbor rankings , compared to ambient rankings, for
the (Top) higher dimensional PCA space, and the following 2D spaces with reduction by t-SNE or UMAP. (Bottom)
Distributions of ranking correlations in comparison to the PCA 50D space. Cell ‘type’ can be either cell labels of
condition or explicit cell type labels from the samples. Distributions shown across datasets of increasing sample size
(cell number). Box plot overlaid in black, with the median denoted by the white dot. Whiskers denote 1.5x the
interquartile range. Cell distances calculated with L1 metric b) K-S statistic calculated between inter and intra-cell
‘type’ distances, where ‘type’ can be either cell labels of condition or explicit cell type labels from the samples. All
plots for n=3 different rounds of embedding.
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Fig F. Embeddings of Near and Far Equidistant Points in Integrated Ex- and In-Utero E10.5. a)
Histogram of group sizes (number of equidistant cells) in the selection of ‘near and equidistant’ groups. b) Variance
of pairwise distances across groups in each latent space. c) Ratio of the maximum to minimum pairwise distance
(max/min ratio) across groups. d) Ratio of the maximum to minimum pairwise distance (max/min ratio) for each
cell’s neighborhood of 10 nearest neighbors (NNs). e) Histogram of group sizes (number of equidistant cells) in the
selection of ‘far and equidistant’ groups. f) Variance of pairwise distances across groups in each latent space. g)
Ratio of the maximum to minimum pairwise distance (max/min ratio) across groups. h) Ratio of the maximum to
minimum pairwise distance (max/min ratio) for each cell’s neighborhood of 10 nearest neighbors (NNs). For all plots
bars denote the 95% C.I. and were run over 3 rounds of generated embeddings.
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Fig G. Properties of Equidistant Points in 10x VMH Neurons and Integrated E10.5 Data. a) Selection of
‘mid-range’ groups, with distances close to the average pairwise distance, in the 10x Mouse VMH Neurons dataset. b)
Histogram of group sizes (number of cells in a group) in the selection of ‘mid-range’ groups. c) Ratio of the maximum
to minimum pairwise distance (max/min ratio) withins groups in latent spaces. Latent spaces with increasing PCA
dimensions for PCA-preprocessing down the y axis. d) Selection of ‘mid-range’ groups, with distances close to the
average pairwise distance, in the Integrated E10.5 dataset. e) Histogram of group sizes (number of cells in a group)
in the selection of ‘mid-range’ groups. f) Ratio of the maximum to minimum pairwise distance (max/min ratio)
within groups in latent spaces.
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Fig H. Distortion Growth with Number of Embedded Points. Violin plots display kernel density estimate of
max/min ratio (see Methods) distributions across groups of equidistant cells of varying sizes (number of cells). This
ratio is for the higher dimensional PCA space, and the following 2D spaces with reduction by t-SNE or UMAP. Box
plot overlaid in black, with the median denoted by the white dot. Whiskers denote 1.5x the interquartile range. (Top)
Distortion results for the 10x VMH Mouse Neuron dataset and (Bottom) results for the Ex and In Utero Embryo
E10.5 dataset.
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Fig I. Principal Components of Equidistant Points. a) First and second principal components shown for
varying numbers of equidistant points, i.e. the In identity matrix in Rn, for n = 3, 5, 10, 15, 20 and 50. b) Max/min
ratios for the projections (see Methods, Note) of simplices in two-dimensions. * denotes where the minimum distance
in the ratio is 0 (points are collapsed onto each other), and the max/min ratio is infinite.
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Distortion in Applications
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Fig J. L1 Analysis of Mixing Patterns. a) Left plot shows ‘Log-normalized’ ambient (blue) and embedding
(orange) distributions of mixing (fraction of cell neighbors in the same condition), where 1.0 is no mixing. Corre-
sponding UMAP embedding shown next to it. Right plot shows ‘Variance Stabilize and Scaled’ ambient (blue) and
embedding (orange) distributions of mixing (fraction of cell neighbors in the same condition). Corresponding UMAP
embedding shown next to it. Neighbor determination done with L1 distance. b) Left plot shows ‘MNN Integrated’
ambient (blue) and embedding (orange) distributions of mixing (fraction of cell neighbors in the same condition) for
SMART-Seq2 cells. Corresponding UMAP embedding shown next to it. Right plot shows ‘Scanorama Integrated’
ambient (blue) and embedding (orange) distributions of mixing (fraction of cell neighbors in the same condition) for
SMART-Seq2 cells. Corresponding UMAP embedding shown next to it. Calculations done with L2 distance. c Com-
parison of neighbor fraction/mixing distributions for CEL-Seq cells calculated with L2 or L1 distance. Distributions
shown for all intermediate embeddings and UMAPs with and without PCA-preprocessing.
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Fig K. Extended Mixing Pattern Analysis. a) Distributions of mixing fractions of cells in latent spaces, for
integrated CEL-Seq cells, using MNN (left) or Scanorama (right). t-SNE use to make 2D embeddings. b) i. For
SMART-Seq2 and inDrop pancreatic islet cells pre-integration, fraction of mixing shown for ambient and embedding
spaces. ii. Distributions of mixing fractions for ambient integration spaces (MNN or Scanorama) and pre-integrated
space (Original). (Right) Distributions of mixing fractions for 2D embeddings of MNN-integrated, Scanorama-
integrated, and non-integrated data.
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Fig L. False Imposition of Structure by UMAP Reference Mapping. a) Default UMAP reduction to 2D
of 5000 15-dimensional uniformly distributed points (around the unit ball). b) (Top) The 2D UMAP on the 15D
PCA of the MERFISH MOp dataset. (Bottom) The UMAP transform of the (unseen) 15D unit ball points using the
MERFISH UMAP coordinates.
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Fig M. KNN Prediction Accuracy with Embedding Parameters from the Corresponding Studies. (Top)
Prediction accuracy of cell type label for 30% unlabeled cells, using k=50 nearest neighbors (NNs). Accuracy shown
across highD embeddings, and their subsequent 2D embeddings, using the embedding parameters from each study
which originally generated 2D visuals of the data. (Bottom) Prediction accuracy of cell type label for 30% unlabeled
cells, use k=50 NNs. Accuracy shown across highD embeddings, and their subsequent 2D embeddings using similar
parameters for each of the higher dimensional embeddings used for cluster assignment. *Note these parameters
only approximate the embeddings used for clustering, as the corresponding studies used iterative/manual clustering
methods i.e. clusters were not necessarily the direct result of one embedding of the data. For all plots bars denote
the 95% C.I. and were run over 3 rounds of generated embeddings.
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Fig N. Effect of Reduction on Neighbor Rankings with L2. a) Two-sample Kolmogorov–Smirnov test statistic
for measuring distance/separation between the two distributions of all pairwise inter- or intra-type distances in the
10x VMH data. Distributions shown for all intermediate and 2D embeddings with PCA-preprocessing (scaled to the
same mean for comparison). b) Two-sample Kolmogorov–Smirnov test statistic for measuring distance/separation
between the two distributions of all pairwise inter- or intra-type distances in the MERFISH MOp data. Distributions
shown for all intermediate and 2D embeddings with PCA-preprocessing (scaled to the same mean for comparison).
All calculations use L2 distance.
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Fig O. Effect of Reduction on Neighbor Rankings with L1. a) Two-sample Kolmogorov–Smirnov test statistic
for measuring distance/separation between the two distributions of all pairwise inter- or intra-type distances in the 10x
VMH data. Distributions shown for all intermediate and 2D embeddings with PCA-preprocessing (scaled to the same
mean for comparison). b) Two-sample Kolmogorov–Smirnov test statistic for measuring distance/separation between
the two distributions of all pairwise inter- or intra-type distances in the SMART-Seq VMH data. Distributions shown
for all intermediate and 2D embeddings with PCA-preprocessing (scaled to the same mean for comparison). All
calculations use L1 distance.
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Fig P. Malleability of Cluster Relationships. a) Kendall’s Tau correlation of cell type neighbor rankings (of
in-utero E10.5 embedded data) to ambient data. Whiskers denote 1.5 times the IQR. Plots for n=3 different rounds
of UMAP embeddings. b) Kendall’s Tau correlation of cell type neighbor rankings (of in-utero E10.5 embedded
data) between UMAP embeddings. Whiskers denote 1.5 times the IQR. Plots for n=3 different rounds of UMAP
embeddings. c) PCA-50D→UMAP embedding of in-utero data, with increasing n neighbors (UMAP parameter)
(from left to right). Example of differing cell-cell/cluster relations enclosed in black dashed circles.
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Fig Q. MNIST Embedding Properties. a) Default t-SNE of the MNIST dataset. b) Default UMAP of the
MNIST dataset. c) t-SNE MNIST plot with hidden points plotted in reverse order. d) UMAP MNIST plot with
hidden points plotted in reverse order. e) Fraction of the correct digit in each of the ten k-means clusters from the
t-SNE embedding (see Methods). f) Fraction of the correct digit in each of the ten k-means clusters from the UMAP
embedding. g) Pearsonr correlation of intra-distances (internal variance) of each digit, in each embedding, to the
ambient variances. h) Kendall’s Tau correlation of each digit’s neighbor rankings to ambient space. For box plots,
whiskers denote 1.5 times the IQR for the displayed embedding. The 2D embedding/reductions were conducted
without PCA-preprocessing, as this is not standard practice for the MNIST dataset.
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Fig R. Extended Analysis of Density-based Visuals for UMAP. Top row (left to right) displays UMAP
embedding with 5 neighbors, embedding contour plot colored by condition, embedding of just in-utero cells, embedding
of just ex-utero cells. UMAP n neighbors increases for each row (5,15,50, and 103 neighbors down the rows). Numbers
denote comparisons between plots, dashed lines denote a difference, and solid lines denote the same appearance.
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Fig S. Extended Analysis of Density-based Visuals for t-SNE. Top row (left to right) displays t-SNE embed-
ding with 5 neighbors, embedding contour plot colored by condition, embedding of just in-utero cells, embedding of
just ex-utero cells. T-SNE perplexity increases for each row (5, 15, 50, and 103 neighbors down the rows). Numbers
denote comparisons between plots, dashed lines denote a difference, and solid lines denote the same appearance.
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Fig T. Extended Analysis of Trajectory Inference with 2D Embeddings. a) Velocyto RNA velocity
embeddings for UMAPs made with 5,17, 30 or 50 n neighbors. Cell types of interest highlighted in grey. b) Velocyto
RNA velocity embeddings for t-SNEs made with 5, 17, 30 or 50 perplexity values. Cell types of interest highlighted
in grey.
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Fig U. Swiss Roll UMAP Embeddings over Parameter Grid. (1) denotes how from randomly generated 2D
plane of 10,000 points, with three additional equidistant points, a 3D Swiss Roll is constructed. Black dots denote
the original three equidistant points. See Methods. (2) Across the x direction is tightness of the roll, and down
the y direction is the n neighbors parameter used for UMAP embedding. Topmost row of spirals shows head-on
view of same 3D spirals in row below. The UMAPs that comprise the grid are the 2D UMAP embeddings of the
corresponding 3D Swiss roll with n neighbors parameter.

31



Fig V. Louvain Clustering of Swiss Roll UMAPs. Default Louvain clustering [72] using the same neighbor-
hood graph as input into the UMAP algorithm, colored by assigned Louvain clusters (not original/2D plane color
assignments).

Picasso & MCML Results
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Fig W. Further Analysis of Picasso Embedding with L2. a) Picasso embedding of the MERFISH MOp data fit
to a flower-like boundary. b) Picasso embedding of the MOp data fit to a ‘von Neumann’ elephant. c) Comparison of
correlation metrics between the flower Picasso embedding and the other baseline 2D embeddings, including densVis
[64] embeddings. d) Comparison of correlation metrics between the elephant Picasso embedding and the other
baseline 2D embeddings, including densVis embeddings. e) Picasso embedding of the ex-utero mouse Embryo E8.5
data fit to a flower-like boundary. f) Comparison of correlation metrics between the flower Picasso embedding and
the other baseline 2D embeddings, including densVis embeddings. g) Picasso embedding of the SMART-Seq mouse
VMH neurons dataset fit to a flower-like boundary. h) Comparison of correlation metrics between the flower Picasso
embedding and the other baseline 2D embeddings, including densVis embeddings. For all plots bars denote the 95%
C.I. and were run over 5 rounds of generated embeddings. All calculations done with L2 distance.
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Fig X. Further Analysis of Picasso Embedding with L1. a) Picasso embedding of the MERFISH MOp data fit
to a flower-like boundary. b) Picasso embedding of the MOp data fit to a ‘von Neumann’ elephant. c) Comparison of
correlation metrics between the flower Picasso embedding and the other baseline 2D embeddings, including densVis
embeddings. d) Comparison of correlation metrics between the elephant Picasso embedding and the other baseline
2D embeddings, including densVis embeddings. e) Picasso embedding of the ex-utero mouse Embryo E8.5 data
fit to a flower-like boundary. f) Comparison of correlation metrics between the flower Picasso embedding and the
other baseline 2D embeddings, including densVis embeddings. g) Picasso embedding of the SMART-Seq mouse
VMH neurons dataset fit to a flower-like boundary. h) Comparison of correlation metrics between the flower Picasso
embedding and the other baseline 2D embeddings, including densVis embeddings. For all plots bars denote the 95%
C.I. and were run over 5 rounds of generated embeddings. All calculations done with L1 distance.
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Fig Y. Multi-Class, Multi-Label Embedding (MCML). a) Diagram of input data with various labels, au-
toencoder structure, and loss function, to create embedding Z. b) Comparison of MCML with no reconstruction
(equivalent to the NCA algorithm) with sklearn NCA implementation with cell type labels. Measured by NCA
likelihood objective (higher better) (see Methods). c) Fraction of neighbors with the same label across embeddings.
Measured for behavioral condition labels. d) Fraction of neighbors with the same label across embeddings. Measured
for sex labels. e) KNN prediction accuracy for embeddings, for predicting condition or sex label of unlabeled cells.

35



Fig Z. Embedding Continuous and Discrete Labels. a) (Left) Jaccard distance between neighbors in embedded
spaces and pseudotime neighbors from ambient space. (Right) Jaccard distance between neighbors in embedded
spaces and true spatial neighbors. b) Distance of spatial location KNN predictions (for unlabeled cells) from true
locations. Average prediction improvements denoted for Spatial and Type-Spatial MCML embeddings, over other
denoted embeddings. c) Confusion matrices depicting clarity of cell type classification using NNs in each embedding
space (see Methods).
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Fig ZA. Recapitulation of Ambient Properties with bMCML. a) Correlation metrics for bMCML (Biased
MCML) with intra-sex distance correlation as the objective function, for the SMART-Seq mouse VMH neurons (left)
and the 10x VMH Neurons (right). (See Methods). b) Correlation metrics for bMCML (Biased MCML) with intra-
type distance correlation as the objective function, for the SMART-Seq mouse VMH neurons (left) and the 10x VMH
Neurons (right). c) Same correlation plots as a, but using L1 distance instead of L2. d) Same correlation plots as b,
but using L1 distance instead of L2. For all plots bars denote the 95% C.I.
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Note

Bounds on Distortion of Equidistant Points

Induced distortion has been investigated in the literature for various conformations and embed-
ding of points, e.g. the minimum distortion bound for embedding an n-point spherical metric onto
a line [43] (akin to pseudotime inference), and the number of dimensions required to embed a metric
space into a low-dimension normed space (defined by some l-norm) [44]. However, investigation of
the implication of these bounds in real datasets across the sciences has been limited. Here we focus
on the case of equidistant points and their distortion in two-dimensions to provide a more concrete
realization of such bounds in the context of single-cell gene expression.

A trivial case is the result that no more than three points can be equidistant points in R2 (no
more than n+1 points in Rn). This raises the question of how close to equidistant more than three
points in R2 can be as even near-equality is impossible; specifically, a lower bound on the ratio
between the maximum and minimum pairwise distances shows that distortion, which increases with
the number of points, is inevitable.

A straightforward way to see this is via the two-dimensional isodiametric inequality which states
that among all shapes of a given diameter, the circle has the greatest area (for a simple proof see
[49]). Formally, for any body in R2, the area A is bounded above by π

4 times the square of the
diameter D (the supremum of distances between any pair of points), i.e.

A ≤ π

4
D2. (5)

Theorem 1 Given n ≥ 3 points in R2, let d be the minimum distance among all pairs of points,
and D the maximum distance (i.e. the diameter). The ratio of D to d satisfies

D

d
≥
√

n− 2

2
. (6)

Proof: Let B be the set of points consisting of the convex hull of n points in R2, and let I
denote the remaining points, with |B| = k and |I| = n − k. Note that for each point in I, there
exists a semi-circle of radius d

2 centered at the point that does not touch any other point, or extend
beyond the convex hull of the points (Fig ZB). If we denote the sum of the areas of these semi-circles
by AI , we obtain

AI =
1

2

(
π

(
d

2

)2
)
(n− k)

=
πd2

8
(n− k) .
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Boundary - B

Interior - I

Enclosed Area

Fig ZB. Bounding the Area Enclosed by Points in Two-Dimensions. Example of a set of 10 points showing
the enclosed area for points in the I and B sets in the proof of Theorem 1.

Furthermore, for each of the k points in B, there is a circle sector of radius d
2 spanning the

interior angle of the convex hull at that point that does not touch any other point, or extend beyond
the convex hull. Since the sum of the interior angles of a k-gon is (k − 2)π, we find that the sum
of the areas of the circle sectors, which we denote by AB, is given by

AB = π

(
d

2

)2((k − 2)π

2π

)
=

πd2

8
(k − 2) .

Summing AI and AB, we obtain a bound for the area enclosed by the n points:

A ≥ AI +AB

=
πd2

8
(k − 2) +

πd2

8
(n− k)

=
πd2

8
(n− 2) . (7)

Combining the upper (5) and lower (7) bounds for the area A, we find that

π
D2

4
≥ πd2

8
(n− 2)

⇒ D

d
≥

√
n− 2

2
. (8)
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