Architecture of the nuclear pore inner ring complex
Tobias Stuwe
1,4
,
Christopher J. Bley
1,4
,
Karsten Thierbach
1,4
,
Stefan Petrovic
1,4
,
Sandra
Schilbach
1,†
,
Daniel J. Mayo
1
,
Thibaud Perriches
1
,
Emily J. Rundlet
1
,
Young E. Jeon
1
,
Leslie N. Collins
1
,
Ferdinand M. Huber
1
,
Daniel H. Lin
1
,
Marcin Paduch
2
,
Akiko Koide
2
,
Vincent Lu
2
,
Jessica Fischer
3
,
Ed Hurt
3
,
Shohei Koide
2
,
Anthony A. Kossiakoff
2
, and
André
Hoelz
1,*
1
California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East
California Boulevard, Pasadena, CA, 91125, USA
2
Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
60637, USA
3
Biochemistry Center of Heidelberg University, 69120 Heidelberg, Germany
Abstract
The nuclear pore complex (NPC) constitutes the sole gateway for bidirectional nucleocytoplasmic
transport. We present the reconstitution and interdisciplinary analyses of the ~425-kDa inner ring
complex (IRC), which forms the central transport channel and diffusion barrier of the NPC,
revealing its interaction network and equimolar stoichiometry. The Nsp1•Nup49•Nup57 channel
nucleoporin hetero-trimer (CNT) attaches to the IRC solely through the adaptor nucleoporin
Nic96. The CNT•Nic96 structure reveals that Nic96 functions as an assembly sensor that
recognizes the three dimensional architecture of the CNT, thereby mediating the incorporation of a
defined CNT state into the NPC. We propose that the IRC adopts a relatively rigid scaffold that
recruits the CNT to primarily form the diffusion barrier of the NPC, rather than enabling channel
dilation.
One of the great hallmarks of eukaryotic evolution is the enclosure of genetic information in
the nucleus. The spatial segregation of replication and transcription in the nucleus from
translation in the cytoplasm imposes the requirement of transporting thousands of
macromolecules between these two compartments. Nuclear pore complexes (NPCs) are
massive transport channels that allow bidirectional macromolecular exchange across the
nuclear envelope (NE) and thus function as key regulators of the flow of genetic information
from DNA to RNA to protein (
1
).
*
Correspondence: hoelz@caltech.edu (A.H.).
4
these authors contributed equally to this work
†
present address: Max-Planck-Institute of Biophysical Chemistry, Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
The authors declare no financial conflicts of interest.
Supplementary Materials:
Materials and Methods
Figures S1–S38
Tables S1–S9
Movies S1–S4
References (
42–77
)
HHS Public Access
Author manuscript
Science
. Author manuscript; available in PMC 2016 April 11.
Published in final edited form as:
Science
. 2015 October 2; 350(6256): 56–64. doi:10.1126/science.aac9176.
Author Manuscript
Author Manuscript
Author Manuscript
Author Manuscript
NPCs are formed by multiple copies of ~34 distinct proteins, termed nucleoporins (nups)
(
1
). The docking of the yeast coat nup complex (CNC) crystal structure into a cryo-electron
tomographic (ET) reconstruction of the intact human NPC revealed its organization into two
sixteen-membered CNC rings on the nuclear and cytoplasmic faces of ~100 nm NE pores
(Fig. 1A) (
2
,
3
). This arrangement established that the doughnut-shaped inner ring is
composed of adaptor and channel nups (
3
).
Anchoring of the inner ring in the NE pore is mediated by the membrane recruitment
complex, composed of adaptor nups Nup53 and Nup170, and transmembrane nup Ndc1 (
1
,
4
–
6
). Recently, Nup53 was shown to harbor distinct binding sites for Nic96, Nup170 and
Nup192, allowing the Nup53•Nup170 hetero-dimer to interact with either Nic96•Nup192 or
Nic96•Nup188 (
7
,
8
).
The inner ring harbors the central transport channel and diffusion barrier of the NPC,
preventing macromolecules larger than ~40 kDa to freely diffuse across the NE (
1
,
9
). The
channel nups Nsp1, Nup49, and Nup57 constitute part of the central transport channel and
form the diffusion barrier with their disordered phenylalanine-glycine (FG) repeats (
1
,
9
–
11
). Transport factors ferry cargo across the NE by binding to FG repeats in the central
transport channel (
1
,
9
). Furthermore, the central transport channel seems to be permanently
occupied by transport factors even after biochemical purification of NPCs (
10
,
12
). In
addition to their N-terminal FG repeats, the three channel nups are predicted to possess C-
terminal coiled-coil regions (
13
,
14
). The knockout of any of the three channel nups is lethal
in
S. cerevisiae
, whereas the deletion of any two N-terminal FG-repeat regions can be
tolerated, but reduces transport rates, suggesting an essential function of the coiled-coil
regions (
13
,
15
–
19
).
Arguably, the most important questions about the inner ring architecture pertain to the
recruitment and positioning of the channel nups, because of their essential function in
forming the diffusion barrier and providing binding sites for transport factors. Native
purifications from
S. cerevisiae
and mammalian cells showed that the channel nups co-
purified with Nic96, suggesting the evolutionary conservation of a hetero-tetrameric
Nsp1•Nup49•Nup57•Nic96 complex (
13
,
20
,
21
). Subsequent biochemical reconstitution
attempts yielded channel nup complexes with inconsistent stoichiometries that resisted
structural analysis (
22
–
24
). Reconstitutions employing channel nup fragments revealed
dynamic interactions and generated a series of crystal structures with various homomeric
and heteromeric assembly states (
22
,
25
,
26
). Biochemical analysis of these structures led to
heavily contested models that have resisted physiological validation, including the proposal
that the reversible karyopherin-mediated transition between homo- and hetero-oligomers
facilitates the constriction and dilation of the central transport channel (
25
–
28
).
Despite more than half a century of research, our understanding of the inner ring architecture
remains rudimentary. The prevalent assumption is that the inner ring of the NPC is
composed of multiple copies of a single NPC subcomplex, but such a complex has remained
elusive. Here, we present an in-depth characterization of the NPC’s inner ring. Starting with
the reconstitution of a ~425 kDa hetero-hexameric inner ring complex (IRC), we
demonstrate its scaffolding function by showing that it interacts with additional peripheral
Stuwe et al.
Page 2
Science
. Author manuscript; available in PMC 2016 April 11.
Author Manuscript
Author Manuscript
Author Manuscript
Author Manuscript
nups. In dissecting the underlying protein interaction network of the IRC, we determined an
equimolar stoichiometry for its six components and identified Nic96 as the sole NPC
attachment site for the channel nup hetero-trimer (CNT). Nic96 is essential for CNT
recruitment and, through its interaction with Nup192, for proper CNT positioning within the
inner ring scaffold
in vivo
. Structural and functional analyses of the intact CNT reveal a
defined coiled-coil domain architecture that is specifically recognized by Nic96. Our results
differ dramatically from previous characterizations of channel nup fragments and an
associated model for a flexible transport channel that is capable of constriction and dilation
of up to ~400 Å (
25
–
28
). We propose a model for the inner ring architecture in which
sixteen copies of the IRC form a relatively rigid scaffold. In the proposed arrangement, the
central transport channel would be filled with the channel nup FG repeats to establish the
diffusion barrier of the NPC and to provide binding sites for cargo•transport factor
complexes.
Reconstitution and dissection of the inner ring complex (IRC) and binding
of peripheral nups
To reconstitute and uncover the architectural principles of a putative inner ring complex
(IRC), we developed expression and purification protocols for the channel, adaptor, and
cytoplasmic filament nups from
C. thermophilum
on the milligram scale. All purified nups
lacked FG-repeat regions to facilitate soluble protein expression (Fig. 1A). We refer to all
nups in the remainder of the text according to the
C. thermophilum
nomenclature and
indicate nups from other species with a prefix.
Using recombinant purified nups, we reconstituted a monodisperse hetero-hexameric IRC
containing the adaptor nups Nup192, Nic96 and Nup145N, and the Nsp1•Nup49•Nup57
channel nup hetero-trimer (CNT) (Fig. 1, A and B and fig. S1A). The ~425 kDa measured
molecular mass of the IRC is consistent with an equimolar stoichiometry (Table S1). No
higher-order oligomers formed at concentrations up to ~5 μM. Our reconstitution omitted
Nup170 because of its low solubility in standard buffer conditions. However, the interaction
of Nup170 with a C-terminal region of Nup53, directly adjacent to the membrane-binding
motif, established its proximity to the pore membrane (
7
).
Further analyses showed that the reconstituted IRC is a
bona fide
NPC scaffold complex,
capable of binding the membrane recruiting Nup53, and the peripheral cytoplasmic filament
complex (CFC), forming a stable hetero-nonamer (Fig. 1C and fig. S1B). The measured
masses for both complexes, ~100 kDa lower than expected, indicated their dynamic nature at
the tested concentrations. The reconstitution and structure determination of a core IRC-CFC
attachment complex composed of the CFC nups Nup82
NTD
and Nup159
T
and the
autoproteolytic domain (APD) of the IRC component Nup145N revealed the molecular
details of this inter-subcomplex linkage (Fig. 1J and figs. S2, A and B and Table S2). A
structural comparison with its
S. cerevisiae
homolog showed that the interactions of the core
CFC•Nup145N
APD
complex are conserved, despite low sequence conservation (
29
,
30
).
This analysis supports the hypothesis that nup interactions in the NPC are evolutionary
conserved (fig. S3).
Stuwe et al.
Page 3
Science
. Author manuscript; available in PMC 2016 April 11.
Author Manuscript
Author Manuscript
Author Manuscript
Author Manuscript
Because Nup145N acts as an adaptor that attaches the CFC, we probed its interaction with
the other IRC components. Nup145N formed a stoichiometric complex with Nup192,
elicited weak CNT association, and barely interacted with the Nic96 solenoid (SOL) (fig.
S2, C to E). However, Nup145N was incapable of linking the CNT to Nup192, suggesting
mutually exclusive interactions (fig. S2F).
The IRC reconstitution enabled us to identify how the CNT is incorporated into the IRC by
defining a minimal CNT attachment complex. We found that Nup145N, Nic96
SOL
and the
N-terminal and middle domains of Nup192 were dispensable for CNT attachment, because a
minimal stoichiometric Nup192
TAIL
•Nic96
R1-R2
•CNT attachment complex could be
reconstituted (Fig. 1D and E and figs. S1, C and D). Nic96
R1-R2
is an adaptor linking the
CNT with Nup192
TAIL
(Fig. 1, F and G and figs. S1, E and F, and S4, A and B).
Consistently, no interaction between Nup192
TAIL
and the CNT was observed (fig. S4C).
Most importantly, an IRC lacking Nic96
R1
failed to incorporate the CNT, demonstrating that
Nic96
R1
is the sole IRC attachment site for the CNT (Fig. 1H and fig. S1G). We tested
whether Nup53 could rescue the deletion of Nic96
R1
by providing an additional CNT
binding site. However, the CNT did not incorporate into the IRC in the presence of Nup53
(Fig. 1I and fig. S1H).
These data established an equimolar stoichiometry of the six different IRC components and
demonstrated that the CNT is solely attached to the adaptor nups through its interaction with
Nic96
R1
.
The Nic96-Nup192 interaction positions the CNT in the central transport
channel
Consistent with previous findings that Nup192 and Nup188 form mutually exclusive
complexes (
7
), we were able to reconstitute an architecturally equivalent
Nup188
TAIL
•Nic96
R1-R2
•CNT hetero-pentamer (fig. S5, A and B). However, salt stability
and competition experiments showed that Nup192
TAIL
interacts more tightly with Nic96
R2
than Nup188
TAIL
does (figs. S5, C and D and S6, A and B).
To gain insight into the molecular details of the Nic96
R2
interaction with Nup192 and
Nup188, we determined the crystal structures of the TAIL domains of Nup192 and Nup188
(Table S2). Nup192
TAIL
and Nup188
TAIL
share a similar crescent-shaped architecture,
composed of ARM and HEAT repeats with overall similar surface conservation and
electrostatic properties. However, Nup188
TAIL
contains an additional evolutionarily
conserved C-terminal ARM repeat (Fig. 2A–E and figs. S7 to S11) (
31
). When docked into
the electron microscopy (EM) reconstruction of
S. cerevisiae
Nup192, Nup192
TAIL
was
located at the bottom of the question mark-shaped map (Fig. 2G) (
32
). Based on the
structural and biochemical results and previous findings that Nup192, but not Nup188, is
essential for viability in yeast, we focused our further analyses on the IRC containing
Nup192 (
33
,
34
).
To identify the Nic96
R2
interaction surface in Nup192
TAIL
, we tested alanine mutants of 15
conserved surface residues and identified two adjacent residues, Phe1735 and Ile1730, that
Stuwe et al.
Page 4
Science
. Author manuscript; available in PMC 2016 April 11.
Author Manuscript
Author Manuscript
Author Manuscript
Author Manuscript
abolished binding and decreased the interaction with Nic96
R2
, respectively (Fig. 2F to H and
figs. S12 and S13). Both residues are located in a hydrophobic pocket at the bottom of the
Nup192 molecule (Fig. 2G).
To evaluate the physiological relevance of the identified Nup192-Nic96 interaction for NPC
function, we analyzed the identified Nup192 mutants in
S. cerevisiae
. Whereas the F1735A
point mutant (Y1679A in yeast) displayed no significant defects in growth and ribosomal or
mRNA export, the removal of the entire TAIL domain resulted in a substantial growth defect
at all temperatures, and substantial mRNA and ribosomal export defects, at 30 ºC and 37 ºC,
respectively (Fig. 2I, K and L). Despite the severity of the ΔTAIL phenotypes, Nup57-GFP
yielded strong NE staining (Fig. 2J), consistent with our biochemical analyses that
Nup192
TAIL
is expendable for CNT attachment.
These data established that the Nic96-Nup192 interaction is dispensable for CNT
incorporation into the NPC, but required for proper NPC function, suggesting that the
Nic96-Nup192 interaction is required for correct CNT positioning, and, in turn, for the
proper placement of the FG-repeat meshwork.
Nic96 is the sole NPC attachment site for the CNT
in vivo
To characterize the adaptor function of Nic96, we carried out a mutational analysis of the
conserved R1 and R2 regions of Nic96, which interact with the CNT and Nup192,
respectively (Fig. 3, A to C and fig. S13). Because the Nic96
R1
-CNT interaction is stable at
increased salt concentrations but sensitive to C-terminal truncations, we focused our analysis
on conserved hydrophobic residues in the C-terminal region of Nic96
R1
(figs. S14 and
S15A). Indeed, mutating four leucines located at the C-terminal end of R1 to alanines
(LLLL mutant) abolished the Nic96
R1
-CNT interaction (Fig. 3B and figs. S13 and S15B).
Similarly, because the Nic96
R2
-Nup192
TAIL
interaction is also salt stable and was disrupted
by mutating a hydrophobic pocket on Nup192
TAIL
, we focused our mutational analysis on
evolutionarily conserved hydrophobic residues of Nic96
R2
(figs. S5C and S13). We
identified two mutations, I294A and F298A, which reduced and abolished Nup192
TAIL
binding, respectively (Fig. 3C and fig. S16).
Next, we carried out functional analyses of the identified Nic96 mutants in
S. cerevisiae
(fig.
S17). Nic96 fragments lacking either Nic96
SOL
(ΔSOL) or Nic96
R1-R2
(SOL) were unable
to rescue the previously identified lethal
nic96Δ
phenotype and were not analyzed further
(Fig. 3D) (
35
). All remaining mutants were viable and yielded NE staining, consistent with
NPC incorporation (Fig. 3E). A Nic96 mutant lacking the Nup192-interacting region R2
(ΔR2) displayed severe growth and mRNA export defects yet failed to affect Nup57-GFP
localization (Fig. 3D to F). Nic96 mutants lacking the CNT-interacting region R1 (R2-SOL)
and R1-R2 linker (ΔLINKER) also had severe growth defects accompanied by a marked
decrease and no detectable NE staining for Nup57-GFP, respectively (Fig. 3D to F).
Additionally, ΔR2 and ΔLINKER displayed a mild ribosome export defect (Fig. 3G). The
milder LLLL and F159A mutants failed to yield significant phenotypes (Fig. 3D to G).
Stuwe et al.
Page 5
Science
. Author manuscript; available in PMC 2016 April 11.
Author Manuscript
Author Manuscript
Author Manuscript
Author Manuscript
Together, these experiments demonstrated that the channel nup Nup57 is solely anchored to
the NPC through its interaction with Nic96
in vivo
, in agreement with our biochemical
studies.
Channel nup fragments do not capture the solution behavior of the intact
CNT
A secondary structure analysis revealed that the channel nups Nsp1, Nup49, and Nup57
possessed evolutionarily conserved domain architectures with an N-terminal FG-repeat
region of varying length, followed by three predicted
α
-helical coiled-coil segments,
CCS1-3 (fig. S18A). Nup57 contained an additional evolutionarily conserved
α
/
β
region,
which preceded the three coiled-coil regions.
Lacking a fully assembled CNT structure, we attempted to obtain structural insight from
short channel nup fragments. Using fragments of Nic96 and the three channel nups from
three different species, we carried out a systematic interaction and crystallization analysis,
which led to the structure determination of multiple channel nup fragments (figs. S19 to
S21). This approach yielded six different crystal structures of homomeric and heteromeric
channel nup assemblies with different stoichiometries (figs. S18B, S22 and S23). Two
structures revealed novel assembly states (figs. S18B and S24). The remaining four were
almost identical to previously determined
R. norvegicus
structures (
22
,
25
,
26
). These
assembly states constituted the basis for the proposal of a dilating transport channel, whose
diameter is modulated by karyopherin-mediated transitioning between these homomeric and
heteromeric assembly states (
25
–
28
). Despite the remarkable degree of sequence
conservation between human and rat fragments with identical domain boundaries, we
observed different assembly states that behaved inconsistently when mutated or further
truncated (figs. S25 and S26).
In contrast, only two states were detected for the intact CNT in solution, corresponding to
monodisperse equimolar monomeric and dimeric species (fig. S18C). At concentrations up
to ~30 mg/ml, the predominant species was the CNT monomer. Both the CNT monomer and
dimer were capable of forming monodisperse hetero-tetrameric complexes with Nic96
R1
in
solution (fig. S18D).
To identify which of the three channel nups form a specific interaction with Nic96
R1
, we
carried out a GST-pull down interaction assay. We found that GST-Nic96
R1
did not interact
with separately purified Nsp1 or Nup49•Nup57 in isolation, but formed a complex in the
presence of both (fig. S18E).
These data show that the coiled-coil architecture of the intact CNT cannot be elucidated by a
reductionist approach that involves channel nup coiled-coil fragments, because of their
inconsistent behavior in solution and their inability to capture the correct stoichiometry of
the intact CNT.
Stuwe et al.
Page 6
Science
. Author manuscript; available in PMC 2016 April 11.
Author Manuscript
Author Manuscript
Author Manuscript
Author Manuscript
Crystal structure of CNT•Nic96
R1
Our biochemical and
in vivo
data established that the CNT architecture can only be
elucidated by a structure of the intact CNT and that the physiologically relevant state is the
CNT•Nic96
R1
attachment complex. However, extensive crystallization attempts for the
CNT•Nic96
R1
yielded crystals that diffracted to ~10 Å resolution, at best. To improve the
diffraction quality, we generated a series of conformation-specific, high-affinity monobodies
(MBs) and synthetic antibody Fab fragments (sABs) by phage display selection methods as
crystallization chaperones. Up to two different MBs or sABs could bind to the intact IRC
and CNT•Nic96
R1
, forming monodisperse stoichiometric complexes (figs. S27 and S28).
These data established that access to the CNT was sterically unrestricted by its incorporation
into the IRC, suggesting that the CNT protrudes from the IRC.
Crystals of CNT•Nic96
R1
•sAB-158 diffracted to a 3.77 Å resolution, facilitating structure
determination by single anomalous dispersion (SAD) (fig. S29 and Table S4). The crystal
contacts were primarily mediated by sAB-158, demonstrating the effectiveness of
chaperoning reagents in aiding the crystallization of difficult structural targets (fig. S30).
The three channel nups formed a parallel, three-stranded, hetero-trimeric coiled-coil
structure with two sharp kinks that divided the CNT into three left-handed coiled-coil
domains (CCD1-3), with an overall resemblance to the numeral “4” and maximum
dimensions of ~145 Å × ~80 Å × ~60 Å (Fig. 4, A and B and movies S1 and S2). CCD1
formed the ~145 Å long stalk and was composed of the N-terminal coiled-coil segments
(CCS1) of Nsp1, Nup49, and Nup57, each containing twelve heptad repeats. Analogously,
CCS2 and CCS3 were each composed of five heptad repeats that were ~70 Å in length. The
three CCDs were connected by unstructured linker regions, of varying length, between the
three coiled-coil segments of each channel nup. CCS1 of Nup57 was interrupted close to the
base of the stalk by a 56-residue insertion forming a novel fold with two parallel
β
-sheets
and one
α
-helix, termed the
α
/
β
insertion domain (Fig. 4B).
A salient feature of the structure was the extensive interaction of Nic96
R1
with all three
CCDs of the CNT, located in the triangular opening at the apex of the “4” (Fig. 4B and
movie S3). Nic96
R1
formed two 11-residue
α
-helices,
α
1 and
α
2, which were linked by a
sharply kinked 16-residue connector (Fig. 4C). One face of helix
α
1 recognized CCD1 by
binding the Nup57-Nup49 surface, while the opposite face of helix
α
1 interacted with the
Nsp1-Nup57 surface of CCD3. The kinked loop inserted as a wedge between the top of the
long stalk-forming CCD1 and CCD2. Residues at the N- and C-termini of the loop formed
additional electrostatic contacts with the Nup57-Nup49 surface of CCD1 and extensive
hydrophobic contacts with the Nup49-Nsp1 surface of CCD2, respectively. Finally, helix
α
2,
which harbors our LLLL mutant, bound exclusively to the hydrophobic Nsp1-Nup49 surface
of CCD3. Not only did Nic96
R1
recognize the proper assembly of all three CCDs by
forming specific interactions with composite CCD surfaces that are each formed by two
different channel nups, but it also locked the CNT into a specific conformation. Overall,
~4,150 Å
2
of surface area are buried in the Nic96
R1
-CNT interface, involving 38 and 64
residues of Nic96
R1
and the CNT, respectively. The evolutionary conservation of these
interface residues further corroborates the evolutionary conservation of the CNT•Nic96
R1
architecture (fig. S13, S31 to S34).
Stuwe et al.
Page 7
Science
. Author manuscript; available in PMC 2016 April 11.
Author Manuscript
Author Manuscript
Author Manuscript
Author Manuscript
CNT•Nic96
R1
•sAB-158 forms a cross-handshake dimer in the asymmetric unit of the crystal
that is generated by two identical dimerization interfaces, involving the Nup57
α
/
β
insertion
domain and CCD3 (Fig. 4D and movie S4). The CNT•Nic96
R1
dimer buried ~2,600 Å
2
of
surface area. The N-termini of all channel nups in the dimer point in the same direction,
which would permit the FG repeats to be projected towards the central transport channel.
Notably, sAB-158 did not participate in CNT•Nic96
R1
dimer formation, as it recognized a
composite Nup57-Nup49 surface in the middle of the CCD1 stalk.
The N-terminal regions of Nsp1, Nup49, and Nup57 in the three-stranded CCD1 stalk
appeared to contain seven-residue signature motifs akin to coiled-coil trigger sequences that
were previously shown to facilitate proper three-stranded coiled-coil assembly (fig. S35A)
(
36
). An N-terminal truncation of Nup57, Δ
α
/
β
, which lacked four helical turns of CCS1 and
the
α
/
β
insertion domain, transformed the equimolar and monodisperse CNT into a
polydisperse mixture (fig. S35, B to E). These data provided a molecular explanation for the
observed heterogeneous stoichiometries and dynamic nature of previous mammalian CNT
reconstitutions, which also lacked this region (
22
,
23
,
26
,
28
). In addition to removing the
trigger sequence, Nup57 Δ
α
/
β
exposed a hydrophobic surface of approximately four
unpaired heptad repeats (~50 Å in length). Thus, misfolding and aggregation would be
expected.
We conclude that the CNT adopts a robust coiled-coil domain architecture with a single
defined assembly state that is specifically recognized by Nic96
R1
to ensure NPC
incorporation of only properly assembled CNT. None of the interactions from previously
determined channel nup fragment crystal structures occured in the intact CNT. Thus, these
data strongly disagree with the model in which the CNT undergoes dynamic rearrangements
to facilitate NPC constriction and dilation, as previously proposed based on the dynamic
nature of various channel nup fragment interactions (
25
,
26
,
28
).
Nic96 is an assembly sensor for the properly assembled CNT
Next, we identified channel nup mutants that disrupted the Nic96
R1
-CNT interaction. As we
deemed alanine scanning mutagenesis unlikely to disrupt the extensive CNT-Nic96
R1
interface, we characterized a previously identified quintuple
S. cerevisiae
Nup49 mutant
(EVPIP; K376E, I390V, I391P, V398I, and L449P) (
37
). The five Nup49 EVPIP mutations
mapped to two Nic96
R1
interfaces located in CCD2 and CCD3 (Figs. 4C and 5A). The
corresponding
C. thermophilum
CNT
EVPIP
mutant failed to interact with the minimal IRC in
SEC-MALS experiments (Fig. 5A and fig. S36A). Further analysis showed that CNT
EPP
was sufficient to abolish binding and CNT
PP
severely reduced binding, but no single mutant
alone affected complex formation (Fig. 5B and fig. S36, B to F). The severity of the required
mutations demonstrated the robustness of the CNT-Nic96
R1
interaction.
Next, we tested the effects of these Nup49 mutations in
S. cerevisiae
. Whereas, the single
mutants displayed no phenotypes, PP displayed a temperature-sensitive growth defect,
which was intensified in EPP and EVPIP, consistent with their decreased thermostability
(Fig. 5C and fig. S37). In line with the growth defects, PP showed wild type levels of
mCherry-Nup49 and Nup57-GFP NE staining at 30 °C, but barely detectable levels at 37 °C
Stuwe et al.
Page 8
Science
. Author manuscript; available in PMC 2016 April 11.
Author Manuscript
Author Manuscript
Author Manuscript
Author Manuscript
(Fig. 5D). The temperature-sensitive localization defect for both nups was escalated in EPP
and EVPIP, which showed severe reduction and complete loss of NE staining at 30 °C and
37 °C, respectively (Fig. 5D). Interestingly, despite an almost complete loss of Nup49 and
Nup57 from the NE, we only observed a mild effect on mRNA export (Fig. 5E). Regardless,
the EPP and EVPIP mutants resulted in a ribosomal export defect at 30 °C. (Fig. 5F).
These data established that NE recruitment of Nup57 and Nup49 are co-dependent,
consistent with our biochemical and structural analyses that Nic96
R1
only interacts with the
intact CNT, validating that the CNT•Nic96
R1
structure represents the physiologically
relevant state in the assembled NPC.
Conclusions
Through reconstitution and systematic structural and functional dissection of the IRC, we
established the equimolar stoichiometry of its six components and uncovered the
physiologically relevant underlying interaction network. We showed that Nup53 and the
CFC could be attached to the IRC, facilitating membrane attachment and functionalization at
the cytoplasmic face, respectively. Surprisingly, none of the previously determined dynamic
channel nup fragment assemblies occur in the intact CNT•Nic96
R1
structure. In fact, the
CNT adopts a robust parallel three-stranded coiled-coil domain architecture resembling the
numeral 4. This organization guarantees that the N-terminal FG repeats of the three channel
nups emanate from a single site on the CNT surface. Because Nic96 harbors an assembly
sensor for this specific CNT state, the NPC incorporation of the three channel nups is co-
dependent and thereby enables the concomitant generation of the diffusion barrier and
cargo•transport factor complex docking sites. Additionally, we demonstrated that efficient
nucleocytoplasmic transport also requires proper CNT positioning, which is achieved by the
Nic96-Nup192 interaction. The conclusion that the inner ring of the NPC adopts a relatively
rigid architecture with a transport channel filled with channel nup FG repeats, is also
supported by a channel nup FG repeat-coated artificial nanopore, which mimicked the
NPC’s transport selectivity (
38
).
NPC recruitment of a single robust CNT assembly state rules out the possibility that channel
nups dynamically rearrange into different assembly states with various stoichiometries to
facilitate karyopherin-assisted dilation and constriction of the central transport channel, as
previously proposed (
25
–
28
). Indeed, dilation is unnecessary as the central transport channel
of the human NPC can easily accommodate even one of the largest cargoes, the pre-60S
ribosomal particle (fig. S38) (
2
,
39
).
Apart from its role in the CNT, Nsp1 forms a mutually exclusive complex with the C-
terminal coiled-coil relions coilded of Nup82 and Nup159 at the cytoplasmic face of the
NPC (
40
). The CNT•Nic96
R1
structure suggests that Nsp1•Nup82•Nup159 might adopt a
similar three-stranded coiled-coil domain architecture. More generally, our biochemical and
structural analyses of the three channel nups instruct that utmost caution is required when
analyzing heteromeric coiled-coil interactions.
Stuwe et al.
Page 9
Science
. Author manuscript; available in PMC 2016 April 11.
Author Manuscript
Author Manuscript
Author Manuscript
Author Manuscript
The finding that the IRC and the IRC•CFC•Nup53 hetero-nonamer are monomeric in
solution is not unexpected. The CNC is also monomeric in solution, but organizes into
densely packed, sixteen-membered peripheral rings in the intact NPC (
2
,
3
). The cryo-ET
reconstruction of the human NPC suggests that the inner ring is large enough to
accommodate sixteen copies of the IRC, and we propose that they are recruited to the
nuclear pore membrane by their association with the membrane anchored
Nup53•Nup170•Ndc1 complex (Fig. 6) (
5
,
41
). Stabilization of the inner ring scaffold could
occur through multiple weak interactions between adjacent IRCs, including the dimerization
of neighboring CNTs, the formation of a FG-repeat hydrogel in the central transport channel
(
9
), and/or transport factor•cargo complex binding to such a FG-repeat meshwork. A
sixteen-membered inner ring scaffold accounts for ~10-MDa of the NPC mass. Our results
represent a major step forward towards the
in vitro
reconstitution of the entire NPC, which is
essential for the development of
in vitro
assays to quantitatively characterize
nucleocytoplasmic transport.
Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
Acknowledgments
We thank W. M. Clemons, A. Correia, G. Mobbs, A. Patke, D. C. Rees, S. O. Shan, and E. Stuwe for critical
reading of the manuscript, M. Budd for help with yeast experiments, J. Herrmann, R. Kunze, and L. Zhang for
technical support, and J. Kaiser and the scientific staff of the Stanford Synchrotron Radiation Laboratory (SSRL)
Beamline 12-2, the National Institute of General Medical Sciences and National Cancer Institute Structural Biology
Facility (GM/CA) at the Advanced Photon Source (APS), and the Advanced Light Source (ALS) beamline 8.2.1 for
their support with x-ray diffraction measurements. We acknowledge the Gordon and Betty Moore Foundation, the
Beckman Institute, and the Sanofi-Aventis Bioengineering Research Program for their support of the Molecular
Observatory at the California Institute of Technology (Caltech). The operations at the SSRL, ALS, and APS are
supported by the U.S. Department of Energy and the National Institutes of Health (NIH). GM/CA has been funded
in whole or in part with federal funds from the National Cancer Institute (ACB-12002) and the National Institute of
General Medical Sciences (AGM-12006). T.S. was supported by a Postdoctoral Fellowship of the Deutsche
Forschungsgemeinschaft. S.P. and D.H.L are Amgen Graduate Fellows, supported through the Caltech-Amgen
Research Collaboration. F.M.H. was supported by a PhD student fellowship of the Boehringer Ingelheim Fonds.
S.K. was supported by NIH Awards R01-GM090324 and U54-GM087519 and by the University of Chicago
Comprehensive Cancer Center (P30-CA014599). A.A.K. was supported by NIH awards U01-GM094588 and U54-
GM087519 and by Searle Funds at The Chicago Community Trust. A.H. was supported by Caltech startup funds,
the Albert Wyrick V Scholar Award of the V Foundation for Cancer Research, the 54th Mallinckrodt Scholar Award
of the Edward Mallinckrodt Jr. Foundation, a Kimmel Scholar Award of the Sidney Kimmel Foundation for Cancer
Research, a Camille-Dreyfus Teacher Scholar Award of The Camille & Henry Dreyfus Foundation, and NIH grant
R01-GM111461. The coordinates and structure factors have been deposited with the Protein Data Bank with
accession codes 5CWV (Nup192
TAIL
), 5CWU (Nup188
TAIL
), 4JQ5 (
hs
Nup49
CCS2+3
*), 4JNV and 4JNU
(
hs
Nup57
CCS3
*), 5CWT (Nup57
CCS3
*), 4JO7 (
hs
Nup49
CCS2+3
*•hsNup57
CCS3
*, 2:2 stoichiometry), 4JO9
(
hs
Nup49
CCS2+3
*•hsNup57
CCS3
*, 1:2 stoichiometry), 5CWW (Nup82
NTD
•Nup159
T
•Nup145N
APD
) and
5CWS (CNT•Nic96
R1
•sAB-158).
References and Notes
1. Hoelz A, Debler EW, Blobel G. The structure of the nuclear pore complex. Annu Rev Biochem.
2011; 80:613–643. [PubMed: 21495847]
2. Bui KH, von Appen A, et al. Integrated structural analysis of the human nuclear pore complex
scaffold. Cell. 2013; 155:1233–1243. [PubMed: 24315095]
3. Stuwe T, Correia AR, et al. Nuclear pores. Architecture of the nuclear pore complex coat. Science.
2015; 347:1148–1152. [PubMed: 25745173]
Stuwe et al.
Page 10
Science
. Author manuscript; available in PMC 2016 April 11.
Author Manuscript
Author Manuscript
Author Manuscript
Author Manuscript
4. Eisenhardt N, Redolfi J, Antonin W. Interaction of Nup53 with Ndc1 and Nup155 is required for
nuclear pore complex assembly. J Cell Sci. 2014; 127:908–921. [PubMed: 24363447]
5. Onischenko E, Stanton LH, Madrid AS, Kieselbach T, Weis K. Role of the Ndc1 interaction network
in yeast nuclear pore complex assembly and maintenance. J Cell Biol. 2009; 185:475–491.
[PubMed: 19414609]
6. Mitchell JM, Mansfeld J, Capitanio J, Kutay U, Wozniak RW. Pom121 links two essential
subcomplexes of the nuclear pore complex core to the membrane. J Cell Biol. 2010; 191:505–521.
[PubMed: 20974814]
7. Amlacher S, Sarges P, Flemming D, van Noort V, et al. Insight into structure and assembly of the
nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell. 2011; 146:277–
289. [PubMed: 21784248]
8. Stuwe T, Lin DH, Collins LN, Hurt E, Hoelz A. Evidence for an evolutionary relationship between
the large adaptor nucleoporin Nup192 and karyopherins. Proc Natl Acad Sci USA. 2014; 111:2530–
2535. [PubMed: 24505056]
9. Cook A, Bono F, Jinek M, Conti E. Structural biology of nucleocytoplasmic transport. Annu Rev
Biochem. 2007; 76:647–671. [PubMed: 17506639]
10. Rout MP, et al. The yeast nuclear pore complex: composition, architecture, and transport
mechanism. J Cell Biol. 2000; 148:635–651. [PubMed: 10684247]
11. Frey S, Richter RP, Gorlich D. FG-rich repeats of nuclear pore proteins form a three-dimensional
meshwork with hydrogel-like properties. Science. 2006; 314:815–817. [PubMed: 17082456]
12. Yang Q, Rout MP, Akey CW. Three-dimensional architecture of the isolated yeast nuclear pore
complex: functional and evolutionary implications. Mol Cell. 1998; 1:223–234. [PubMed:
9659919]
13. Grandi P, Schlaich N, Tekotte H, Hurt EC. Functional interaction of Nic96p with a core
nucleoporin complex consisting of Nsp1p, Nup49p and a novel protein Nup57p. EMBO J. 1995;
14:76–87. [PubMed: 7828598]
14. Hu T, Guan T, Gerace L. Molecular and functional characterization of the p62 complex, an
assembly of nuclear pore complex glycoproteins. J Cell Biol. 1996; 134:589–601. [PubMed:
8707840]
15. Wimmer C, Doye V, Grandi P, Nehrbass U, Hurt EC. A new subclass of nucleoporins that
functionally interact with nuclear pore protein NSP1. EMBO J. 1992; 11:5051–5061. [PubMed:
1464327]
16. Wente SR, Rout MP, Blobel G. A new family of yeast nuclear pore complex proteins. J Cell Biol.
1992; 119:705–723. [PubMed: 1385442]
17. Nehrbass U, et al. NSP1: a yeast nuclear envelope protein localized at the nuclear pores exerts its
essential function by its carboxy-terminal domain. Cell. 1990; 61:979–989. [PubMed: 2112428]
18. Strawn LA, Shen T, Shulga N, Goldfarb DS, Wente SR. Minimal nuclear pore complexes define
FG repeat domains essential for transport. Nat Cell Biol. 2004; 6:197–206. [PubMed: 15039779]
19. Hurt EC. A novel nucleoskeletal-like protein located at the nuclear periphery is required for the life
cycle of Saccharomyces cerevisiae. EMBO J. 1988; 7:4323–4334. [PubMed: 3072197]
20. Guan T, et al. Structural analysis of the p62 complex, an assembly of O-linked glycoproteins that
localizes near the central gated channel of the nuclear pore complex. Mol Biol Cell. 1995; 6:1591–
1603. [PubMed: 8589458]
21. Grandi P, et al. Nup93, a vertebrate homologue of yeast Nic96p, forms a complex with a novel
205-kDa protein and is required for correct nuclear pore assembly. Mol Biol Cell. 1997; 8:2017–
2038. [PubMed: 9348540]
22. Melcak I, Hoelz A, Blobel G. Structure of Nup58/45 suggests flexible nuclear pore diameter by
intermolecular sliding. Science. 2007; 315:1729–1732. [PubMed: 17379812]
23. Ulrich A, Partridge JR, Schwartz TU. The stoichiometry of the nucleoporin 62 subcomplex of the
nuclear pore in solution. Mol Biol Cell. 2014; 25:1484–1492. [PubMed: 24574455]
24. Schlaich NL, Haner M, Lustig A, Aebi U, Hurt EC. In vitro reconstitution of a heterotrimeric
nucleoporin complex consisting of recombinant Nsp1p, Nup49p, and Nup57p. Mol Biol Cell.
1997; 8:33–46. [PubMed: 9017593]
Stuwe et al.
Page 11
Science
. Author manuscript; available in PMC 2016 April 11.
Author Manuscript
Author Manuscript
Author Manuscript
Author Manuscript
25. Solmaz SR, Blobel G, Melcak I. Ring cycle for dilating and constricting the nuclear pore. Proc
Natl Acad Sci USA. 2013; 110:5858–5863. [PubMed: 23479651]
26. Solmaz SR, Chauhan R, Blobel G, Melcak I. Molecular architecture of the transport channel of the
nuclear pore complex. Cell. 2011; 147:590–602. [PubMed: 22036567]
27. Koh J, Blobel G. Allosteric Regulation in Gating the Central Channel of the Nuclear Pore
Complex. Cell. 2015; 161:1361–1373. [PubMed: 26046439]
28. Sharma A, Solmaz SR, Blobel G, Melcak I. Ordered Regions of Channel Nucleoporins Nup62,
Nup54 and Nup58 Form Dynamic Complexes in Solution. J Biol Chem. 2015 jbc.M115.663500.
29. Stuwe T, von Borzyskowski LS, Davenport AM, Hoelz A. Molecular basis for the anchoring of
proto-oncoprotein Nup98 to the cytoplasmic face of the nuclear pore complex. J Mol Biol. 2012;
419:330–346. [PubMed: 22480613]
30. Yoshida K, Seo HS, Debler EW, Blobel G, Hoelz A. Structural and functional analysis of an
essential nucleoporin heterotrimer on the cytoplasmic face of the nuclear pore complex. Proc Natl
Acad Sci USA. 2011; 108:16571–16576. [PubMed: 21930948]
31. Andersen KR, et al. Scaffold nucleoporins Nup188 and Nup192 share structural and functional
properties with nuclear transport receptors. Elife. 2013; 2:e00745. [PubMed: 23795296]
32. Sampathkumar P, et al. Structure, dynamics, evolution, and function of a major scaffold component
in the nuclear pore complex. Structure. 2013; 21:560–571. [PubMed: 23499021]
33. Kosova B, Pante N, Rollenhagen C, Hurt E. Nup192p is a conserved nucleoporin with a
preferential location at the inner site of the nuclear membrane. J Biol Chem. 1999; 274:22646–
22651. [PubMed: 10428845]
34. Aitchison JD, Rout MP, Marelli M, Blobel G, Wozniak RW. Two novel related yeast nucleoporins
Nup170p and Nup157p: complementation with the vertebrate homologue Nup155p and functional
interactions with the yeast nuclear pore-membrane protein Pom152p. J Cell Biol. 1995; 131:1133–
1148. [PubMed: 8522578]
35. Grandi P, Doye V, Hurt EC. Purification of NSP1 reveals complex formation with 'GLFG'
nucleoporins and a novel nuclear pore protein NIC96. EMBO J. 1993; 12:3061–3071. [PubMed:
7688296]
36. Frank S, Lustig A, Schulthess T, Engel J, Kammerer RA. A distinct seven-residue trigger sequence
is indispensable for proper coiled-coil formation of the human macrophage scavenger receptor
oligomerization domain. J Biol Chem. 2000; 275:11672–11677. [PubMed: 10766786]
37. Doye V, Wepf R, Hurt EC. A novel nuclear pore protein Nup133p with distinct roles in poly(A)+
RNA transport and nuclear pore distribution. EMBO J. 1994; 13:6062–6075. [PubMed: 7813444]
38. Jovanovic-Talisman T, et al. Artificial nanopores that mimic the transport selectivity of the nuclear
pore complex. Nature. 2009; 457:1023–1027. [PubMed: 19098896]
39. Bradatsch B, et al. Structure of the pre-60S ribosomal subunit with nuclear export factor Arx1
bound at the exit tunnel. Nat Struct Mol Biol. 2012; 19:1234–1241. [PubMed: 23142978]
40. Bailer SM, Balduf C, Hurt E. The Nsp1p carboxy-terminal domain is organized into functionally
distinct coiled-coil regions required for assembly of nucleoporin subcomplexes and
nucleocytoplasmic transport. Mol Cell Biol. 2001; 21:7944–7955. [PubMed: 11689687]
41. Hawryluk-Gara LA, Shibuya EK, Wozniak RW. Vertebrate Nup53 interacts with the nuclear lamina
and is required for the assembly of a Nup93-containing complex. Mol Biol Cell. 2005; 16:2382–
2394. [PubMed: 15703211]
Stuwe et al.
Page 12
Science
. Author manuscript; available in PMC 2016 April 11.
Author Manuscript
Author Manuscript
Author Manuscript
Author Manuscript
Fig. 1. Reconstitution and Dissection of the IRC
(
A
) Cross-sectional schematic representation of the NPC and domain structures of the
Chaetomium thermophilum
nucleoporins (nups). Black lines indicate regions used for
reconstitution. U, unstructured; T, TAIL; NTD, N-terminal domain; MID, middle domain;
SH3, Src-homology 3-like domain; L, linker domain; APD, auto-proteolytic domain; RRM,
RNA recognition motif; M, membrane-binding motif; FG repeats, phenylalanine-glycine
repeats; CCS, coiled-coil segment;
α
/
β
,
α
/
β
insertion domain; IRC, inner ring complex. (
B
to
I
) Pair-wise biochemical interaction analyses of various reconstituted nup complexes. Size-
exclusion chromatography coupled to multiangle light scattering (SEC-MALS) profiles of
nup or nup complexes are shown individually (red and blue) and after their preincubation
(green). Measured molecular masses are indicated for the peak fractions. (
J
) Structure of the
Nup82
NTD
•Nup159
T
•Nup145N
APD
cytoplasmic filament nup complex (CFC) is shown in a
cartoon representation. Nup145N
APD
(green), Nup159
T
(red), and Nup82
NTD
(blue), the
Nup82
NTD
helical 4CD (gray) and 6CD (orange) insertions and FGL loop (yellow), and the
conserved Nup145N
APD
K/R loop (purple) are illustrated.
Stuwe et al.
Page 13
Science
. Author manuscript; available in PMC 2016 April 11.
Author Manuscript
Author Manuscript
Author Manuscript
Author Manuscript
Fig. 2. Structural and functional analyses of the TAIL domains of Nup192 and Nup188
Cartoon representations of (
A
) Nup192
TAIL
(blue), (
B
) Nup188
TAIL
(red), and (
C
) a
superposition of the two structures is shown in two different orientations. (
D, E
) Schematic
representation of Nup192
TAIL
and Nup188
TAIL
structures. Positions of HEAT and ARM
repeats are indicated. (
F
) Domain structures of Nup192 and Nic96 are shown; black bars
indicate fragments used for interaction studies in (H). (
G
) Docking of Nup192
TAIL
and the
previously determined Nup192
NTD
crystal structure into the yeast Nup192 EM envelope (
8
,
32
). The
Inset
illustrates the position of Nup192
TAIL
and is expanded on the right, rotated by
90º. Surface representation of Nup192
TAIL
with the location of the analyzed mutations and
their effect on Nic96
R2
binding indicated; no effect (green), decreased binding (orange),
abolished binding (red). (
H
) Summary of tested Nup192
TAIL
mutants and their effect on
SUMO-Nic96
R2
binding; (-) no effect, (+) decreased binding, (+++) abolished binding. (
I
)
Growth analysis of
S. cerevisiae
strains carrying the indicated GFP-
NUP192
variants. Serial
dilutions of the respective cells were spotted onto YPD plates and grown for 2–3 days. (
J
)
Subcellular localization of mCherry-Nup192 variants (red) and Nup57-GFP (green) in a
Stuwe et al.
Page 14
Science
. Author manuscript; available in PMC 2016 April 11.
Author Manuscript
Author Manuscript
Author Manuscript
Author Manuscript
nup192Δ
̃
/NUP57-GFP
strain. (
K
) Subcellular localization of the 60S ribosomal export
reporter Rpl25-mCherry (red) and GFP-tagged Nup192 variants (green) in a
nup192Δ
strain.
Representative images and quantification of nuclear Rpl25-mCherry retention are shown on
the right. (
L
) mRNA export assay in a
nup192Δ
strain carrying GFP-
NUP192
variants.
Representative images and quantification of nuclear poly(A)
+
RNA retention are shown.
Cells were analyzed at the indicated temperatures and incubation times. Error bars represent
the standard deviation. Scalebars are 5 μm.
Stuwe et al.
Page 15
Science
. Author manuscript; available in PMC 2016 April 11.
Author Manuscript
Author Manuscript
Author Manuscript
Author Manuscript