Interferometric Constraints on Spacelike Coherent Rotational Fluctuations
Abstract
Precision measurements are reported of the cross-spectrum of rotationally induced differential position displacements in a pair of colocated 39 m long, high-power Michelson interferometers. One arm of each interferometer is bent 90° near its midpoint to obtain sensitivity to rotations about an axis normal to the plane of the instrument. The instrument achieves quantum-limited sensing of spatially correlated signals in a broad frequency band extending beyond the 3.9-MHz inverse light travel time of the apparatus. For stationary signals with bandwidth Δf > 10 kHz, the sensitivity to rotation-induced strain h of classical or exotic origin surpasses CSD_(δh) < t_P/2, where t_P = 5.39 × 10 ⁻⁴⁴ s is the Planck time. This measurement is used to constrain a semiclassical model of nonlocally coherent rotational degrees of freedom of spacetime, which have been conjectured to emerge in holographic quantum geometry but are not present in a classical metric.
Additional Information
© 2021 American Physical Society. Received 15 December 2020; accepted 21 April 2021; published 14 June 2021. This work was supported by Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility, managed by Fermi Research Alliance, LLC, acting under Contract No. DE-AC02-07CH11359. We are grateful for support from the John Templeton Foundation, the University of Chicago-Fermilab Strategic Collaborative Initiatives program, and the Fermilab Laboratory Directed Research and Development program. J. R. was partially supported by the Visiting Scholars Award Program of the Universities Research Association (Grant No. 18-S-20). O. K. was partially supported by the Basic Science Research Program (Grant No. NRF-2016R1D1A1B03934333) of the National Research Foundation of Korea funded by the Ministry of Education. The Holometer team gratefully acknowledges the extensive support and contributions of Gregory L. Brown, Andrea Bryant, Erin Glynn, Raymond H. Lewis, Arlo Marquez-Grap, Jeronimo Martinez, Matthew Quinn, James E. Ranson, Eleanor Rath, George Ressinger, and Michael Shemanske in the construction and operation of the apparatus. We also thank Rana Adhikari and Hartmut Grote for insightful comments during the data analysis and interpretation.Attached Files
Published - PhysRevLett.126.241301.pdf
Submitted - 2012.06939.pdf
Supplemental Material - Supplemental_Material.pdf
Files
Additional details
- Eprint ID
- 108100
- Resolver ID
- CaltechAUTHORS:20210217-153938909
- Fermi National Accelerator Laboratory
- Department of Energy (DOE)
- DE-AC02-07CH11359
- John Templeton Foundation
- University of Chicago
- Universities Research Association
- 18-S-20
- National Research Foundation of Korea
- NRF-2016R1D1A1B03934333
- Created
-
2021-02-18Created from EPrint's datestamp field
- Updated
-
2022-10-26Created from EPrint's last_modified field
- Caltech groups
- LIGO