1
Supplementary Figure 1
SEM image of a representative supporting structure used to decouple the part from the
substrate during pyrolysis.
2
Supplementary Figure 2
Bright
-
field TEM image of a printed nickel beam overhanging a hole in the silicon
nitride
membrane. Numbers correspond to the grains used for mean particle size calculation.
3
Supplementary Figure 3
TEM EDS characterization of the printed beams. (
A
) The region of TEM where the EDS
spectrum was taken from. (
B
) EDS spectrum shows high
nickel content.
4
Supplementary Figure
4
.
Stress vs. strain of additional
six
nanolattices. The original data
shown in Fig. 4 in the main manuscript is presented in gray, additional data is shown in color.
5
Supplementary Figure 5
Stress
-
strain diagra
m showing
full
compression
data
including the toe region
for
four
representative
nickel nanolattices. Letters on the graph correspond to (A) the toe region, (B)
the elastic region, (C) layer
-
by
-
layer collapse, and (D) densification.
A
B
C
D
6
Supplementary Table 1
Particle sizes collected from the bright
-
field TEM image shown in Supplementary Fig. 2
N
Size, nm
N
Size, nm
N
Size, nm
N
Size, nm
N
Size, nm
1
37.24
9
33.05
17
17.43
25
12.14
33
12.82
2
19.47
10
19.86
18
18.98
26
16.59
34
29.34
3
33.79
11
16.73
19
23.25
27
25.43
35
21.67
4
25.29
12
19.59
20
22.16
28
16.6
36
14.88
5
30.55
13
19.03
21
15.15
29
16.61
37
18.95
6
17.24
14
20.41
22
19.26
30
17.98
38
19.95
7
31.06
15
22.85
23
16.61
31
14.29
39
21.81
8
19.04
16
26.94
24
12.52
32
27.28
40
30.72
7
Supplementary Table 2
Specific strength of
solid
-
beam
metal lattices
fabricated using metal AM processes
and
electroplating into a template
Material
Lattice
Type
Process
Beam
diameter,
μm
Strength,
MPa
Relative
density
Material
density,
g/cm
3
Lattice
density,
g/cm
3
Specific
strength,
MPa/(g/cm
3
)
Ref.
Ti
-
6Al
-
4V
Cubic
Electron
Beam
Melting
(EBM)
810
23.70
0.063
4.43
0.26
84.92
1
970
34.70
0.078
0.32
100.42
1480
89.10
0.159
0.65
126.50
1780
180.20
0.216
0.88
188.32
Ti
-
6Al
-
4V
Topology
-
optimized
Selective
Laser
Melting
(SLM)
406
30.00
n/a
0.50
60.00
2
AlSi10Mg
Diamond
Direct
Metal
Laser
Sintering
(DMLS)
405
1.42
0.050
2.67
0.12
10.63
3
502
4.72
0.075
0.17
23.54
659
8.54
0.100
0.23
31.98
765
12.61
0.125
0.29
37.76
862
17.40
0.150
0.35
43.45
Stainless
steel 316L
BCC
Selective
Laser
Melting
(SLM)
162
0.20
0.023
0.19
1.05
4
181
0.33
0.029
0.23
1.43
181
0.33
0.029
0.23
1.43
197
0.45
0.034
0.28
1.61
197
0.45
0.035
0.28
1.61
212
0.58
0.040
0.32
1.81
212
0.60
0.041
0.33
1.82
186
0.38
0.031
n/a
0.25
1.52
210
0.55
0.039
0.31
1.77
230
0.79
0.047
0.38
2.08
249
1.00
0.055
0.44
2.27
165
0.32
0.030
0.24
1.33
166
0.33
0.032
0.26
1.27
186
0.47
0.036
0.29
1.62
188
0.46
0.034
0.28
1.64
222
0.83
0.047
0.38
2.18
211
0.73
0.043
0.34
2.15
Silver
Octahedral
Pointwise
Spatial
Printing
35
0.60
0.065
n/a
0.50
1.20
5
38
1.27
0.270
1.74
0.73
NiTi
Octahedral
Selective
laser
melting
(SLM)
248
21.00
0.252
6.45
1.63
12.92
6
Cellular
gyroid
298
29.00
0.252
1.63
17.84
Sheet
gyroid
210
44.00
0.266
1.72
25.65
Copper
Octet
Electropla
ting into a
template
1.011
221.84
0.53
8.96
4.72
46.95
7
1.025
136.29
0.54
4.82
28.28
1.050
158.23
0.56
5.02
31.52
1.098
179.54
0.60
5.35
33.54
1.164
154.11
0.65
5.80
26.57
1.178
241.14
0.66
5.91
40.82
1.218
296.10
0.69
6.18
47.93
8
1.323
266.56
0.76
6.83
39.02
1.340
271.62
0.77
6.93
39.18
1.378
332.70
0.80
7.16
46.48
Nickel
Octet
This work
0.30
18.17
8.91
2.52
7.20
0.30
17.08
2.55
6.71
0.28
8.91
2.60
3.42
0.27
8.18
2.75
2.98
0.35
6.94
3.03
2.29
0.42
9.71
3.30
2.95
0.32
12.31
2.94
4.19
0.36
12.87
4.01
3.21
0.33
7.50
3.65
2.05
0.32
8.81
3.03
2.91
9
Supplementary Table 3
Comparison of minimum feature sizes for metal additive manufacturing technologies
#
Technology/reference
Machine/company/s
etup
Layer thickness
range, μm
Lateral feature
range, μm
Beam
diameter,
μm
Ref.
Min
Max
Min
Max
1
Selective Laser Melting
(SLM)
SLM Solutions SLM
125
20
75
140
8
2
Direct Metal Laser
Sintering (DMLS)
EOS
20
80
300
700
9
3
Electron Beam
Melting
(EBM)
Arcam
50
200
500
9
4
LaserCUSING
CONCEPT Laser
M1 Cusing
20
80
9
5
Digital Part
Materialization
ExOne M
-
Flex
100
60
63.1
9,10
6
Direct Metal Deposition
(DMD)
POM DMD 105D
100
1600
9
7
Laser Engineered Net
Shaping (LENS)
Optomec LENS
MR
-
7
25
250
9
8
Laser Metal Deposition
(LMD)
BeAM MOBILE
Machine
100
800
1200
11
9
Rapid Plasma
Deposition
NORSK
TITANIUM
MERKE IV
3000
4000
8000
12000
12
10
Electron Beam Free
Form Fabrication
(EBF3)
Sciaky EBAM 300
3000
10000
13,14
11
Ultrasonic
Consolidation (UC)
Fabrisonic
SonicLayer 7200
1500
2500
15
12
Metal Powder Bed
Fusion
Renishaw AM250
20
100
16
13
Direct Laser Forming
Trumpf TrumaForm
LF130
50
200
17
14
Digital Metal
Höganäs
20
40
18,19
15
Electrochemical
Fabrication (EFAB)
Microfabrica
4
10
20
16
Regenfuss et al., 2007
Powder
-
based
10
55
60
21
17
Kullman
et al., 2012
Wire
-
based
50
250
22
18
Saleh et al., 2017
Inkjet
-
based
10
20
30
55
5
19
Takai et al., 2014
Local
electrophoresis
0.5
2.0
23
20
Hirt et al., 2016
Local electroplating
0.25
0.8
5.0
24
21
Visser et al., 2015
Laser
-
Induced
Forward
Transfer
(LIFT)
4
6
25
22
Scylar
-
Scott et al., 2016
Laser
-
assisted Direct
Ink Writing (DIW)
0.6
20
26
23
This work
Nanoscribe Photonic
Professional
GT
0.03
0.025
0.4
10
Supplementary Table 4
Comparison of
linear and volumetric throughputs
of
representative micro
-
scale
metal
additive manufacturing technologies
(data adopted from ref.
27
)
#
Technology
Material
Feature size, μm
Writing speed
*
Ref.
1
Direct Ink Writing
(DIW)
Ag
0.6
-
20
500
-
2000 μm s
-
1
26
2
Electrohydrodynamic
(EHD) Printing
Ag, Co, Cu
0.7
-
3.0
0.16
-
3.3 μm s
-
1
28
3
Laser
-
Induced
Forward Transfer
(LIFT)
Au, Cu
4.0
-
6.0
3000 μm
3
s
-
1
25
4
Focused Electron
Beam Induced
Deposition (FEBID)
Pt
0.15
-
0.23
0.0002
-
0.0009 μm
3
s
-
1
29
5
Cryo
-
FEBID
Pt
0.022
-
0.31
10 μm
3
s
-
1
30
6
Meniscus
-
confined
electroplating
Cu
12.0
-
15.0
0.18
-
0.4 μm s
-
1
31
7
Local electrophoretic
deposition
Au
0.5
-
2.0
0.30
-
0.6
7 μm s
-
1
23
8
This work
Ni
0.025
-
0.4
4000
-
60
00 μm s
-
1
*Volumetric (
μm
3
s
-
1
) or linear (
μm s
-
1
) writing speed is given when available
11
Supplementary
References
1.
Hernández
-
Nava, E.
et al.
The effect of defects on the mechanical response of Ti
-
6Al
-
4V cubic lattice structures fabricated by electron beam melting.
Acta Mater.
108,
279
–
292 (2016).
2.
Challis, V. J.
et al.
High specific strength and stiffness structures produced using
selective laser melting.
Mater. Des.
63,
783
–
788 (2014).
3.
Yan, C.
et al.
Evaluation of light
-
weight AlSi10Mg periodic cellular lattice structures
fabricated via direct metal laser sintering.
J. Mater. Process. Technol.
214,
856
–
864
(2014).
4.
Tsopanos, S.
et al.
The Influence of Processing Parameters on the Mechanical
Properties of Selectively Laser Melted Stainless Steel Microlattice Structures.
J.
Manuf. Sci. Eng.
132,
41011
–
41012 (2010).
5
.
Saleh, M. S., Hu, C. & Panat, R. Three
-
dimensional microarchitected materials and
devices using nanoparticle assembly by pointwise spatial printing.
Sci. Adv.
3,
(2017).
6.
Speirs, M., Van Hooreweder, B., Van Humbeeck, J. & Kruth, J.
-
P. Fatigue behaviour
of NiTi shape memory alloy scaffolds produced by SLM, a unit cell design
comparison.
J. Mech. Behav. Biomed. Mater.
70,
53
–
59 (2017).
7.
Wendy Gu, X. & Greer, J. R. Ultra
-
strong architected Cu meso
-
lattices.
Extrem. Mech.
Lett.
2,
7
–
14 (2015).
8.
Selectiv
e Laser Melting Machine. Available at: https://slm
-
solutions.com/sites/default/files/attachment/page/2016/11/w_slm125_en.pdf.
(Accessed: 13th April 2017)
9.
Karunakaran, K. P., Bernard, A., Suryakumar, S., Dembinski, L. & Taillandier, G.
Rapid manufacturing of metallic objects.
Rapid Prototyp. J.
18,
264
–
280 (2012).
10.
M
-
Flex. Available at: http://www.exone.com/Portals/0/Systems/M
-
Flex/X1_MFlex_US.pdf. (Acces
sed: 13th April 2017)
11.
BeAM Mobile Machine. Available at: http://www.beam
-
machines.fr/uploads/files/leaflets mobile en_10.02.2016.pdf. (Accessed: 13th April
2017)
12.
NORSK TITANIUM MERKE IV. Available at: http://www.norsktitanium.com/wp
-
content/uploads
/2016/07/Norsk_Titanium_Brochure.pdf. (Accessed: 13th April 2017)
13.
Metal Additive Manufacturing Systems
-
EBAM® Systems | Sciaky. Available at:
http://www.sciaky.com/additive
-
manufacturing/metal
-
additive
-
manufacturing
-
systems. (Accessed: 13th April 2017
)
14.
Sciaky Discusses 2015 3D Printing Plans
-
3D Printing Industry. Available at:
https://3dprintingindustry.com/news/sciakys
-
john
-
ohara
-
ebam
-
technologys
-
3d
-
printing
-
projects
-
2015
-
40284/. (Accessed: 13th April 2017)
15.
Fabrisonic’s SonicLayer 7200 Fully
Automated System is a large
-
format metal 3D
printer. Available at:
http://www.plantservices.com/vendors/products/2015/fabrisonics
-
soniclayer
-
7200
-
fully
-
automated
-
system/. (Accessed: 13th April 2017)
16.
Kair, A. B. & Sofos, K.
Additive Manufacturing and P
roduction of Metallic Parts in
Automotive Industry A Case Study on Technical , Economic and Environmental
Sustainability Aspects
. (2014).
17.
Brandl, E., Heckenberger, U., Holzinger, V. & Buchbinder, D. Additive manufactured
AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle
fatigue, and fracture behavior.
Mater. Des.
34,
159
–
169 (2012).
18.
Digital Metal. Additive
manufacturing of small and complex metal parts. Available at:
https://www.hoganas.com/globalassets/media/sharepoint
-
documents/BrochuresanddatasheetsAllDocuments/Additivemanufacturingofsmallandc
12
omplexmetalparts_July_2016_1666HOG.pdf. (Accessed: 13th April 2
017)
19.
Vaezi, M., Seitz, H. & Yang, S. A review on 3D micro
-
additive manufacturing
technologies.
Int. J. Adv. Manuf. Technol.
67,
1721
–
1754 (2013).
20.
Cohen, A., Chen, R., Frodis, U., Wu, M. & Folk, C. Microscale metal additive
manufacturing of multi
‐
co
mponent medical devices.
Rapid Prototyp. J.
16,
209
–
215
(2010).
21.
Regenfuss, P.
et al.
Principles of laser micro sintering.
Rapid Prototyp. J.
13,
204
–
212
(2007).
22.
Kullmann, C.
et al.
3D micro
-
structures by piezoelectric inkjet printing of gold
nanofl
uids.
J. Micromechanics Microengineering
22,
55022 (2012).
23.
Takai, T., Nakao, H. & Iwata, F. Three
-
dimensional microfabrication using local
electrophoresis deposition and a laser trapping technique.
Opt. Express
22,
28109
–
28117 (2014).
24.
Hirt, L.
et a
l.
Template
-
Free 3D Microprinting of Metals Using a Force
-
Controlled
Nanopipette for Layer
-
by
-
Layer Electrodeposition.
Adv. Mater.
28,
2311
–
2315 (2016).
25.
Visser, C. W.
et al.
Toward 3D Printing of Pure Metals by Laser
-
Induced Forward
Transfer.
Adv. Mate
r.
27,
4087
–
4092 (2015).
26.
Skylar
-
Scott, M. A., Gunasekaran, S. & Lewis, J. A. Laser
-
assisted direct ink writing
of planar and 3D metal architectures.
Proc. Natl. Acad. Sci.
113,
6137
–
6142 (2016).
27.
Hirt, L., Reiser, A., Spolenak, R. & Zambelli, T. Additive Manufacturing of Metal
Structures at the Micrometer Scale.
Adv. Mater.
1604211
–
n/a (2017).
doi:10.1002/adma.201604211
28.
An, B. W.
et al.
High
-
Resolution Printing of 3D Structures Using an
Electro
hydrodynamic Inkjet with Multiple Functional Inks.
Adv. Mater.
27,
4322
–
4328 (2015).
29.
Plank, H., Gspan, C., Dienstleder, M., Kothleitner, G. & Hofer, F. The influence of
beam defocus on volume growth rates for electron beam induced platinum deposition.
Nanotechnology
19,
485302 (2008).
30.
Bresin, M., Toth, M. & Dunn, K. A. Direct
-
write 3D nanolithography at cryogenic
temperatures.
Nanotechnology
24,
35301 (2013).
31.
Seol, S. K.
et al.
Electrodeposition
-
based 3D Printing of Metallic Microarchitectures
w
ith Controlled Internal Structures.
Small
11,
3896
–
3902 (2015).