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Appendix A: Group theory of D4

r srs

r3s

FIG. 1. D4 realizes the symmetries of the square. As a semidirect product (Z2×Z2)⋊Z2, the vertical and horizontal reflections
(rs and r3s) are exchanged under the diagonal reflection s.

The group D4 can be defined abstractly as generated by elements r and s which satisfy r4 = s2 = (sr)2 = 1. As
symmetries of the square, r rotates the square by 90◦ degrees and s performs a diagonal reflection, as shown in Fig. 1.
The group D4 can also be seen as a semidirect product (Z2 × Z2)⋊ Z2, where the vertical and horizontal reflections
rs and r3s are swapped under diagonal symmetry s.

The group admits five irreducible representations (irreps). Other than the trivial irrep 1 and the faithful two-
dimensional irrep 2 where

r =

(
i 0
0 −i

)
and s =

(
0 1
1 0

)
, (A1)

there are three sign representations, which we will label s1, s2 and s3. Each sign rep is uniquely defined by its
“kernel”, the subgroup on which the sign rep acts trivially.

1. s1 has kernel {1, r, r2, r3} meaning it is represented by s = rs = r2 = r3s = −1,

2. s2 has kernel {1, r2, s, r2s} meaning it is represented by r = r3 = rs = r3s = −1,

3. s3 has kernel {1, r2, rs, r3s} meaning it is represented by r = r3 = s = r2s = −1.

The group also admits five conjugacy classes, [1] = {1}, [r2] = {r2}, [r] = {r, r̄}, [s] = {s, r̄2s} [rs] = {rs, r3s}.

Appendix B: Correspondence between anyons of bilayer Toric Code and anyons of D4 TO

Mathematically, the anyons in the G topological order (TO) corresponds to irreducible representations of the
quantum double D(G). Each anyon can be given two labels: a conjugacy class [g] and an irreducible representation
of its centralizer πg. A pure charge corresponds to the trivial conjugacy class with a choice of an irrep of G, while a
pure flux corresponds a trivial irrep and a choice of conjugacy class. The quantum dimension of the anyon is given
by the size of the conjugacy class times the dimension of the irrep. For G = D4 enumerating all the possible choice
of conjugacy classes and irreps gives a total of 22 anyons.

We are particularly interested in abelian anyons of D(D4) and how they are related to the anyons that we measure
in the toric code bilayer construction: e1e2, m1m2, and s. A complete treatment of how anyons map under gauging
(which is implemented in this particular instance by measurement) can be found in Ref. 1.

First, without loss of generality we take the swap symmetry to be represented by the group element s. As shown in
Fig. 1 it exchanges rs and r3s, the vertical and horizontal reflections. Since rs and r3s generate a Z2 ×Z2 subgroup,
which is the kernel of s3, we identify the gauge charge of the swap symmetry with s3 as a gauge charge of the D4

quantum double.
Next, we note that e1e2 is a gauge charge of the bilayer toric code. In particular, it should be an irrep of the

group Z2 × Z2. In D4, this is the subgroup generated by rs and r3s. Now, since e1e2 is the charged under the gauge
transformation of both symmetries, while neutral under the diagonal symmetry r2, it must therefore correspond to
a representation where rs = r3s = −1 while r2 = 1. Moreover, e1e2 is neutral under the swap symmetry, meaning
s = 1. Comparing to the irreps of D4, we therefore see that this matches the irrep s2. By a similar argument, we find
that e1e2s corresponds to the irrep s1.
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Bilayer TC with SWAP symmetry (Z2
2 ⋊ Z2) D4 Quantum Double

dim
Orbit of anyon under SWAP Stabilizer SWAP charge Conj class Centralizer irrep

[1] Z2 1 [1] D4 1 1

[e1e2] Z2 s [1] D4 s1 1

[e1e2] Z2 1 [1] D4 s2 1

[1] Z2 s [1] D4 s3 1

[m1m2] Z2 1 [r2] D4 1 1

[f1f2] Z2 s [r2] D4 s1 1

[f1f2] Z2 1 [r2] D4 s2 1

[m1m2] Z2 s [r2] D4 s3 1

[e1] = {e1, e2} Z1 1 [1] D4 2 2

[m1] = {m1,m2} Z1 1 [rs] = {rs, r3s} Z2
2 1 2

TABLE I. Correspondence between anyons of Bilayer TC along with the SWAP symmetry charge, and anyons of D4 TO.
(Certain anyons are omitted for simplicity.)

Finally, since m1m2 is a gauge flux of the bilayer toric code, it corresponds to a conjugacy class of Z2 × Z2. Since
m1 and m2 are associated to group elements rs and r3s, their product is therefore r2. Hence, m1m2 corresponds to
the r2 conjugacy class of D4.

To conclude, the anyons we measure, e1e2,m1m2, s, generate eight anyons:
{1, e1e2,m1m2, f1f2, s, e1e2s,m1m2s, f1f2s}. It is apparent that these anyons are all bosons and have trivial
mutual braiding. Therefore, after gauging they are identified with eight abelian anyons of D4 that forms a Z3

2

Lagrangian subgroup. The exact correspondence is summarized in Table I.

It is also worth pointing out how non-Abelian anyons are generated in this correspondence. First consider the anyon
e1, which corresponds to the irrep (−1, 1) of Z2 ×Z2. Under the swap symmetry it transforms into e2, corresponding
to the irrep (1,−1). Therefore, after gauging the swap symmetry, these two anyons combine into a single non-Abelian
anyon with quantum dimension 2. This corresponds to the irrep 2 of D4. Note that in this case, the non-trivial
action on the anyons means that it is not meaningful to attach the charge of the swap symmetry onto [e1]. Moreover,
this can be interpreted as the fusion rule 2 × s3 = 2 for D4 anyons. Similarly, the anyon m1 and m2 corresponds
to the conjugacy class {rs} and {r3s} respectively. After gauging, the conjugation of s combines them into a single
conjugacy class [rs] of D4, resulting in a non-Abelian gauge flux.

For further details on this specific correspondence, we refer to a thorough review in Sec. II of Ref. 2.

Appendix C: Preparation of D4 Topological order

Here we prove that the protocol in the main text indeed prepares the D4 quantum double with a single round
of measurement. We first define the protocol on the vertices edges and faces of the triangular lattice, where the
preparation is most natural.

We place qubits on the vertices, edges and plaquettes of the triangular lattice as in Fig. 3a of the main text. For
convenience, the protocol is reproduced here:

|D4⟩E = ⟨x|PV

∏
⟨v,e⟩

CZve

∏
v

e±
πi
8 ZvHv

∏
⟨p,v⟩

CZpv |+⟩PEV . (C1)

Namely, we start with a product state |+⟩ for all qubits, apply the above quantum circuit, and perform projective
measurements in the x-basis, where x = ± labels the measurement outcomes on each vertex and plaquette. Here, the

± sign in e±
πi
8 Zv denotes that the phase gate we perform takes an alternating sign depending on the vertex sublattice

(colored red or orange in in Fig. 3a of the main text).

The final state prepared, after a further Hadamard on all edges, is conveniently described as the simultaneous +1
eigenstate of the following “stabilizers”[3] defined for each vertex
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Ap = xp ×
∏
v⊂p

xv ×

CZ

CZ CZ

CZ CZ
CZ

X

X

X

X X

X

, B(1)
p =

Z

Z

Z , B(2)
p =

Z

Z

Z . (C2)

as we will momentarily derive. Note that without the CZ operators in Ap, these describe the stabilizers of three
copies of the toric code. The CZ operators couple the toric code in a non-trivial way that creates the D4 TO (see
Appendix E 1 for a further relation to the Z3

2 twisted quantum double and SPT phases).

In this model, although B
(i)
p commutes with all operators, two adjacent Ap operators only commute up to some

product of B
(i)
p′ . For example, consider two adjacent plaquettes pL and pR sharing a vertical edge, then one has

ApL
ApR

= B(1)
pL

B(2)
pR

ApR
ApL

. (C3)

Nevertheless, one can still have a unique state which has eigenvalue +1 under all the above operators simultaneously,
which is the state we prepare.

To facilitate in showing the above claim, we split the process into three steps

|D4⟩E = ⟨x|V
∏
⟨p,e⟩

CZpe |+⟩E × e±
πi
8 Zv

∏
v

Hv × ⟨x|P
∏
⟨v,p⟩

CZvp |+⟩PV (C4)

The first step involves create a cluster state on the dice lattice by connecting each plaquette to each of the six vertices.
Measuring all the plaquettes in the x-basis creates the color code. That is, the state

|CC⟩ = ⟨x|P
∏
⟨v,p⟩

CZvp |+⟩PV (C5)

is the +1 eigenstate of the stabilizers

Ap = xp ×

Z

Z

Z

Z Z

Z

, Bp =

X

X

X

X X

X

(C6)

For convenience, let us denote the six vertices surrounding the plaquettes as 1, . . . , 6. Then,

Ap = xp ×
6∏

n=1

Zn, Bp =

6∏
n=1

Xn ApBp = −xp ×
6∏

n=1

Yn (C7)

Here, we have also included the product stabilizer to point out that the state inherently has a Z2 symmetry that
swaps Ap and ApBp independent of the measurement outcome. This symmetry is realized by acting with Y+Z√

2
on

one sublattice and Y−Z√
2

on the other sublattice. That is, on the six sites, it acts as
∏6

n=1
Y+(−1)nZ√

2
. (this sublattice

structure is essential to obtain the minus sign in ApBp).
In order to measure the Gauss law for this symmetry, it is helpful to perform a basis transformation to turn the

symmetry
∏

v
Y±Z√

2
(where ± denotes the sublattice structure) into

∏
vXv. This is accomplished by the second layer

of the protocol:
∏

v e
±πi

8 ZvHv After the transformation, the state is given by stabilizers

Ãp = xp ×
6∏

n=1

Xn + (−1)nYn√
2

B̃p =

6∏
n=1

Zn, ÃpB̃p = xp ×
6∏

n=1

Xn − (−1)nYn√
2

. (C8)
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Indeed,
∏

vXv swaps Ãp and ÃpB̃p while leaving B̃p invariant as desired.
Finally, in the last step we measure the Gauss law for this Z2 symmetry Xv

∏
e⊃v Ze on all vertices.

This can be done by initializing qubits on all edges in the |+⟩ state, applying Controlled-Z connecting vertices to
all the nearest edges and measuring all the vertices in the X basis.

The new edges introduced are stabilized by Xe, and after applying
∏

v,e CZve, the stabilizers are given by ÃpCp

and B̃p for each plaquette where

Cp =

Z

Z

Z

Z Z

Z

(C9)

and De = ZvXeZv′ for each edge, where v and v′ are the vertices at the end points of e. Now, to perform the
measurement in the X basis on all vertices, we need to find combinations of stabilizers that commute with the
measurement. First, we note the following combinations do not involve vertex terms

BpD12D34D56 = X12X34X56 BpD23D45D61 = X23X45X61. (C10)

and therefore survives the measurement. Next, we consider the symmetric combination

ÃpCp
1 + B̃p

2
= xp ×

6∏
n=1

Xn × Cp ×

[
6∏

n=1

1 + (−1)niZn√
2

+

6∏
n=1

1− (−1)niZn√
2

]
(C11)

Expanding the bracket we find

ÃpCp
1 + B̃p

2
= xp ×

6∏
n=1

Xn × Cp ×
1 + B̃p

2

6∏
n=1

1 + Zn−1Zn + ZnZn+1 − Zn−1Zn+1

2
(C12)

Since the state satisfies B̃p = 1, it therefore also has eigenvalue +1 under the “stabilizer”

xp ×
6∏

n=1

Xn × Cp ×
6∏

n=1

1 + Zn−1Zn + ZnZn+1 − Zn−1Zn+1

2
(C13)

Note that these “stabilizers” no longer commute amongst themselves. Now, using the fact that the state satisfies
ZnXn,n+1Zn+1 = 1, we can replace ZnZn+1 byXn,n+1. This results in

xp ×
6∏

n=1

Xn × Cp ×
6∏

n=1

1 +Xn−1,n +Xn,n+1 −Xn−1,nXn,n+1

2
(C14)

This “stabilizer” now commutes with the measurement on all vertices. With measurement outcomes Xn = xn = ±1.
To conclude, the final “stabilizers” for each plaquette are

xp ×
6∏

n=1

xn × Cp ×
6∏

n=1

1 +Xn−1,n +Xn,n+1 −Xn−1,nXn,n+1

2
, X12X34X56, X23X45X61. (C15)

Finally, performing Hadamard on all edges and using the fact that CZij =
1+Zi+Zj−ZiZj

2 , we recover the “stabilizers”
in Eq. (C2).
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FIG. 2. Preparation of the dice lattice cluster state in Sycamore using SWAP gates. Purple qubits only participate in the
swapping procedure, and are not part of the cluster state.

Appendix D: Implementation on Sycamore

First, let us count the depth of the 2-body gates required on the ideal lattice in Fig. 3a of the main text. The dice
lattice cluster state can be prepared in depth 6, while the heavy-hex lattice cluster state can be prepared in depth 3.
This gives a total 2-body depth count of 9.

Next, we discuss the details of implementation on the a quantum processor with connectivity of the square lattice,
such as Google’s Sycamore quantum chip. The first step in our protocol

∏
⟨p,v⟩ CZpv requires preparing a cluster state

on the dice lattice. This can be achieved by the help of SWAP gates. As seen in Fig. 2, the four steps corresponds to
steps 1,2,3 and 5 in Fig. 3b, and indeed produces the cluster state.

Next, we note that the single site rotation e±
πi
4 ZvHv can be pulled back through the final layer of SWAP gates, so

that it acts on the corresponding sites before the swap. This results in in step 4 of Fig. 3b. Lastly,
∏

⟨v,e⟩ CZve which

forms the heavy-hex lattice is implemented in step 6.
To count the number of gates used, the CZ gates in steps 1 and 3 can each be implemented in depth-3. Therefore,

the 2-body gate depth count for the six steps combined is is 3+1+3+0+1+3=11.
More practically, we should count the 2-body gate depth using the innate gates of the Sycamore processor. In

particular, the SWAP gate can be decomposed in to three CZ gates interspersed by Hadamard gates. Conveniently,
one of the CZ gates from the SWAP in step 5 exactly cancels one of the CZ layers in step 6. Thus, the innate 2-body
depth count is 3+3+3+0+2+2=13.

Appendix E: Single-round preparation of topological orders with Lagrangian subgroup

We give a formal argument that any non-Abelian topological order in two spatial dimensions which admits a
Lagrangian subgroup can be prepared using a single round of measurements.

To recall, a Lagrangian subgroup A is a subset of Abelian anyons that are closed under fusion, have trivial self and
mutual statistics, and that every other anyon braids non-trivially with at least one of the anyons in the subgroup[4, 5].
Note that the full set of anyons describing the theory does not need to be Abelian1. Before moving forward, we remark
that A can serve two purposes in this discussion: it can be a set that contains anyons, or can also function as an
abstract group.

Given a topological order and a Lagrangian subgroup A, one can “condense” [6] all the anyons in A. To do this, we
introduce an auxiliary system with global symmetry given by the group A. The system has charges that transform
under irreps of the global symmetry aphys. Note that these charges are physical, unlike the anyons a which are gauge

charges of an unphysical gauge group. Next, one performs a condensation for all bound states a×a−1
phys. This identifies

a ∼ aphys in the ground state of the condensed phase. The symmetry of the system is still A. However, the remaining
anyons are confined, since they braid non-trivially with the anyons that are condensed. These confined anyons now
serve as defects of the symmetry A. Since the resulting phase no longer has any anyons, it is therefore a (bosonic)
Symmetry-Protected Topological (SPT) phase with global symmetry A. Let us call this state |ψSPT⟩ This process is
also known as gauging the 1-form symmetry for all anyon lines in A[4, 7]2

1 In fact, we use the word subgroup in contrast to the more general subalgebra precisely because we restrict A to only contain Abelian
anyons.
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Now, we provide a protocol to prepare such a topological order. We start from a trivial product state with symmetry
group A. It is known that any SPT phase in two spatial dimensions can be prepared (by temporarily breaking the
symmetry) with a finite-depth local unitary[9]3. Therefore, after preparing |ψSPT⟩, we measure the symmetry charges
of A by coupling the charges to ancillas so that we can measure its Gauss law. Note that this is nothing but the
protocol to implement the Kramers-Wannier transformation in Ref. 8. After the measurement, the charges of |ψSPT⟩
are promoted to gauge charges, and therefore realizes the anyons in A, and the symmetry fluxes are promoted to
deconfined gauge fluxes, restoring the remaining anyons in the theory. In other words, our measurement has reversed
the condensation by gauging the global symmetry A. To summarize, we have used finite-depth local unitaries and
one round of measurement to prepare a state in the desired phase without feedforward or postselection. Note that if
one moreover wants to prepare exactly the ground state of the phase, a single round of feedforward gates suffices to
pair up all the anyons in A that result from the measurement.
The condition of a Lagrangian subgroup can actually be relaxed if we allow physical fermions as resources. In partic-

ular, the subgroup Af can now contain anyons that have fermionic self-statistics, a fermionic Lagrangian algebra[10].
In this case, one performs “fermion condensation”[11]. For any fermionic anyon in Af the bound state that one con-

denses is now f × f−1
phys. This gives a fermionic SPT state |ψf

SPT⟩ with global symmetry Af , which contains fermion
parity as a subgroup.
Similarly, starting with a trivial product state with fermionic symmetry Af it is possible to prepare the SRE state

|ψf
SPT⟩ using finite-depth local unitaries. Then, one measures the Gauss law for this symmetry. For group elements that

corresponds to anyons with fermionic statistics, measuring the Gauss law of the fermion amounts to performing the
two-dimensional Jordan-Wigner transformation (bosonization)[12], which can be performed using measurements[8].

1. Example: D4 TO revisited

To give a concrete example, let us consider the quantum double for D4. The Lagrangian subgroup is given by the
sign representations along with the conjugacy class of the center. These anyons form a group A = Z3

2. By performing
condensation, one arrives at an invertible state with symmetry Z3

2. In fact, this state is a Symmetry-Protected
Topological state, and can be deformed (while preserving the symmetry) to following hypergraph state [3]

|ψD4

SPT⟩ =
∏

⟨p1p2p3⟩

CCZp1p2p3
|+⟩P (E1)

where ⟨p1p2p3⟩ denotes three plaquettes that share a common vertex4. To describe the Z3
2 symmetry, we first note the

plaquettes are three-colorable (say, red green and blue), such that no two adjacent plaquettes have the same color.
Then each Z2 symmetry acts as spin flips on a plaquette of a fixed color.

To prepare the D4 TO, we thus first prepare the above hypergraph state using CCZ. Then, we gauge the Z3
2

symmetry by measuring the Gauss law Xp

∏
e∈ p

Ze, where e are the six edges radiating out of each plaquette. This

can be done via

|D4⟩E = ⟨+|P
∏

p,e∈ p

CZpe |+⟩E |ψD4

SPT⟩ (E2)

It is shown in Ref. 3 that the resulting state (after applying Hadamard on all edges) has exactly the same “stabilizers”
we derived in Eq. (C2). This corresponds to the fact that the D4 TO can be regarded as a Z3

2 twisted quantum
double[13–15].

2. Example: Q8 TO

As a second example, we consider the quantum double for the quaternion group Q8. The Lagrangian subgroup
also consists of sign representations along with the conjugacy class of the center, and forms the group A = Z3

2. After

2 We remark that if one wishes, this condensation process can be implemented physically without tuning through a phase transition using
measurements [8]. The auxiliary degrees of freedom serve as ancillas for which the hopping that promotes the condensation can be
measured.

3 up to possibly the E8 phase, which ultimately decouples from the desired topological order
4 This SPT corresponds to the so-called type-III cocycle a1a2a3.
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condensation, we arrive at a different SPT state, corresponding to the following hypergraph state

|ψQ8

SPT⟩ =
∏

⟨pC
1 pC

2 pC
3 ⟩

CCZpC
1 pC

2 pC
3

∏
⟨p1p2p3⟩

CCZp1p2p3
|+⟩P (E3)

where ⟨pC1 pC2 pC3 ⟩ consists of three plaquettes of the same color connected by edges in a triangle shape5.
Thus, the Q8 TO can be prepared as

|Q8⟩E = ⟨+|P
∏

p,e∈ p

CZpe |+⟩E |ψQ8

SPT⟩ (E4)

and the “stabilizers” of this state after Hadamard is given by

Ap =

X

X

X

X X

X

×

CZ

CZ CZ

CZ CZ
CZ

CZ CZ

CZCZ

CZ CZ

, B(1)
p =

Z

Z

Z , B(2)
p =

Z

Z

Z .

(E5)

3. Example: Double Ising TO

As a final example, we discuss how to prepare the Doubled Ising TO, which is obtained by stacking the Ising
TO consisting of anyons {1, σ, ϵ} with its time-reversed partner {1, σ̄, ϵ̄}. Since ϵ and ϵ̄ are fermions, a Lagrangian
subgroup does not exist. Nevertheless, it does have a fermionic Lagrangian subgroup Af = {1, ϵ, ϵ̄, ϵϵ̄}. Condensing
the fermionic Lagrangian subgroup results in an SPT state with Z2 × ZF

2 symmetry. The precise wavefunction of
this SPT state can be found in Ref. 16, and since it is short-range entangled, it can be prepared with a finite-depth
quantum circuit.
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