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A highly coveted goal is to realize emergent non-Abelian gauge theories and their anyonic excitations,
which encode decoherence-free quantum information. While measurements in quantum devices provide
new hope for scalably preparing such long-range entangled states, existing protocols using the
experimentally established ingredients of a finite-depth circuit and a single round of measurement
produce only Abelian states. Surprisingly, we show there exists a broad family of non-Abelian states—
namely those with a Lagrangian subgroup—which can be created using these same minimal ingredients,
bypassing the need for new resources such as feed forward. To illustrate that this provides realistic
protocols, we show how D4 non-Abelian topological order can be realized, e.g., on Google’s quantum
processors using a depth-11 circuit and a single layer of measurements. Our work opens the way toward the
realization and manipulation of non-Abelian topological orders, and highlights counterintuitive features of
the complexity of non-Abelian phases.

DOI: 10.1103/PhysRevLett.131.060405

The quantum statistics of particles is a foundational
concept with far-reaching ramifications, and in two
spatial dimensions, a remarkably rich set of “anyonic
statistics” arises [1,2]. Although not realized by funda-
mental particles, anyons emerge as effective quasiparticles
in two-dimensional condensed matter systems, most
notably the fractional Quantum Hall effect [3]. The most
exotic extension of quantum statistics occurs with non-
Abelian anyons [4–7] which always come in degenerate
quantum states (Fig. 1). Consequently, while braiding
Abelian anyons only lead to a phase factor, braiding “non-
Abelions” leads to a matrix action on the degenerate
states. This has evoked dreams of a physically fault-
tolerant route to perform quantum computing, with
quantum gates being executed by the motion of non-
Abelian anyons [8]. However, a key obstacle is finding
states of matter hosting such non-Abelions, called non-
Abelian topological order [9]. The most compelling
candidates so far are certain fractional quantum Hall
states in the second Landau level (ν ¼ 5=2, 12=5)
[3,8,10]. However, non-Abelian states are more fragile
compared to their Abelian counterparts [8,11] and the
extreme conditions required to create quantum Hall states,
combining high magnetic fields, pristine samples, and
millikelvin temperatures, all call for new approaches to
creating such quantum states.
Meanwhile, the significant advances in near-term quan-

tum devices [12] open up the possibility of realizing non-
Abelian states, not from cooling into the ground states, but
from controlled quantum gates that entangle a product state
to resemble ground states with non-Abelian excitations.

Indeed, recent theory and experimental work have shown
how certain Abelian states can be created in this way, in
particular the toric code topological order [13–15].
However, the general strategy adopted in these works is
essentially a form of adiabatic state preparation whose
depth is required to scale with system size [16], a
formidable requirement when one wants to scale system
size with limited depth quantum circuits.
Remarkably, a work-around exists which allows us to

create certain topological orders in a time independent of
system size. For instance, the aforementioned toric code is

FIG. 1. Artist’s impression of a non-Abelion. Non-Abelian
anyons as in D4 topological order bring together two ingredients
in a remarkable mix: Bell pairs and gauge charges. Non-Abelions
transform under a nontrivial matrix representation of the gauge
group, leading to a topological degeneracy. The Bell pair is a
robust consequence of forming a gauge neutral singlet. In this
work we show how to efficiently prepare D4 non-Abelian order
with a single layer of measurement, whereby non-Abelian
entanglement serves as a smoking gun.
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obtained at once by simply measuring its two commuting
stabilizers on the links of the square lattice [7,17–20]:

ð1Þ

Stronger yet, starting from a product state jψi ¼ jþi⊗N ,
one needs to measure only Av [see Fig. 2(a)]. The random
measurement outcomes for Av do not affect the Z2

topological order: the resulting “e anyons” (Av ¼ −1)
are static Abelian charges which simply redefine our notion
of vacuum state. If one, moreover, wants to prepare the
“clean” case (Av ¼ Bp ¼ 1), we note that these e anyons
come in pairs and can be removed by a single feed-forward
layer of σx-string operators [7].
The above approach generalizes to various other Abelian

topological orders [22]. However, the richer non-Abelian
topological order does not admit such a simple stabilizer
description, but at best only a commuting projector
Hamiltonian [7,23]. Indeed, due to the intrinsic degener-
acies associated with non-Abelions, the excited states do
not resemble the ground state—in fact, they are not the
ground state of any local gapped Hamiltonian. Hence, if
one naively measures the terms in their parent Hamiltonian,
one typically produces non-Abelian charges [Fig. 2(b)],
which cannot even be paired up by any finite-depth unitary
string operator [21]. Intuitively, this is linked to the “Bell
pair” mentioned in Fig. 1.
This raises the question: is non-Abelian topological

order out of the reach of a simple measurement protocol?
Partial results are known where measurement helps: it has
recently been shown that certain non-Abelian topological
orders can be obtained in finite time by several layers of

measurement, interspersed with feed forward [24–27].
In light of these sophisticated protocols, and the afore-
mentioned issue, it seems nigh impossible to obtain
non-Abelian topological order from a single layer of mea-
surements. This is of more than mere conceptual interest:
feed forward remains a very costly ingredient, with many
quantum simulators and computing platforms not yet
allowing for it. A protocol which avoids it, as for the toric
code above, is thus of conceptual and practical significance.
Here, we show that a class of non-Abelian topological

order can be created by a single layer of measurements,
thereby thus not requiring feed forward. Surprisingly, this
shows that there exists a class of non-Abelian states which
are no more complex to prepare than their Abelian counter-
parts, but nevertheless display richer behavior.
As a conceptually simple route toward non-Abelian

order, let us imagine starting with two copies of the toric
code. These can be prepared by measuring the star term Av
(1) on each layer, producing e1 and e2 anyons on the two
layers [Fig. 2(c)]. Such a bilayer has a natural “swap”
symmetry interchanging the two copies. If this global
physical symmetry were turned into a local gauge sym-
metry, we would achieve non-Abelian topological order.
Indeed, the e1 and e2 anyons then transform as a doublet
under the gauge group, which can be identified with D4 ¼
ðZ2 × Z2Þ⋊Z2 [28,29]. To obtain this gauge symmetry, we
can proceed as in the toric code case, i.e., by simply
measuring the gauge charge operator (or more precisely, its
Gauss law operator); soon we make this more explicit. This
has two effects: first, this produces a speckle of Abelian
anyons associated with the swap gauge symmetry; this is
as harmless as in the toric code case. A more serious issue is
that the Abelian anyons of the toric code now turn into non-
Abelian anyon defects [Fig. 2(c)].

FIG. 2. Topological order from measurement. (a) By measuring the star term Av (1) of the toric code, Z2 topological order (TO) is
obtained regardless of the measurement outcome. A clean toric code is achieved by pairing up e anyons by a feed forward of single-site
Pauli operators. (b) In contrast, measuring non-Abelian gauge charges gives rise to topological degeneracies and non-Abelian
entanglement (Fig. 1). Removing these requires a unitary circuit whose depth scales with system size [21]. (c) One route to non-Abelian
topological order is to first prepare two copies of the toric code by measuring the e anyons in each layer. We obtain non-Abelian
D4 ≅ ðZ2 × Z2Þ⋊Z2 topological order if we gauge the swap symmetry of the two layers. However, the Abelian anyon defects of the
bilayer then become non-Abelian defects. (d) The aforementioned protocol does work if we use feed forward to obtain two clean toric
codes before gauging the swap symmetry. (e) In this work, we point out that one can obtain the same phase of matter without feed
forward, using only a singlemeasurement layer. The key is to first prepare the two copies of the toric code by measuring the appropriate
charges and fluxes which are invariant under the swap symmetry; subsequently gauging the swap symmetry does thus not introduce
non-Abelian anyons. In fact, we can measure all three anyons at once. See Fig. 3 or Eq. (2) for an explicit and realistic circuit.
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So far, the above example thus hits on the same
stumbling block: in the quest to produce non-Abelian order
via measurement, we produce defects which destroy the
desired phase of matter. One possible solution is to clean up
the e-anyon defects before gauging the swap symmetry
[Fig. 2(d)]; this gives a multistep measurement protocol
with feed forward [24–27] which—while interesting—we
here seek to avoid. We surmise that this stumbling block
cannot be avoided if one measures only charges. However,
we show the issue can be resolved by using the larger
freedom of measuring charges or fluxes [to wit, the fluxes
of the toric code are also calledm anyons, as detected by Bp

in Eq. (1)]. Indeed, rather than producing the toric code
bilayer by measuring e1 and e2, we can also produce it by
measuring a different set of Abelian anyons: the composites
e1e2 and m1m2 [Fig. 2(e)]. Crucially, these are a singlet
under the swap symmetry. Hence, now proceeding as
before, measuring the “swap anyons” produces only
Abelian defects. We have thereby produced D4 topological
order in finite time, without feed forward. Observe that
this approach works even if we measure the anyons
fe1e2; m1m2; sg all at once.
Let us now turn the above conceptual discussion into a

concrete protocol for preparing D4 topological order for
qubits living on the edges (E) of the honeycomb lattice. To
effectively measure the type of many-body operators
discussed above, we will use two-body entangling gates
and perform single-site measurements on ancilla qubits on
the vertices (V) and plaquettes (P) of the honeycomb
lattice. We claim that the topological order is obtained by
the following sequence [Fig. 3(a)]:

jD4iE ¼ hxjPV
Y

hv;ei
CZve

Y

v

e�ðπi=8ÞZvHv

Y

hp;vi
CZpvjþiPEV;

ð2Þ

where X, Y, Z denote Pauli matrices, H is the Hadamard
gate, CZ is the controlled-Z gate, and x ¼ �1 denotes the
arbitrary outcome upon measuring all the ancillas in the
X basis.
We can break the above procedure down into three steps.

First, performing CZpv prepares the dice lattice cluster
state, whereby measuring the plaquettes results in the color
code. This is unitarily equivalent to two copies of the toric
code [42], playing the role of the bilayer in Fig. 2(e). The
single-site gates on the vertices rotate the color code into a
basis where the swap symmetry is realized by

Q
v Xv. Last,

we gauge this symmetry by measuring its associated Gauss
law operator on each vertex, Xv

Q
e⊃v Ze, which is achieved

by a single-site measurement preceded by the CZve unitary.
Importantly, any measurements in Eq. (2) can be delayed

to the last step. A similar formula appeared in Ref. [24],
with the crucial difference that the single-site rotation was
different. As a consequence, the latter requires feed for-
ward, corresponding to the scenario in Fig. 2(d).
Certain quantum processors have restricted connectivity,

and might thus not be able to directly apply the gates in
Fig. 3(a). In such cases it is still possible to create the D4

state by using SWAP gates to attain the desired connec-
tivity. To illustrate this, we propose an implementation for
Google’s quantum processor, which has the connectivity of
a square lattice as shown in Fig. 3(b). We find that the
non-Abelian state can be prepared with a two-body depth of
11 layers, independent of total chip size. (This becomes
13 layers once we decompose the SWAP layers into
Google’s native CZ gates; see Supplemental Material
[29] for further discussion.)
While we have discussed the minimal case of D4

topological order in great detail, we note that the idea of
our efficient protocol extends to other topological orders
which admit a so-called Lagrangian subgroup [43,44].
This is defined to be a subgroup of Abelian anyons with

FIG. 3. Preparing non-Abelian D4 topological order with a single layer of measurement: from theory to Sycamore chip. (a) The
intuitive approach sketched in Fig. 2(e) is formalized in Eq. (2) for qubits on edges (E), vertices (V), and plaquettes (P) of the
honeycomb lattice. Initializing all qubits in jþi, the circuit consists of three steps: (1) CZ gates connecting plaquettes to vertices (dashed
lines), which form the dice lattice. (2) TH on the red vertices, and T†H on the orange vertices (to wit, T ∝ e−iðπ=8ÞZ). (3) CZ gates
connecting vertices to edges (solid lines), which forms the heavy-hex lattice. Finally, we measure all vertices and plaquettes in the X
basis, producing D4 topological order for any measurement outcome, using only nine layers of nonoverlapping two-body gates.
(b) Implementation on device with square lattice connectivity, e.g., Google’s Bristlecone and Sycamore chips. The first three panels
prepare the dice lattice cluster state, the fourth panel performs the single-site basis rotation, and the last two panels apply the cluster state
entangler for the heavy-hex lattice. Finally, measuring all but the purple-color qubits produces D4 non-Abelian topological order. This
protocol is independent of system size, requiring only 11 layers of nonoverlapping two-body gates.
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trivial self- and mutual statistics such that every other anyon
in the theory braids nontrivially with it. In the case of D4,
this corresponds to the group generated by fe1e2; m1m2; sg
as encountered in Fig. 2(e). Phrased in the language of
quantum doubles [7], e1e2 and s correspond to the sign
representations of D4, while m1m2 corresponds to the
conjugacy class of the center ofD4 [28,29]. It is known that
if one condenses the anyons in the Lagrangian subgroup,
one obtains a trivial state. By playing this argument in
reverse, one can argue that measuring the Gauss law
operators associated with these anyons, one obtains its
non-Abelian topological order with only a single layer of
measurement [29]. Other examples which can in principle
be obtained in this way are, say, the quaternionQ8 quantum
double [29], or even the doubled Ising topological order
[23,45] (by measuring the Gauss law for ϵ and ϵ̄, though
this requires physical fermions). It would be interesting to
work out explicit protocols amenable to quantum process-
ors, as we did for D4 above.
In conclusion, we have established the shortest route to

non-Abelian topological order. Indeed, while the prepara-
tion time for a purely unitary protocol must scale with
system size, we found that the minimal nonunitary element
of a single measurement layer could efficiently prepare
certain non-Abelian orders. This furthermore avoids the
need for feed forward which is intrinsic to multimeasure-
ment approaches [24–27]. For the illustrative case of D4,
we found that roughly ten unitary layers (prior to single-site
measurements) were already sufficient, even for realistic
qubit connectivity as on the Google chips. Naturally, it
would be worthwhile to work out concrete protocols for
other existing architectures. On the conceptual side, the
existence of a single-shot protocol for certain non-Abelian
states motivates us to identify the minimal number of
measurement layers (alongside finite-depth unitaries) for
obtaining various types of quantum states. We will examine
this measurement-induced hierarchy of quantum states in a
forthcoming work [46].
Last, if a non-Abelian state is realized, how do we tell?

One interesting probe is the aforementioned non-Abelian
entanglement (Fig. 1), which we can now turn into an
advantage. Indeed, the successful preparation of non-
Abelian order can be confirmed by noting that if we insert
non-Abelian excitations, the entanglement entropy is
changed according to its quantum dimension [47]. For
instance, for our particular D4 protocol [Eq. (2)], this is
achieved by acting with Pauli-Z operators on the vertices at
any point prior to the single-site rotations. That such a
deceptively simple tweak can have such a drastic conse-
quence underlines the exotic nature of non-Abelian states,
and points the way to the first realization and detection in a
quantum simulator.
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