Published December 15, 2007 | Version public
Journal Article Open

Perspectives on beam-shaping optimization for thermal-noise reduction in advanced gravitational-wave interferometric detectors: Bounds, profiles, and critical parameters

Abstract

Suitable shaping (in particular, flattening and broadening) of the laser beam has recently been proposed as an effective device to reduce internal (mirror) thermal noise in advanced gravitational-wave interferometric detectors. Based on some recently published analytic approximations (valid in the infinite-test-mass limit) for the Brownian and thermoelastic mirror noises in the presence of arbitrary-shaped beams, this paper addresses certain preliminary issues related to the optimal beam-shaping problem. In particular, with specific reference to the Laser Interferometer Gravitational-wave Observatory (LIGO) experiment, absolute and realistic lower bounds for the various thermal-noise constituents are obtained and compared with the current status (Gaussian beams) and trends (mesa beams), indicating fairly ample margins for further reduction. In this framework, the effective dimension of the related optimization problem, and its relationship to the critical design parameters are identified, physical-feasibility and model-consistency issues are considered, and possible additional requirements and/or prior information exploitable to drive the subsequent optimization process are highlighted.

Additional Information

©2007 The American Physical Society. (Received 4 July 2007; published 18 December 2007) This material is based upon work supported by the U.S. National Science Foundation under Cooperative Agreement No. PHY-0107417.

Files

PIEprd07.pdf

Files (550.8 kB)

Name Size Download all
md5:5f65365fb5d66fd2d56cdbee2cc81243
550.8 kB Preview Download

Additional details

Identifiers

Eprint ID
9419
Resolver ID
CaltechAUTHORS:PIEprd07

Dates

Created
2007-12-20
Created from EPrint's datestamp field
Updated
2021-11-08
Created from EPrint's last_modified field