
PRX QUANTUM 4, 030338 (2023)

Tailoring Three-Dimensional Topological Codes for Biased Noise

Eric Huang,1,2,† Arthur Pesah ,3,† Christopher T. Chubb,4,5 Michael Vasmer,1,6 and Arpit Dua 7,*

1
Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

2
University of Maryland, College Park, Maryland 20742, USA

3
Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom

4
Institut quantique and Département de physique, Université de Sherbrooke, Sherbrooke QC J1K 2R1, Canada

5
Institute for Theoretical Physics, ETH Zürich, Zürich 8093, Switzerland

6
Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

7
Department of Physics and Institute for Quantum Information and Matter, California Institute of Technology,

Pasadena, California 91125, USA

 (Received 6 December 2022; revised 8 August 2023; accepted 15 August 2023; published 20 September 2023)

Tailored topological stabilizer codes in two dimensions have been shown to exhibit high-storage-
threshold error rates and improved subthreshold performance under biased Pauli noise. Three-dimensional
(3D) topological codes can allow for several advantages including a transversal implementation of non-
Clifford logical gates, single-shot decoding strategies, and parallelized decoding in the case of fracton
codes, as well as construction of fractal-lattice codes. Motivated by this, we tailor 3D topological codes
for enhanced storage performance under biased Pauli noise. We present Clifford deformations of various
3D topological codes, such that they exhibit a threshold error rate of 50% under infinitely biased Pauli
noise. Our examples include the 3D surface code on the cubic lattice, the 3D surface code on a checker-
board lattice that lends itself to a subsystem code with a single-shot decoder, and the 3D color code, as well
as fracton models such as the X-cube model, the Sierpiński model, and the Haah code. We use the belief
propagation with ordered statistics decoder (BP OSD) to study threshold error rates at finite bias. We also
present a rotated layout for the 3D surface code, which uses roughly half the number of physical qubits
for the same code distance under appropriate boundary conditions. Imposing coprime periodic dimen-
sions on this rotated layout leads to logical operators of weight O(n) at infinite bias and a corresponding
exp[−O(n)] subthreshold scaling of the logical failure rate, where n is the number of physical qubits in
the code. Even though this scaling is unstable due to the existence of logical representations with O(1)

low-rate and O(n2/3) high-rate Pauli errors, the number of such representations scales only polynomially
for the Clifford-deformed code, leading to an enhanced effective distance.

DOI: 10.1103/PRXQuantum.4.030338

I. INTRODUCTION

Fault-tolerant quantum computation is a crucial ingredi-
ent for building a scalable quantum computer. Topological
stabilizer codes are a highly prized family of low-density
parity-check (LDPC) codes due to their geometrically local
parity checks, high-storage-threshold error rates and low-
overhead fault-tolerant logical gate implementations. It has
been found that topological codes can be tailored to noise

*Corresponding author. adua@caltech.edu
†These authors contributed equally to this work.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

to achieve higher success rates and threshold error rates
[1,2]. Generally, for evaluating the performance of a Pauli-
stabilizer code, a Pauli-noise model is considered due to
its efficient simulability. It has recently been suggested
that Pauli noise can be biased toward dephasing in cer-
tain realistic laboratory qubits or can be engineered to be
so [3–6]. For biased Pauli noise, Clifford-deformed surface
codes such as the XZZX, XY, and (XYZ)2 surface codes,
the XYZ color code, and families of randomly Clifford-
deformed surface codes have been shown to exhibit high
threshold error rates and enhanced subthreshold perfor-
mance [2,7–11].

Three-dimensional (3D) topological codes offer several
advantages over all the known two-dimensional (2D) topo-
logical codes. Unlike 2D stabilizer codes, 3D stabilizer
codes such as the 3D surface code allow for a transver-
sal implementation of a non-Clifford gate and, overall, a

2691-3399/23/4(3)/030338(35) 030338-1 Published by the American Physical Society

https://orcid.org/0000-0002-5759-6314
https://orcid.org/0000-0001-6348-4135
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.4.030338&domain=pdf&date_stamp=2023-09-20
http://dx.doi.org/10.1103/PRXQuantum.4.030338
https://creativecommons.org/licenses/by/4.0/

ERIC HUANG et al. PRX QUANTUM 4, 030338 (2023)

fault-tolerant universal gate set [12–16]. Using 3D codes
for storing logical information can also be advantageous in
terms of decoding. For instance, the looplike syndromes
associated with 3D stabilizer codes such as the surface
code and color code can be decoded using single-shot
decoding strategies [17–22]. Furthermore, 3D-subsystem
codes such as the gauge color code [13,23,24] and the 3D-
subsystem surface code [25] allow for a single-shot decod-
ing strategy for general Pauli noise, where the noisy error
syndrome need only be measured once [26]. Such single-
shot decoding strategies not only reduce the time overhead
but also are more resilient to time-correlated noise [27].
3D fracton topological codes such as the X-cube model
(partially) allow for parallelized decoding in submanifolds
of the lattice, due to the mobility of syndromes being
restricted to these submanifolds [28]. Another recently
discovered advantage of 3D codes such as the surface
code is that they can be used to construct fractal-lattice
codes by punching holes with appropriate boundary con-
ditions [29,30]. Such fractal-lattice surface codes allow
for fault-tolerant universal quantum computation with a
reduced space overhead and a single-shot decoding strat-
egy that can be used for looplike syndromes on the fractal
geometry [30]. Even though designing a qubit architecture
with a 3D connectivity is a serious experimental challenge
on many quantum computing platforms, several recent
advances have made the prospect of a 3D architecture
more amenable to near-term experiments. For instance,
qubit shuttling has recently been shown to enable 3D con-
nectivity on a 2D layout [31] and could, for instance,
be implemented using silicon qubits [32], ion traps [33],
or neutral atoms [34]. Other platforms, such as 3D inte-
grated superconducting qubits [35–37] and photonic qubits
[38–42] could also allow the realization of 3D codes.

Motivated by the advantages of 3D topological codes,
we tailor them for enhanced storage performance in the
presence of biased Pauli noise. We construct Clifford-
deformed codes from the 3D surface code (cubic lattice)
[43], the 3D color code [12,44], the X-cube fracton model
[45], the Sierpiński fracton model [46], and the Haah code
[47]. We also propose a Clifford deformation of the 3D sur-
face code on the checkerboard lattice, which lends itself
to a subsystem code with a single-shot decoding strategy.
All of our Clifford-deformed codes allow for decoding
strategies with a threshold error rate of 50% at infinite
dephasing bias. These Clifford-deformed codes are con-
structed to have materialized linear symmetries that allow
for the first step of decoding to be a minimum-weight
perfect-matching (MWPM) decoder [43,48] in submani-
folds supporting those symmetries. The resulting models
after this first step have further linear symmetries that
allow for another round of the matching decoder. The com-
bination of these steps gives the full matching decoder with
a threshold error rate of 50%.

We note that our Clifford deformations are single-qubit
operators that permute the Pauli operators acting on each
qubit. Thus, any result on the computational power of gate
implementation for a given code, specifically transversal
gates, does not change. Moreover, any other topological
properties of our codes such as the number of logical
qubits on closed manifolds and shapes or weights of gen-
eral logical operators do not change. What changes is the
number of representations of logical operators containing
certain kinds of Pauli operators, such as pure-Z logical
operators, and this change is what is relevant for the code
performance under biased noise.

For a subset of the codes mentioned above, we use the
belief propagation with ordered statistics decoder [49,50]
(BP OSD) to numerically find the threshold error rates
at finite bias. We discover that the threshold error rate
increases with the bias for both original and Clifford-
deformed codes. Beyond a critical value of bias, the thresh-
old error rate of the Clifford-deformed codes exceeds that
of the original codes. However, we also find some lim-
itations of the BP OSD: for the X-cube model and the
3D surface code on the checkerboard lattice, the appar-
ent threshold error rate tends to recede when increasing
the system size, showing either a lower infinite-size thresh-
old error rate or no threshold at all. This effect, previously
observed on 2D surface codes and color codes [22], is
analyzed in more detail in the context of 3D topological
codes. We also compare the BP OSD with the sweep-
matching decoder—a combination of MWPM and the
sweep decoder [19,20]—for the 3D surface code (cubic
lattice) and find better threshold error rates with the BP
OSD. Even though Pauli noise is not completely realistic,
it is efficiently simulable and is an initial testing ground
for any quantum stabilizer code. Moreover, it has been
shown that under coherent errors, decoding for Pauli errors
is sufficient to give a nonzero threshold rotation [51].

Lastly, we define a rotated layout for the 3D Calderbank-
Shor-Steane (CSS) surface code, which offers the same
distances (dX , dZ) for both Pauli-X and Pauli-Z logical
operators as in the standard layout, while using roughly
half the number of physical qubits, in analogy with the
2D case [52]. Using this rotated layout for the Clifford-
deformed surface code and imposing coprime dimensions
with appropriate boundary conditions leads to weight O(n)

logical operators at infinite dephasing bias. As a result, the
subthreshold performance of the Clifford-deformed surface
code is enhanced, with a logical error rate scaling as e−O(n)

with the number of qubits n, in comparison to e−O(n2/3) for
the original code.

The paper is structured as follows. In Sec. II, we review
biased noise models and Clifford-deformed codes. We dis-
cuss the notions of materialized symmetries in the context
of the 2D XZZX and XY surface codes, showing that both
codes have a 50% threshold error rate at infinite bias. For

030338-2

THREE-DIMENSIONAL TOPOLOGICAL CODES FOR BIASED NOISE PRX QUANTUM 4, 030338 (2023)

the XY surface code, we introduce a technique called the
weight-reduction technique, which we also use for some of
the 3D topological codes studied in this paper. In Sec. III,
we present CSS and Clifford-deformed 3D topological
codes, including the surface code on a cubic lattice, the
surface code on a checkerboard lattice, the color code, and
fracton models (the X-cube model, the Sierpiński fracton
model, and the Haah code). We describe the symmetries
and prove the 50% threshold error rates at infinite bias
for each of our Clifford-deformed codes. In Sec. IV, we
present numerical threshold-error-rate estimates for some
CSS and Clifford-deformed 3D codes under finite bias,
using the BP OSD and sweep-matching decoders. We
also demonstrate some of the limitations of the BP OSD
in the context of 3D codes. In Sec. V, we explore fur-
ther optimizations including a rotated layout that reduces
the number of physical qubits n and coprime lattice sizes
that achieve logical error rates scaling as e−O(n) in the
subthreshold regime. Finally, in Sec. VI, we discuss the
implications of our findings.

In Appendix A, we prove that the Clifford-deformed
surface code on a checkerboard lattice has a 50% infinite-
bias threshold error rate. In Appendix B, we discuss the
decoders used in the numerical simulations for the thresh-
old error rates at finite bias. In Appendix C, we discuss
the numerical methods used to estimate the threshold error
rates at finite bias.

II. BACKGROUND

A. Biased Pauli noise

In order to evaluate the performance of a code, it is
conventional to choose a noise model where each qubit is
independently subjected to quantum noise. Upon the Pauli-
stabilizer measurements, such quantum noise is digitized
to Pauli errors up to coherent rotation [53–57]. In general,
it is hard to incorporate the coherent rotation. However,
the Pauli-twirling approximation has been found to yield
estimates of threshold error rates that are close to those
found by including an efficiently tractable choice of coher-
ent rotation [51]. For our purposes, we consider a general
single-qubit Pauli-noise channel of the form

ρ → (1 − p)ρ + p (rX X ρX + rYYρY + rZZρZ) , (1)

where p ∈ [0, 1] is the single-qubit physical error rate
and the weights rX , rY, and rZ describe the relative prob-
ability of Pauli errors X , Y, and Z, respectively, such
that rX , rY, rZ ≥ 0 and rX + rY + rZ = 1. For instance, a
depolarizing channel, with rX = rY = rZ = 1/3, causes
Pauli errors X , Y, and Z with equal probabilities and
thus describes unbiased Pauli noise. On the other hand, a
dephasing channel, with rX = rY = 0 and rZ = 1, results in
Z errors alone and describes infinitely biased Pauli noise.
The bias ηZ for dephasing is formally defined [52] as

the ratio

ηZ := rZ

rX + rY
, (2)

such that (unbiased) depolarizing noise corresponds to
ηZ = 0.5 while infinitely biased noise corresponds to ηZ =
∞. In this work, we restrict our attention to noise chan-
nels with symmetric dephasing bias such that rX = rY and,
hence, the noise is characterized by physical error rate p
and dephasing bias ηZ .

B. Clifford-deformed codes

We consider a Pauli-stabilizer code C with stabilizer
group generated by stabilizers {Si} acting on the physical
qubits Q. We can construct a new code ˜C by applying a
Clifford circuit UC consisting of single-qubit Clifford oper-
ations on the physical qubits Q. We refer to this new code ˜C
as a Clifford-deformed code. Under such a Clifford circuit,
the generators Si are modified to

˜Si = U†
CSiUC, (3)

which also form a set of commuting Pauli operators. For
biased Pauli-noise models, it can be advantageous to use
a Clifford-deformed code. Intuitively, if more stabilizer
generators anticommute with the more common errors,
the resulting increase in nontrivial syndrome bits pro-
vides more information to the decoder to better estimate
the correction operators. Clifford deformations also have
the effect of drastically reducing the number of Z-only,
or mostly Z, logical operators. As a result, this reduces
the degeneracy of possible errors causing a given syn-
drome, which can be exploited by decoders for superior
performance.

Pioneering studies on Clifford-deformed codes for
biased noise have considered the XY surface code [2]
and the XZZX surface code [7] in two spatial dimen-
sions. The former is obtained from the CSS surface code
in 2D by replacing all Pauli-Zs by Pauli-Ys in the stabilizer
generators, while the latter is obtained (from the CSS sur-
face code) by applying a Hadamard operation on half of
the qubits such that all stabilizer generators become X ⊗
Z ⊗ Z ⊗ X (see Fig. 1). Both of these Clifford-deformed
codes have threshold error rates that track the hashing
bounds at finite dephasing bias and have a threshold error
rate of 50% at infinite dephasing bias. However, unlike
the XY code, the XZZX-code threshold error rates track
the hashing bound for noise biased toward Pauli errors
X and Y as well. Recently, the performance of random
Clifford deformations of the 2D surface code subjected
to noise biased toward dephasing has also been investi-
gated [8]. A phase of 50% infinite-bias threshold error
rates has been found in the parameter space of (�XZ , �YZ),
where �XZ(�YZ) is the probability of a Clifford operation

030338-3

ERIC HUANG et al. PRX QUANTUM 4, 030338 (2023)

X X

X

X Z

Z

Z

Z

(a)

Z Z

X

X X

Z

Z

X

(b) (c) (d)

FIG. 1. An illustration of the XZZX surface code. (a) The original surface-code stabilizers, on a square lattice with periodic boundary
conditions. Qubits are on edges and stabilizers are on faces and vertices. (b) XZZX surface-code stabilizers, obtained by applying a
Hadamard operation on all the vertical qubits. (c) At infinite Z bias, we can ignore the Z part of the stabilizers to form a classical code,
the parity-check operators of which (red edges) are supported on two qubits (red dots). (d) The product of weight-2 parity checks along
a vertical line is equal to the identity operator. This means that each vertical line contains an even number of excitations, which can be
independently decoded by matching. We call this type of relation a materialized linear symmetry.

that implements the permutation X ↔ Z (Y ↔ Z). This
phase can be explained intuitively via a mapping to per-
colation problems. Moreover, certain randomly Clifford-
deformed surface codes on odd × odd dimensions, have
been found to outperform the XZZX and XY codes with
the same dimensions in the scaling of the subthreshold
logical failure rate.

A suitable choice of Clifford deformation can result in a
higher threshold error rate and can also improve subthresh-
old failure rates for finite system sizes. But subthreshold
failure rates for finite system sizes are also sensitive to the
dimensions and boundary conditions (note the mention of
odd × odd dimensions in context of subthreshold failure
rates in the previous paragraph). For instance, choosing
coprime periodic dimensions for the XZZX code results in
a subthreshold failure rate scaling of e−O(n) in comparison
to that of e−O(

√
n) for the CSS surface code.

For translation-invariant deformations such as the
XZZX and XY surface codes, the 50% threshold error rates
at infinite bias can be understood in terms of the symme-
tries of the stabilizer group that appear in this noise regime.
We review this for the XZZX and XY codes below.

C. XZZX code: Materialized symmetries and
conserved quantities under biased noise

The XZZX surface code can be obtained by apply-
ing a Hadamard operator on every vertical qubit of the
CSS surface code. The resulting stabilizers are shown
in Fig. 1(b). At infinite Z bias, the action of noise on
the qubits where a stabilizer acts as Z results in no syn-
drome. Hence, the stabilizer effectively acts as identity
on these qubits for infinite-bias noise. As a result, the
code becomes equivalent to a classical code made of two-
body parity-check operators Bf and Av , as illustrated in
Fig. 1(c).

This resulting effective model has the following rela-
tions on each vertical line � of the lattice:

∏

f ∈�

Bf = I , (4a)

∏

v∈�

Av = I . (4b)

These relations, represented in Fig. 1(d), are referred to
as materialized subsystem symmetries [28,48]. Because of
these symmetries, the syndrome values bf and av of all the
stabilizers under infinite-bias noise obey

∏

f ∈�

bf = 1, (5a)

∏

v∈�

av = 1, (5b)

which are the conservation laws associated with the mate-
rialized subsystem symmetries. This implies that at infinite
Z bias, the number of excitations of the XZZX stabilizer
generators along any vertical line is even. In other words,
single-stabilizer-generator syndromes can only “move”
along vertical lines at infinite bias under application of
Z errors. This leads to a simple decoding strategy for an
XZZX code subjected to Z errors: we match the syndromes
along each line independently. This is equivalent to decod-
ing 2L independent classical repetition codes, each of size
L. Since the repetition code has a threshold error rate of
50%, the success rate of this infinite-bias decoder is lower
bounded by

psuccess ≥ (

1 − Ae−αL)2L ≈ 1 − 2LAe−αL −−−→
L→∞

1 (6)

for any fixed physical error rate below 50%, where A
and α are two positive constants. The reason why this

030338-4

THREE-DIMENSIONAL TOPOLOGICAL CODES FOR BIASED NOISE PRX QUANTUM 4, 030338 (2023)

expression is a lower bound and not an equality is that
failing to decode an even number of repetition codes also
results in successful decoding. Thus this strategy results in
a threshold error rate of 50% [7].

D. XY code: Weight-reduction technique

The XY surface code [2] is another example of a
Clifford-deformed surface code that has a threshold error
rate of 50% at infinite bias. It is formed by applying an S
gate and a Hadamard gate on every qubit, having the effect
of turning all Z stabilizers into Y stabilizers, as shown in
Fig. 2(a). As a result, at infinite Z bias, the code becomes a
classical code where the parity checks are four-body terms
supported on every square.

To prove that this code has a 50% infinite-bias threshold
error rate, we need to generalize the technique developed
for the XZZX surface code. As can be seen in Fig. 2(b),
the checks form linear symmetries along both the verti-
cal and horizontal directions. However, in contrast to the
XZZX code, these symmetries involve weight-4 checks,
making the underlying decomposition into repetition codes
less obvious to see.

To decompose the code into repetition codes, we use
a two-step decoding strategy that we call the weight-
reduction technique, which we use extensively in our study
of 3D codes.

In the first step, we start by writing each square check
as the parity of its two incident horizontal edge checks,
where an edge check is defined as the parity of its
two incident vertices. In Fig. 2(b), these horizontal edge

X

X

X

X

Y

Y

Y

Y

(a) (b) (c)

(d) (e)

FIG. 2. An illustration of the weight-reduction technique on the XY code. (a) The XY-code lattice. Qubits are on the vertices. The
dark (light) plaquettes are stabilizer generators made of X (Y) operators. This code can be obtained by applying a phase gate and a
Hadamard gate to every qubit of the CSS surface code. (b) Linear symmetry of the code at infinite Z bias, assuming periodic boundary
conditions. In this regime, the XY code becomes a classical code with the same four-body checks on every square. We can interpret
each column as a repetition code (see the dashed line for an example), where the purple edges are the variables and the yellow squares
are the checks. Indeed, the product of the yellow checks along the dashed line is effectively identity for pure-Z noise. Decoding this
repetition code gives us the parity of the two qubits on each purple edge. (c) The second level of repetition codes. Once matching
has been performed on all the columns, we obtain new two-body checks on all the horizontal edges (purple). They themselves form
linear symmetries along each row. Matching along these symmetries allows one to decode errors on all the qubits. (d) An example of
decoding using the weight-reduction strategy. The errors correspond to red vertices and the face excitations to yellow squares. In the
first decoding step, we use MWPM between squares along each vertical line. The resulting “corrections” are the purple edges. This
means that one of the two qubits of each purple edge is predicted to have an error. (e) In the second decoding step, the purple edges
are reinterpreted as excitations of some horizontal repetition codes. The use of matching on each repetition code gives the desired
correction.

030338-5

ERIC HUANG et al. PRX QUANTUM 4, 030338 (2023)

checks, surrounding the top and bottom parts of each
square, are represented in purple. Note that this is a purely
formal manipulation, as the edge checks are not part of the
syndrome at the moment.

We now use the linear symmetries consisting of the
product of square checks along any vertical line. An exam-
ple of such a symmetry is highlighted in Fig. 2(b). These
linear symmetries give rise to repetition codes, where the
data bits are the horizontal edge checks and the parity
checks are the squares acting on two neighboring edges.
Successful decoding of these repetition codes allows us to
obtain the value of all the horizontal edge checks, which
therefore becomes part of the syndrome. In other words,
assuming a successful matching, we turn the weight-4
checks into weight-2 checks supported on the horizontal
edges of the code. This is the core of the weight-reduction
technique.

The second decoding step starts by noting that the new
horizontal edge checks form a linear symmetry on each
horizontal line: the product of edges along any horizontal
line is equal to the identity. Each horizontal line can there-
fore be interpreted as a repetition code, and decoding all
the repetition codes allows us to correct errors on all the
qubits. Those linear symmetries are illustrated in Fig. 2(c).
An example of decoding with this two-step strategy is
shown in Figs. 2(d) and 2(e).

We now show that this decoding strategy leads to a
threshold error rate of 50%. For a given physical error
rate below 50%, the probability that this decoder succeeds
is lower bounded by the probability that both the L one-
dimensional (1D) matchings of the first step and the L
1D matchings of the second step are successful. More
precisely, for a fixed physical error rate below 50%, we
have

psuccess ≥ (

1 − Ae−αL)2L −−−→
L→∞

1, (7)

where A and α are positive constants. This shows that the
threshold error rate of the XY code under infinite Z bias is
50%.

III. 3D CLIFFORD-DEFORMED TOPOLOGICAL
CODES

In this section, we present Clifford deformations of 3D
codes with a macroscopic number of materialized symme-
tries at infinite bias. Having a macroscopic number of such
symmetries leads to a macroscopic number of conserva-
tion laws obeyed by the syndromes and this can lead to a
decoder with a high threshold error rate.

Our general strategy for showing that a Clifford-
deformed code has a threshold error rate of 50% at infi-
nite Z bias is the following. We start by identifying the
linear symmetries of the code when the Z part of the
stabilizers is ignored. Each linear symmetry gives rise

to a repetition-code decoding problem. We can therefore
construct a decoder that starts with a round of MWPM
decoding [43,48] on the 1D submanifolds supporting the
symmetries. This results in a new model with parity-check
operators of reduced weight, as demonstrated for the XY
code in Sec. II D. We then identify the linear symmetries of
this new model with reduced-weight stabilizers, decode the
corresponding repetition codes using MWPM, and repeat
the process until a correction operator has been assigned to
all the qubits. Due to the fact that each step of this decoding
strategy consists of decoding repetition codes, the exis-
tence of such a decoder for any Clifford-deformed code
shows that the overall threshold error rate of the code is
50%.

We now present our Clifford-deformed codes and their
explicit decoders one by one below.

A. 3D surface code

The conventional form of the 3D surface code is defined
on a cubic lattice with qubits sitting on edges. The sta-
bilizer generators consist of the vertex operators Av =
∏

e∈v Ze, made of Pauli-Z operators on each of the six
edges e adjacent to a vertex v and the face operators Bf =
∏

e∈f Xe, made of Pauli-X operators on each of the four
edges adjacent to a face f , as illustrated in Fig. 3(a). The
syndromes associated with violations of vertex-stabilizer
generators are pointlike and created in pairs at the bound-
aries of strings of X errors. The syndromes associated with
violations of face stabilizers are looplike syndromes and
created at the boundaries of membranes of Z errors, as
shown in Fig. 4(a). The logical X operators are topologi-
cally nontrivial string operators and the logical Z operators
are topologically nontrivial membranes. In particular, on a
3D torus, there are three pairs of inequivalent minimum-
weight logical operators X u, Zu, one for each axis u ∈
{x̂, ŷ, ẑ}, where X u is a string of X operators oriented along
u and Zu is a membrane orthogonal to u. Examples are
shown in Fig. 4(b). Thus, the 3D surface code encodes
three logical qubits and has code distance min(Lx, Ly , Lz),
specified by the minimum weight of the string operators.
One can define a open-boundary version of the code on
a cubic lattice with rough boundaries on a pair of oppo-
site faces and smooth boundaries on remaining four sides.
The logical string operator connects the rough bound-
aries, while the logical membrane operator connects the
smooth boundaries. Hence, the code encodes one logical
qubit.

We consider a Clifford deformation of the 3D surface
code where we apply a Hadamard operator on all the
qubits on edges oriented along the z direction, which we
call vertical qubits. On the contrary, horizontal qubits,
which reside on edges oriented along the x or y direc-
tions, remain untouched by the Clifford deformation. The
resulting stabilizer generators are shown in Fig. 3(b).

030338-6

THREE-DIMENSIONAL TOPOLOGICAL CODES FOR BIASED NOISE PRX QUANTUM 4, 030338 (2023)

(a)

(b)

FIG. 3. (a) Stabilizer generators in the
CSS 3D surface code are vertex oper-
ators on each vertex and face opera-
tors for each face, for which there are
three orientations. (b) Stabilizer gener-
ators in the Clifford-deformed surface
code obtained via Hadamard operations
on qubits along vertical edges.

The code has certain linear materialized symmetries for
infinitely biased noise. Following the techniques that have
utilized materialized symmetries at biased noise to define
decoding strategies for 2D topological codes [7,28,48,52],
we prove the following theorem.

Theorem 1.—The Clifford-deformed 3D surface code
has a threshold error rate of 50% under pure-Z noise.

Proof.—This code has linear materialized symmetries as
shown in Fig. 5. The first set of symmetry operators con-
sists of products of vertex stabilizers along a 1D closed
cycle in the z direction. These products consist solely of
Pauli-Z operators and hence effectively act as identity at
infinite Z bias. The other symmetry consists of products

of XZZX face stabilizers in the x-z and y-z planes along
vertical lines. Due to the conservation laws obeyed by
the syndrome along these symmetry lines, we can inde-
pendently match excitations along these lines as explained
below.

At infinite bias, we have only Pauli-Z errors, which
anticommute with only Pauli-X operators in the stabilizer
generators. Hence one can ignore the Z terms and con-
sider only anticommutation between the Z errors and the
X -stabilizer generators. This is equivalent to considering a
classical parity-check code where Z errors are detected by
a parity-check matrix that denotes the location of X terms
in the stabilizer generators. Thus the Clifford-deformed

(a) (b)

z

yx

FIG. 4. The errors and logical operators of the CSS 3D surface code. (a) Errors in the 3D surface code create two types of syndromes:
pointlike syndromes at the boundary of chains of X errors and looplike syndromes around membranes of Z errors. (b) Examples of
logical X and Z operators of the 3D surface code.

030338-7

ERIC HUANG et al. PRX QUANTUM 4, 030338 (2023)

(a) (b)

FIG. 5. The materialized linear symmetries of the Clifford-deformed 3D surface code. Products of plaquette or vertex operators
along vertical lines are made only of Z operators and are therefore effectively equivalent to the identity in the purely Z infinite-bias
noise regime. (a) The product of vertical plaquette operators (yellow) along two vertical lines. (b) The product of vertex operators
along a vertical line.

3D surface code becomes a classical code, with weight-2
checks on vertices, x-z faces, and y-z faces. These checks
form the linear symmetries discussed earlier and illustrated
in Fig. 5. Errors on the qubits oriented in the z direction can
be decoded by performing matching on the vertices along
the corresponding symmetry lines. An example of decod-
ing of the errors that create syndromes of vertex operators
is illustrated in Fig. 6(a). Errors on qubits oriented in the
x and y directions can be decoded by performing match-
ing on the x-z and y-z faces along each vertical line,
respectively. An example of decoding of face syndromes
is illustrated in Fig. 6(b). If all these 3L2 matchings suc-
ceed, by correctly identifying the position of the errors we
have succeeded in decoding all the qubits. Therefore, the
probability of success is lower bounded by the probabil-
ity of succeeding in all these 3L2 matchings. Hence, for a

fixed physical error rate below 50%, we have

psuccess ≥ (

1 − Ae−αL)3L2 −−−→
L→∞

1 (8)

where α and A are positive constants. Therefore, the code
has a threshold error rate of 50% at infinite Z bias. �

While the decoder described in the proof is sufficient to
obtain a 50% threshold error rate, note that it can be further
improved by taking into account the x-y face syndrome
information as well. Let us consider a failed matching dur-
ing the face decoding step. By definition, it results in a line
of errors on the horizontal qubits along the vertical direc-
tion, as illustrated in Fig. 6(c). This means that all the x-y
face syndromes are identical on every x-y plane. Since we
have a 2D materialized symmetry on x-y planes, we can

(a) (b) (c)

FIG. 6. The decoder used to prove that the Clifford-deformed 3D surface code has a threshold error rate of 50% at infinite Z bias.
(a) The decoding of syndromes on vertices. Under local Pauli errors, vertex syndromes (yellow spheres) can only move in the vertical
direction due to the linear symmetries of Fig. 5(b). We can therefore decode errors on vertical qubits by matching vertex syndromes
along this axis. (b) The decoding of syndromes on faces. Under local Pauli errors, x-z and y-z face syndromes (shown as yellow
squares) can only move in the vertical direction due to the linear symmetries of Fig. 5(a). We can therefore decode errors on the
horizontal qubits by matching the face syndromes along the vertical axis. (c) The decoding of residual face syndromes. The decoder
can be further improved by decoding residual errors coming from failed matchings in (b). A failed matching results in an identical x-y
face syndrome on every x-y plane. These can be decoded using a 2D MWPM algorithm.

030338-8

THREE-DIMENSIONAL TOPOLOGICAL CODES FOR BIASED NOISE PRX QUANTUM 4, 030338 (2023)

decode them using a 2D MWPM algorithm to return to the
code space.

We note that since the 3D toric code can be written
as a hypergraph product of three repetition codes [21],
our above-mentioned Clifford-deformed variant can be
obtained by applying a Hadamard gate to all the qubits
of one of the constituent repetition codes. Hence, it is an
instance of the general Clifford deformation of hypergraph
product codes outlined in Ref. [58].

1. 3D surface code on the checkerboard lattice

Topological codes can be defined on various lattices or
triangulations of a manifold for the same topological order.
The 3D surface code on a checkerboard lattice is shown
in Fig. 7(b). The code is defined using Z-cube stabilizers
on one sublattice and X -triangle stabilizers on the other
sublattice.

Such a variant of the 3D surface code has been used
in the construction of 3D surface codes with a transver-
sal control-control-Z CCZ gate [16]. Moreover, these
checkerboard-lattice codes are instrumental in the con-
struction of the CCZ gate for the 2D surface code [59]
and the 3D-subsystem surface code [25]. This surface-code
variant is defined on a cubic lattice of even dimensions
with qubits sitting on edges. The cubic cells of the checker-
board lattice come in two colors. Half of these cells (i.e., of
one color) have a 12-body Z-cube stabilizer supported on
them, i.e., Ac = ∏

e∈c Ze is product of Z operators over the
12 edges of the cube. The other half of the cubic cells each
have eight triangle-shaped stabilizer operators, associated
with the eight vertices of the cell. A triangle stabilizer
on a vertex v of a cubic cell c is defined as the prod-
uct of three X operators adjacent to v and contained in c,
Bc,v = ∏

e∈c∩v Xe. The stabilizer generators are illustrated
in Fig. 7. Since the topological order is independent of the
lattice details, the syndromes of this code also come in
pointlike and looplike flavors. The syndromes of the cube

(a)

(b) (c)

FIG. 7. The 3D surface code on the checkerboard lattice. (a)
The checkerboard lattice. The yellow cubes represent the cube
stabilizers and the empty cubes represent where triangle stabi-
lizers would go. They have been omitted for clarity but note
that there are eight of them in each empty cube. (b) The origi-
nal CSS stabilizers. (c) The stabilizers of the Clifford-deformed
code. The red edges highlighted in (a) are the edges where the
X ↔ Z Clifford deformation is applied.

stabilizers are pointlike and created at the ends of a string
of Pauli-X errors. The syndromes associated with the trian-
gle stabilizers form a loop around membranes of Z errors,
as shown in Fig. 8(a).

The checkerboard-lattice surface code also encodes
three logical qubits on an even × even × even torus with
the logical operator pairs consisting of nontrivial X strings
and Z membranes along and orthogonal to three lat-
tice directions, respectively [see Fig. 8(b)]. We consider

(a) (b)

FIG. 8. The errors and logical operators of the surface code on a checkerboard lattice. (a) The errors in the surface code on a checker-
board lattice with nontrivial syndromes (yellow). (b) Examples of X and Z logical operators of the surface code on a checkerboard
lattice.

030338-9

ERIC HUANG et al. PRX QUANTUM 4, 030338 (2023)

a Clifford deformation of the checkerboard-lattice sur-
face code that consists of applying a Hadamard opera-
tion on half of the vertical qubits, in a 3D-checkerboard
manner [see Figs. 7 and 7(c)]. This Clifford-deformed
checkerboard-lattice surface code has a 50% threshold
error rate under pure-Z noise. The proof is presented in
Appendix A.

B. 3D color code

The 3D color code can be defined on any 4-valent 3D
lattice the cells of which are 4-colorable, i.e., one should
be able to assign one of four colors to each of the cells such
that any two cells sharing a face have different colors. Here,
we study the 3D color code defined on the truncated octa-
hedral lattice with periodic boundary conditions, as shown
in Fig. 9(a). In this lattice, each cell is a truncated octa-
hedron, made of 24 vertices, six square faces, and eight
hexagonal faces. X -stabilizer generators are defined on
every cell, and Z stabilizers on every face, as shown in
Fig. 9(b). Coloring the cells using yellow, red, blue, and
green, we can describe the lattice as the interlacing of a
red-yellow and a blue-green sublattice, where cells of each
sublattice are connected via square faces. Cells belonging
to different sublattices are connected via hexagonal faces.
Here, we use the convention of describing faces by the
two colors of their adjacent cells. For instance, a face at
the intersection of a yellow cell and a red cell is called a
yellow-red face.

There exists a mapping between color codes and sur-
face codes in any spatial dimension. A string of X errors
also produces a pair of pointlike syndromes on 3-cells
and a membrane of Z errors also produces a looplike syn-
dromes on 2-cells (faces). If we impose periodic boundary
conditions on the lattice defined above, the code encodes

nine logical qubits, with three X -string logical operators
on each direction and three Z-membrane logical operators
on each plane. The similarities between the two codes can
be understood using a folding procedure, which maps three
copies of the 3D surface code to the 3D color code [15,60].
However, the 3D color code has some unique properties,
such its transversal T gate and its flexible subsystem vari-
ant, making it a competitive candidate for a practical 3D
code.

To tailor the 3D color code to biased noise, we select
all yellow-red squares normal to the x direction and apply
a Hadamard to diagonally opposite qubits of each square,
as illustrated in Fig. 9(a). We now show that the resulting
code has a 50% threshold error rate at infinite Z bias.

Theorem 2.—The Clifford-deformed 3D color code has
a threshold error rate of 50% under pure-Z noise

Proof.—We start by decoding the syndromes on the 3-
cells, effectively supported on four qubits at infinite Z bias
[the purple qubits in Fig. 9(a)]. For this, we exploit two
materialized linear symmetries, represented in Figs. 10(a)
and 10(b), along the x and z directions, respectively. By
the weight-reduction technique, matching cell syndromes
along these two directions results in new weight-2 checks,
which form linear symmetries along the y axis, as shown
in Fig. 10(c). Matching along these resulting linear sym-
metries completes the decoding of the syndromes on the
3-cells. Since all steps consist of decoding repetition codes,
we have a 50% threshold error rate on the cell sector.

The decoding of the face syndromes is done in three
steps, each of which decodes errors on a different subset of
the qubits. In the first step, illustrated in Fig. 11, we note
the existence of a linear symmetry along the y direction.
The main unit of this symmetry is a four-body check con-
structed by taking the product of four adjacent hexagons
in a red or yellow cell, as shown in Fig. 11(a). Matching

(a)

(b)

FIG. 9. The 3D color code on a truncated octahedral lattice with periodic boundary conditions. (a) The truncated octahedral lattice,
where qubits live on vertices and stabilizers live on cells and faces. The purple vertices correspond to qubits that we choose to Clifford
deform with a Hadamard operation. (b) The original stabilizers. Z-stabilizer generators are supported on the 24 qubits (blue vertices)
of every cell. X -stabilizer generators are supported on every face, both hexagonal and square.

030338-10

THREE-DIMENSIONAL TOPOLOGICAL CODES FOR BIASED NOISE PRX QUANTUM 4, 030338 (2023)

(a) (b) (c)
z

x
y

FIG. 10. The linear symmetries of the cells. The red qubits are the Clifford-deformed ones, which effectively become the support of
the cell stabilizers in the infinite-Z-bias regime. (a) The symmetry of the yellow and red cells along the x axis. (b) The symmetry of the
blue and green cells along the z axis. (c) Matching along the symmetries (a) and (b) gives rise to 2-body checks that form new linear
symmetries along the y axis (black lines).

along this symmetry results in new weight-2 checks on the
yellow-red faces of the y-z plane, which can be combined
with effectively weight-2 checks on the blue-green faces of
the x-y plane in an alternating fashion to form a linear sym-
metry along the x axis, as shown in Fig. 11(b). Matching
along such symmetries completes the decoding of errors
on the purple qubits in Fig. 11(b).

In the second step, illustrated in Fig. 12, we note
that the hexagons are now effectively weight-4 and form
linear symmetries in the y direction when combined
with square faces in a square-hexagon-hexagon repeating
manner. Matching along these symmetries, as shown in

Fig. 12(a), gives us new weight-2 checks, supported on
the ends of either a hexagon-hexagon intersection edge,
or a square-hexagon edge. Combining the weight-2 checks
on hexagon-hexagon edges with the weight-2 checks sup-
ported on the red-yellow squares of the y-z plane, we
obtain new linear symmetries in the z direction, as shown
in Fig. 12(b). Matching along these completes the decod-
ing of errors on the purple qubits of Fig. 12(b).

In the final step, illustrated in Fig. 13, we observe
that the remaining weight-2 checks on square-hexagon
edges obtained in the second step combine with effec-
tively weight-2 checks on yellow-red squares of the x-y

(a)

(b)

FIG. 11. Step 1 of the decoding of the face syndromes. (a) The linear symmetry of the hexagonal faces: multiplying four hexagonal
faces (marked by purple hexagons) on any red or yellow cell gives an eight-body check (red and purple vertices). Since the red
vertices represent Clifford-deformed qubits that can effectively be removed from the stabilizers at infinite Z bias, these eight-body
checks effectively become four-body (purple vertices). The product of these checks along the y axis forms a linear symmetry. (b)
Successful matching along the linear symmetry in (a) gives rise to two-body checks supported on the yellow-red squares of the x-z
plane. Combining them with the checks lying on the green-blue squares of the x-y plane, which are effectively two-body due to the
Clifford deformation, we obtain a linear symmetry along the x direction, represented by the black lines. Matching along these black
lines allows us to decode errors on all purple qubits.

030338-11

ERIC HUANG et al. PRX QUANTUM 4, 030338 (2023)

(a)
(b)

FIG. 12. Step 2 of the decoding of the face syndromes. The red vertices represent the Clifford-deformed qubits (effectively excluded
from the face stabilizers at infinite Z bias), while the black vertices represent the qubits on which errors have already been decoded
in the previous step. (a) Linear symmetries in the y direction, involving weight-4 checks sitting on both squares and hexagons. (b)
Matching along the symmetries represented in (a) results in new weight-2 checks, supported either on ends of hexagon-square edges
or on ends of hexagon-hexagon edges. Combining the new checks supported on ends of hexagon-hexagon edges with the checks
supported on the red-yellow squares of the y-z plane (which are also weight-2 due to the Clifford deformation), we obtain a linear
symmetry along the z axis, represented by the black line. The remaining new weight-2 checks on ends of hexagon-square edges on the
blue-green squares of the y-z plane are used in the next step. Note also that the yellow-red squares of the x-y plane effectively become
weight-2 checks after this step.

plane to form new linear symmetries along the y axis.
Matching along these symmetries decodes the errors on the
remaining qubits.

Since errors on all the qubits have been decoded by per-
forming matching on a polynomial number of repetition
codes, our decoder has a threshold error rate of 50% for
the Clifford-deformed 3D color code. �

C. Fracton codes

Fracton models offer an interesting set of models to
study under biased noise, because the models have intrin-
sically rigid logical operators. This means that under

multiplication by stabilizer generators, the logical opera-
tors do not deform in a topological sense. For instance,
under stabilizer multiplication, a rigid-string-like logical
operator may not deform into a stringlike logical operator
of the same width.

By choosing an appropriate Clifford deformation of the
stabilizers, fracton models can have materialized subsys-
tem symmetries with respect to infinite-bias noise. The
combination of the intrinsic conservation laws in addition
to the conservation laws associated with the materialized
subsystem symmetries with respect to the noise can lead to
decoders with high threshold error rates. Below, we discuss
a few canonical examples of fracton models, the X-cube
model (type-I fracton model), the Sierpiński fracton model

FIG. 13. Step 3 of the decoding of the face syndromes. Using both the weight-2 checks supported on the blue-green squares of the
y-z plane, obtained in the second decoding step, and the checks sitting on the yellow-red squares of the x-y plane (which are weight-2
due to the second step as well), we obtain new linear symmetries along the y axis, shown with black lines. Matching along these black
lines allows us to decode errors on all the remaining qubits shown in purple.

030338-12

THREE-DIMENSIONAL TOPOLOGICAL CODES FOR BIASED NOISE PRX QUANTUM 4, 030338 (2023)

(fractal type I), and the Haah code (type II), along with
their Clifford-deformed codes [61].

1. X-cube model

The X-cube fracton model is the canonical example of
a (foliated) type-I fracton topological order that is defined
by the presence of topological excitations with restricted
mobility. It is characterized by a subextensive ground-
space degeneracy and rigid-string logical operators. A
foliated topological stabilizer model is defined by a foli-
ation structure [62], which implies that the model can be
grown by stacking with a 2D topological state and apply-
ing a local unitary. The X-cube model is 3-foliated, which
implies that stacks of surface codes can be extracted under
a local unitary along all three lattice directions.

The X-cube fracton model [63] is defined on a cubic lat-
tice with qubits on edges. The stabilizer generators come
in two types: the cube stabilizers, defined on each cubic
cell of the lattice as the product of Z operators over the 12
edges of the cube, Ac = ∏

e∈c Ze, and the vertex stabilizers,
defined for each vertex v and orientation u ∈ {x̂, ŷ, ẑ} as the
product of the four X operators adjacent to v and orthog-
onal to u, Bv,u = ∏

e∈v:e⊥u Xe [see Fig. 14(a)]. Considering
the X-cube model on an Lx × Ly × Lz cuboid with peri-
odic boundary conditions, the logical-operator basis has
independent rigid logical string operators that cannot be
deformed into each other, i.e., are inequivalent under stabi-
lizer multiplication. This leads to a macroscopic number of
independent logical-operator pairs and a linear growth of
the number of encoded qubits. These logical operators can
be expressed as X̄ î

k̂,�
, Z̄ ĵ

k̂,�
on pairs of noncontractible loops,

where î �= ĵ �= k̂ run over {x̂, ŷ, ẑ} and � = 0, . . . , Lk − 1.

They are defined as

X̄ x̂
ẑ,� =

∏

x

Xx,0,�,ẑ, Z̄ŷ
ẑ,� =

∏

y

Z0,y,�,ẑ, (9)

and in a similar fashion for other permutations of x, y, and
z, where Xx,y,z,k̂ (Zx,y,z,k̂) denotes a Pauli-X (Pauli-Z) opera-
tor on the edge adjacent to the vertex at coordinates (x, y, z)
pointing in the +k̂ direction for k̂ ∈ {

x̂, ŷ, ẑ
}

. These string
operators are not independent due to the three relations
given by

∏

� X̄ î
k̂,�

= ∏

� X̄ k̂
î,�

and Z̄ î
ĵ ,0

= Z̄ î
k̂,0

. Thus, there
are, overall, 2(Lx + Ly + Lz) − 3 logical-operator pairs.
These string operators are rigid in nature, as is characteris-
tic of type-I models. The rigidity of the string operators
directly corresponds to the restricted mobility of excita-
tions. For example, particles that are pair created by a com-
pletely rigid undeformable string operator are restricted to
move in one dimension and are therefore lineons. Trunca-
tions of logical string operators of X errors on a lattice
plane create syndromes of cube stabilizers at their end
points, as shown in Fig. 15(a). These syndromes cannot
freely move to another plane (under arbitrary noise) with-
out creating other syndromes. Hence, the cube syndromes
are referred to as planons. Similarly, the vertex syndromes
are created at the ends of rigid strings of Z errors. Note
that two of the vertex-stabilizer generators are violated at
each end of the string. This composite syndrome at each
end is referred to as a lineon, since it cannot move (under
arbitrary noise) to another line away from the rigid string,
without creating more syndromes.

We consider a Clifford deformation of the X-cube model
where a Hadamard is applied on all vertical edges, similar
to the Clifford deformation of the 3D surface code on a

(a)

(b)

FIG. 14. The X-cube model. (a) The original stabilizers. (b) The Clifford-deformed stabilizers.

030338-13

ERIC HUANG et al. PRX QUANTUM 4, 030338 (2023)

(a) (b) FIG. 15. (a) Errors in the X-cube
model create two types of syn-
dromes: planons (at cells) and
lineons (at vertices with orienta-
tion). (b) Examples of the X and
Z logical operators of the X-cube
model in red and blue, respectively.

cubic lattice. The Clifford-deformed stabilizer generators
are represented in Fig. 14(b). At infinite Z bias, lineons on
the Clifford-deformed X-cube model can only be created
by Z errors on z edges, while planons can only be created
by Z errors on x and y edges. As a result, we have the
following materialized symmetries: the product of vertical
planons along a vertical line is effectively the identity and
the product of cubes along a horizontal line is effectively
the identity. These symmetries are represented in Fig. 16.
Using the conservation laws associated with these symme-
tries, we prove that Clifford-deformed X-cube model has
a threshold error rate of 50% at infinite Z bias. Note that
using statistical-mechanical simulations, the optimal infi-
nite bias thresholds for the CSS X-cube model with the
cube (fracton) term made of Pauli-X operators have been
found to be 15.2% and 7.5% at infinite X and Z biases,
respectively [64].

Theorem 3.—The Clifford-deformed X-cube model has
a 50% threshold error rate under pure-Z noise.

Proof.—Let us first consider the cube-stabilizer gener-
ators. As illustrated in Fig. 16(a), at infinite bias, these
stabilizer generators are now effectively supported on four
vertical qubits and form independent sheets of infinite-
bias XY surface codes on each layer. We have shown in

Sec. II D that this code has linear symmetries on all its
rows and columns,and by using the weight-reduction tech-
nique, we have proved that it has a threshold error rate of
50%. Since decoding the cube stabilizers at infinite bias is
equivalent to decoding L different XY codes, we can infer
that the cube sector has a threshold error rate of 50%.

Let us now consider the lineon sector. As illustrated
in Fig. 16(b), at infinite bias, vertex stabilizers in the
y-z and x-z planes effectively become two-body checks
between qubits on horizontal edges that form linear sym-
metries along the x and y axes, respectively. The problem
of decoding the lineon sector therefore becomes equiva-
lent to decoding O(L2) repetition codes, which also has a
50% threshold error rate. Therefore, the overall code has a
threshold error rate of 50%. �

2. Sierpiński fractal model

The Sierpiński fractal model, due to Castelnovo, Cha-
mon, and Yoshida [65,66], is the simplest example of
fractal type-I topological order. Fractal type-I topological
order is defined as type-I fracton topological order that
is characterized by the presence of fractal-shaped logical
operators and hence does not admit a foliation structure.

(a) (b)

FIG. 16. The symmetries of the Clifford-deformed X-cube model at infinite Z bias. (a) The cube stabilizers reduce to four-body
checks (red squares) between vertical qubits, forming an independent infinite-bias XY code on each layer. They therefore inherit the
linear symmetries and the 50%-threshold error rate of the XY code (see Sec. II D). (b) The vertex stabilizers in the y-z and x-z planes
effectively become two-body checks (red edges) between qubits on horizontal edges that form linear symmetries along the x and y
axes, respectively.

030338-14

THREE-DIMENSIONAL TOPOLOGICAL CODES FOR BIASED NOISE PRX QUANTUM 4, 030338 (2023)

(a)

(b) (c)

z

x y

FIG. 17. The Sierpiński code, original and Clifford deformed. (a) The original CSS stabilizers, defined on every cube of a cubic
lattice with two qubits per vertex. There are two types: X stabilizers (left) and Z stabilizers (right). (b) The Clifford-deformed X
stabilizers. The Clifford deformation consists of applying a Hadamard on all qubits of vertices on x-z planes of even y. Therefore,
stabilizers alternate between the left and the right versions depending on the parity of y (c) The Clifford-deformed Z stabilizers, using
the Clifford deformation described in (b).

The model is defined on a cubic lattice, where each ver-
tex has two qubits. The stabilizer generators are shown in
Fig. 17(a). This model supports rigid-string operators (cor-
responding to 1D particles or lineons) in the ẑ direction and
a Sierpinski triangle fractal operator that moves topologi-
cal excitations apart in 2D. Hence this model provides an
example with no planons, which is consistent with it not
having a foliation structure [67,68].

We present the Clifford deformation of this model,
where a Hadamard is applied to all qubits of alternating
planes, such as on all x-z planes with an even y coordinate,
as shown in Figs. 17(b) and 17(c). The model has material-
ized symmetries that lead to a threshold error rate of 50% at
infinite bias as stated below. Note that for the original CSS
model, one can use the relation from Ref. [69] involving
the entropy function h(p) for infinite bias threshold error
rates pX (pZ) at infinite X bias (Z bias), respectively, as
follows:

h(pX) + h(pZ) ≈ 1, (10)

where h(p) = −p log2(p) − (1 − p) log2(1 − p) is the
binary entropy. Due to the invariance of the model sta-
bilizers under X ↔ Z permutation, permutation of two
qubits on the sites, and inversion, we have h(pX) = h(pZ).

Together, we obtain h(pZ) ≈ 1/2, which yields an optimal
threshold estimate of pz ≈ 0.11 at infinite bias.

Theorem 4.—The Clifford-deformed Sierpiński code has
a threshold error rate of 50% under pure-Z noise.

Proof.—We first study the Clifford-deformed X stabi-
lizers in Fig. 17(b). At infinite Z bias, these effectively
become two-vertex checks supported on planes of odd y,
oriented either along the x direction or the z direction.
The checks oriented along the x direction have a term IX
on each vertex and form a linear symmetry, as shown in
Fig. 18(a). Matching along it allows us to decode the errors
on the second qubits of the vertices living on planes of
odd y. Once the errors on these qubits have been decoded,
we can use them to simplify the checks oriented in the
z direction. More precisely, all the terms sitting on the
second qubit of a vertex can now be removed from the
check, turning XX into XI. Those updated checks form
a new linear symmetry, shown in Fig. 18(b). Matching
along this symmetry allows us to decode the first qubit
of every vertex living on planes of odd y. The proof for
the Clifford-deformed Z stabilizers follows a similar pat-
tern and is illustrated in Figs. 18(c) and 18(d). Overall, this
decoding strategy is equivalent to decoding a polynomial
number of repetition codes (in the lattice size L), showing
that it has a threshold error rate of 50%. �

030338-15

ERIC HUANG et al. PRX QUANTUM 4, 030338 (2023)

(a) (b) (c) (d)

FIG. 18. The effective symmetries of the Clifford-deformed Sierpiński code under infinite bias. (a) The linear symmetry of the
Clifford-deformed X stabilizers, which allows us to decode errors on the second qubits of vertices on planes of odd y. (b) The new
linear symmetry of the Clifford-deformed X stabilizers obtained after decoding the errors on qubits in (a). Since errors on the second
qubits of the red vertices have all been decoded, the XX terms become XI terms, allowing us to decode the errors on the first qubits of
vertices on planes of odd y. (c) The linear symmetry of the Clifford-deformed Z stabilizers that allows us to decode errors on the first
qubits of vertices on planes of even y. (d) The new linear symmetry of the Clifford-deformed Z stabilizers, obtained after decoding the
errors on qubits in (c) using the same argument as in (b). This allows us to decode errors on the second qubits of vertices on planes of
even y.

3. The Haah code

The Haah code is the canonical example of type-II
fracton topological order, which is characterized by the
absence of string logical operators, the presence of fractal
logical operators, and a subextensive ground-space degen-
eracy that can fluctuate with the system size. The stabilizer
generators of the Haah code (CSS model) are shown in
Fig. 19(a).

We present the Clifford-deformed Haah code in
Figs. 19(b) and 19(c), which we prove below to have a 50%
threshold error rate at infinite bias. Note that, similar to the

CSS Sierpiński model, for the CSS Haah code, one can
also use the relation from Ref. [69] involving the entropy
function h(p) for infinite bias threshold error rates pX (pZ)
at infinite X bias (Z bias), respectively, as follows:

h(pX) + h(pZ) ≈ 1, (11)

where h(p) = −p log2(p) − (1 − p) log2(1 − p). And again,
due to the invariance of the model stabilizers under X ↔ Z
permutation, permutation of two qubits on the sites, and
inversion, we have h(pX) = h(pZ). Together, we obtain

(a)

(b) (c)

FIG. 19. The Haah code. (a) The original
stabilizers. The code is defined on a cubic lat-
tice, with two qubits per vertex. Each cube of
the lattice contains both an X and a Z stabi-
lizer. (b) The Clifford-deformed Z stabilizer.
A Hadamard is applied on the two qubits of
half of the vertices, in a checkerboard man-
ner on each layer. As a result, half of the
cells contain the stabilizer on the left and half
of them contain the stabilizer on the right.
(c) The Clifford-deformed X stabilizer, when
applying the transformation described in (b).

030338-16

THREE-DIMENSIONAL TOPOLOGICAL CODES FOR BIASED NOISE PRX QUANTUM 4, 030338 (2023)

h(pZ) ≈ 1/2, which yields an optimal threshold estimate
of pZ ≈ 0.11 at infinite Z bias.

We now state the theorem about the threshold and its
proof.

Theorem 5.—The Clifford-deformed Haah code on a
periodic lattice with dimensions (Lx, Ly , Lz), such that Lz =
2k, Lx = Ly , and gcd(Lx, Lz) = 2, has a threshold error rate
of 50% under pure-Z noise.

Such constraints ensure that the horizontal dimensions
are even, which is required for our checkerboardlike Clif-
ford deformation to be well defined, and that gcd(Lx, Lz)

does not grow with the lattice size, which is needed for
the linear symmetries considered in our proof. Because
the number of encoded qubits in a fractal type-II frac-
ton model such as the Haah code can fluctuate wildly
with the system size, it is subtle to extract the threshold
error rate from an arbitrary family of increasing system
sizes. Nevertheless, there are families of codes satisfying
the above constraints, the number of encoded qubits of
which is constant. We have checked this numerically for
codes of size (2k + 2, 2k + 2, 2k) for k ≥ 2, which have
six encoded qubits, and (2 · 3k, 2 · 3k, 2k) for k ≥ 1, which
have six encoded qubits.

Proof.—Let us call the Clifford-deformed qubits type-A
qubits and the vertices on which they live type-A ver-
tices. We refer to the other half of the qubits (vertices) as
type-B qubits (type-B vertices). Those two types of qubits
alternate in a 2D-checkerboard manner on each horizontal
layer of the lattice. In this language, the Clifford deforma-
tion of the Z-type stabilizers gives stabilizers supported on
type-A qubits only. We call these stabilizers type-A stabi-
lizers. Similarly, type-B stabilizers are those resulting from
the Clifford deformation of the X -type stabilizers and are
supported on type-B qubits only.

Let us start by considering only type-A stabilizers,
which are shown in Fig. 19(b). The decoding strategy is the
same when tackling type-B stabilizers. In the infinite-bias
regime, the Clifford-deformed code becomes a classical
code, with two types of parity-check operators alternat-
ing in a checkerboard manner. Those two types of checks
have weight 4 but one is supported on four vertices and
the other on three. We can observe the presence of a lin-
ear symmetry for the ones supported on four vertices, as
shown in Fig. 20(a). Matching along this symmetry results
in the appearance of new weight-2 checks, with the term
“XI” on one vertex and “IX” on the other vertex. We call
them “XI-IX” checks.

We then consider the other type of check supported
on three vertices. Multiplying it by two “XI-IX” checks,
we obtain a new L-shaped weight-4 check made only of
“IX” terms, as represented in Fig. 20(c). We call them
“L-checks.”

We now use a technique introduced to study the classi-
cal Fibonacci codes [70] and the XYZ color code [11]. We
first note that applying four L-checks as an L results in a
new L-check where the spacing between the nonzero qubits
has doubled but the weight is still 4. Applying the same
process recursively results in a fractal of original checks,
forming an L-check the size of which can be an arbitrary
power of two. This process is shown in Fig. 21(a). Note
that this family of L-checks always lives on a 2D diago-
nal slice of our lattice, which has dimensions (Lx, Lz). This
is due to the choice of periodic boundary conditions and
equal horizontal dimensions.

We now use the fact that Lz = 2k. Applying the frac-
tal process described previously, we can create an L-check
where two terms are separated by a distance of exactly 2k.
Due to the periodic boundary conditions, these two terms

(a)

XI

IX XX

(b)

XI

IX XX

×
XI

IX

×
XI

IX

=

IX
IX

IX

IX

(c)

FIG. 20. Step 1 in the proof of the deformed-Haah-code 50% threshold error rate. (a) The linear symmetry. Matching along it allows
a weight reduction to weight-2 checks (red edges). (b) A visualization of the second stabilizer type on a 2D plane. (c) A new L-shaped
pure “IX” stabilizer, obtained by multiplying the stabilizer in (b) by the weight-2 checks obtained in (a). We call this an L-check.

030338-17

ERIC HUANG et al. PRX QUANTUM 4, 030338 (2023)

(a)

(b) (c)

FIG. 21. Step 2 in the decoding of the Clifford-deformed Haah code at infinite bias. Yellow dots on vertices represent the application
of an L-check, as shown on the left of (a), whereas red dots represent the qubits in its support. (a) By multiplying the checks in a fractal
manner, we can obtain a similar weight-4 check with any power-of-2 spacing between the qubits in its support. (b) Taking a periodic
lattice with vertical dimension Lz = 2k, we can make two of the qubits cancel out (green) to obtain a new weight-2 check (red). (c)
On any periodic lattice with dimensions (Lx, Ly) such that gcd(Lx, Ly) = 2, diagonal lines wrapping around the torus cover half of the
vertices (red or purple). Therefore, the product of these new weight-2 checks on a line forms a linear symmetry (either red or purple
depending on the starting point).

cancel out, leaving only two qubits in the support of the
check. This new weight-2 check is shown in Fig. 21(b).

As gcd(Lx, Lz) = 2, we can multiply these weight-2
checks on a line to cover exactly Lx qubits, before the line
comes back to itself, as shown in Fig. 21(c).

This is due to the fact that on a periodic lattice with
gcd(Lx, Ly) = g, there are g distinct diagonal lines cov-
ering each a fraction 1/g of the vertices [52]. Since the
dimensions of our diagonal slice are (Lx, Lz), it contains
LxLz vertices and the diagonal line formed by the weight-2
checks covers LxLz/2 vertices. Dividing this by the size
of the weight-2 check, Lz/2, we obtain that the prod-
uct of weight-2 checks on the line covers exactly Lx
qubits.

Therefore, this product is equal to the identity operator
and we obtain a linear symmetry. By translating the large
L-check, we can include any arbitrary qubit of the 2D diag-
onal slice in the support of this linear symmetry. Matching
along them on all the 2D slices therefore results in decod-
ing the errors on second qubits of all the type-A vertices.
Using the “XI-IX” check allows us to decode the errors on
the first qubits of these vertices as well. Finally, applying
the same decoder to the type-B stabilizer, we can decode
errors on all type-B qubits.

Since this decoder has only involved matching on a
polynomial number of repetition codes, we can deduce
that our Clifford-deformed Haah code has a 50% threshold
error rate at infinite bias. �

Note that the choices of Lx = Ly and gcd(Lx, Lz) = 2,
while simplifying the proof, are not strictly necessary to
obtain the desired linear symmetries and the 50% thresh-
old error rate. Relaxing these constraints has the effect
of changing the size of the 2D diagonal slice, as it can
wrap around the torus several times when the horizontal
dimensions are not equal. The new size of the slice can
be shown to be � = LxLy/ gcd(Lx, Ly) = lcm(Lx, Ly). As
a result, the condition to obtain a linear symmetry on the
weight-2 checks is modified: we want the number of terms
in the linear symmetry to grow polynomially with the sys-
tem size. As the number of terms is given by the size of
the diagonal line that supports the symmetry, lcm(�, Lz) =
lcm(Lx, Ly , Lz) [71], divided by the size of the weight-2
check, Lz/2, the condition can be reformulated as

lcm(Lx, Ly , Lz)

Lz
= �(poly(Lz)). (12)

The imposition of Eq. (12) with Lz = 2k, and Lx, Ly even
(to guarantee that the Clifford deformation is well defined)
is enough to have a 50% threshold error rate for the Haah
code.

IV. THRESHOLD ERROR RATES AT FINITE BIAS

Using the BP OSD [21,49,50], described in
Appendix B 1, we evaluate the threshold error rates of both

030338-18

THREE-DIMENSIONAL TOPOLOGICAL CODES FOR BIASED NOISE PRX QUANTUM 4, 030338 (2023)

TABLE I. Estimates and uncertainties of the threshold error rate pth for CSS and Clifford-deformed surface codes on a cubic lattice
using different decoders under finite and infinite bias as plotted in Fig. 23(a).

CSS Deformed

Bias ηZ BP OSD (%) Sweep matching (%) BP OSD (%) Sweep matching (%)

0.5 5.95 ± 0.03 4.0+0.3
−0.5 5.99+0.08

−0.1 4.42+0.12
−0.32

1 · · · 5.4 ± 0.4 · · · 5.06+0.06
−0.24

3 12.25+0.05
−0.06 11.48+0.11

−0.19 7.94 ± 0.03 6.7 ± 0.6
10 22.3+0.04

−0.05 14.9+0.5
−1.0 12.12+0.12

−0.11 11.6+0.3
−0.2

30 21.7 ± 0.04 14.6+0.3
−0.7 17.76+0.12

−0.1 19.3 ± 0.3
100 21.46+0.02

−0.04 14.3+0.4
−0.7 23.0+0.6

−0.5 20.6+0.5
−0.7

∞ 21.37+0.04
−0.03 14.59+0.11

−0.18 50 20.7+0.2
−0.3

the CSS and Clifford-deformed 3D surface code defined
on cubic and checkerboard lattices as well as the X-cube
model at different bias ratios over several orders of magni-
tude and at infinite bias. We also estimate threshold error
rates for the surface code on the cubic lattice using the
sweep-matching decoder described in Appendix B 2. We
plot the threshold-error-rate estimates for different values
of bias in Fig. 23. The numerical values of the threshold-
error-rate estimates and uncertainties are listed in Table I
for the surface code on a cubic lattice, in Table II for the
surface code on a checkerboard lattice, and in Table III
for the X-cube model. The estimates are best-fit param-
eters to a finite-size scaling ansatz and uncertainties are
bootstrapped 1σ credible intervals that account for the
finite number of trials and choice of parameters. An in-
depth overview of how these are obtained can be found
in Appendix C. Unless a lower numerical threshold error
rate can be resolved by finite-size scaling, the theoretically
proved 50% threshold error rate is tabulated and plotted for
Clifford-deformed codes at infinite bias.

We note that at moderate biases, 3D surface codes such
as the Clifford-deformed surface code and the CSS sur-
face code on a 3D-checkerboard lattice can have threshold
error rates close to the hashing bound and to those of
2D codes such as XZZX and XY. This offers a noise

TABLE II. Estimates and uncertainties of the threshold error
rate pth for CSS and Clifford-deformed surface codes on a
checkerboard lattice using a BP-OSD decoder under finite and
infinite bias as plotted in Fig. 23(b).

Bias ηZ CSS (%) Deformed (%)

0.5 1.35 ± 0.04 1.25+0.03
−0.07

3 3.74 ± 0.03 2.67+0.06
−0.1

10 10.24 ± 0.09 5.2+0.14
−0.19

15 15.1 ± 0.08 · · ·
20 19.72+0.09

−0.1 · · ·
30 29.09+0.13

−0.16 10.3 ± 0.2
100 28.79+0.12

−0.11 19.3+0.3
−0.2∞ 28.55 ± 0.13 50.0

regime in which one could consider a dimensional jump for
implementation of non-Clifford gates and be able to main-
tain at least the code-capacity threshold error rates. For
high bias, ηZ � 100, the Clifford-deformed surface code
on a cubic lattice beats the CSS surface code on a cubic
lattice in threshold-error-rate performance, with threshold
error rates of 50% and 21.37(4)%, respectively, at infi-
nite bias. The Clifford-deformed code on the checkerboard
lattice at infinite bias also boasts an advantage at infinite
bias. Above modest values of bias, ηZ � 30, the Clifford-
deformed X-cube model outperforms its CSS counterpart.
This is due to the rigid noise symmetries, which allow
decoding in rigid submanifolds.

The relative difference in the finite-bias thresholds for
the three codes (with 50% infinite-bias threshold) in Fig. 23
can be attributed to the differences in the weights of
logical-operator representations with more Pauli-Zs than
Pauli-X s and Pauli-Ys. These differences in turn arise due
to the fact that the minimum-weight logical-operator rep-
resentations of the 3D surface codes are membranelike,
while the minimum-weight logical-operator representa-
tions of the X-cube model are stringlike. Among the two
types of 3D surface codes, there is a difference in the
weights of logical-operator representations due to the dif-
ferences in average stabilizer weights corresponding to the
pointlike and looplike syndromes, respectively.

TABLE III. Estimates and uncertainties of the threshold error
rate pth for the CSS X-cube model and Clifford-deformed X-cube
model using a BP-OSD decoder under finite and infinite bias as
plotted in Fig. 23(c).

Bias ηZ CSS (%) Deformed (%)

0.5 4.54+0.05
−0.08 4.6+0.3

−0.7
3 10.64+0.06

−0.07 5.9+0.4
−0.8

10 9.3+0.2
−0.4 7.5+0.4

−1.0
30 8.9+0.3

−0.6 10.7 ± 0.4
100 8.9+0.2

−0.3 17.4+0.3
−0.2

∞ 9.25 ± 0.08 17.2+0.17
−0.12

030338-19

ERIC HUANG et al. PRX QUANTUM 4, 030338 (2023)

TABLE IV. The girth and split-belief numbers for four of the 3D codes studied in this work. The girth is the size of the shortest cycle
of the Tanner graph, while the split-belief number is the weight of the smallest error that causes a degenerate syndrome. We consider
here the X and Z parts of the Tanner graph separately, as we are using independent BP-OSD decoders for each error type. Here, the
X -girth (Z-girth) corresponds to the girth when considering only the X (Z) stabilizers in the Tanner graph, and similarly for the X -
and Z-split-belief numbers.

Code X -girth Z-girth X -split-belief Z-split-belief
number number

3D surface code (cubic) 8 8 2 3
3D surface code (checkerboard) 8 6 2 6
X-cube model 8 4 2 6
3D color code 4 6 2 12

A. Limitations of the BP OSD

As discussed in Appendix B 1, the performance of the
BP OSD depends greatly on the characteristics of the code,
particularly its girth (the size of the shortest cycle on the
Tanner graph) and its split-belief number (the weight of
the smallest error that produces a degenerate syndrome).
The latter can be calculated by taking the weight of the
smallest even-weight stabilizer and dividing it by two. We
show these two numbers for different 3D codes in Table IV.

A common phenomenon that appears for codes with
low girth or a low split-belief number is the receding
threshold-error-rate problem: the apparent threshold error
rate decreases with increasing system sizes [22]. We have
observed this finite-size effect for the 3D surface code on
a checkerboard lattice and for the X-cube model, while the
3D surface code on a cubic lattice did not have this issue
for sizes up to 22. An illustration of this phenomenon is
shown in Fig. 22 for the X-cube model at bias η = 10.
Consequently, on codes where the BP OSD suffers this

limitation, there is greater uncertainty in the threshold-
error-rate estimates upon using the bootstrapped finite-size
scaling method described in Appendix C, as can be seen
in, e.g., Table III.

We also perform preliminary experiments on the 3D
color code but we observe a strong receding threshold
effect with an apparent threshold error rate orders of mag-
nitude below its optimal value. This can be explained by
the particularly low girth of the 3D color code and it
suggests that we should not pursue these experiments.

Note that while we have provided decoders with a 50%
threshold error rate at infinite bias for all the Clifford-
deformed codes studied in this paper, the BP OSD does not
always achieve that threshold; e.g., in the X-cube model as
seen in Fig. 23(c) and Table III, where the threshold error
rate is only 17.2(3)%. Nevertheless, the Clifford-deformed
X-cube model still outperforms the CSS X-cube model,
which has a lower threshold error rate of 9.25(10)% when
decoding with the BP OSD.

(a) (b)

FIG. 22. The size-dependent reduction in the apparent threshold error rate using a BP-OSD decoder for increasing Clifford-deformed
X-cube model lattice sizes under Z-biased noise with ηZ = 10. (a) The rate of logical Z errors versus the physical error rate p . Note that
the apparent intersection of the curves for L = 13 is somewhat different from that of those for L = 21. Despite the apparent threshold-
error-rate shift, we still provide a threshold-error-rate estimate by regression with the finite-size scaling ansatz. (b) The logical Z error
rate versus the rescaled physical error rate x = (p − pth)

1/ν , where the threshold error rate pth and the critical exponent ν have been
estimated by fitting to a finite-sized scaling ansatz, for which the best-fit curve and 1σ fits are plotted against data points colored by
the code-lattice size, as detailed in Appendix C.

030338-20

THREE-DIMENSIONAL TOPOLOGICAL CODES FOR BIASED NOISE PRX QUANTUM 4, 030338 (2023)

(a)

(b)

(c)

FIG. 23. The threshold error rate pth versus the dephasing bias ηZ for some CSS and Clifford-deformed 3D topological codes. (a)
The BP OSD and sweep-matching threshold error rates of the 3D CSS surface code and the Clifford-deformed surface code on a
cubic lattice. (b) The BP-OSD threshold error rates of the CSS and Clifford-deformed surface codes on a checkerboard lattice. (c) The
BP-OSD threshold error rates of the CSS and Clifford-deformed X-cube model.

V. ROTATED LAYOUT AND SUBTHRESHOLD
SCALING

A. Rotated layout for the 3D surface code

We now define a rotated layout for the 3D surface
code. The new lattice is obtained by rotating the coor-
dinates about the vertical z axis by 45◦ such that the
horizontal qubits formerly living on x and y edges now
live on vertices on horizontal x-y planes, while vertical
qubits formerly living on z edges now live on vertices
floating between horizontal x-y planes. Nevertheless, we

continue to refer to qubits living on x-y planes as hor-
izontal qubits and qubits floating in between x-y planes
as vertical qubits. Former vertex operators become octa-
hedron stabilizers, former vertical face stabilizers become
diamond stabilizers, and former horizontal face stabilizers
become square stabilizers. Such a rotated layout preserves
the distances (dX , dZ) for both Pauli-X and Pauli-Z logical
operators, while using roughly half the number of physical
qubits compared to the regular layout. This new lattice is
illustrated in Figs. 24(a) and 24(b) for open and periodic
boundary conditions, respectively.

030338-21

ERIC HUANG et al. PRX QUANTUM 4, 030338 (2023)

(a) (b)

(c)

FIG. 24. The Clifford-deformed 3D surface code on a rotated layout with smooth boundaries at the top and bottom. In this repre-
sentation, qubits live on vertices, while stabilizers live on octahedra (orange) and faces (blue), which are either diamonds between x-y
planes or squares on x-y planes. (a) A 4 × 4 × 3 rotated lattice with open boundaries. (b) A 4 × 3 × 3 rotated lattice with periodic
boundaries. Note that although the horizontal x-y planes are always periodic, if one of the dimensions along x or y is odd, then the
diamonds in between the x-y planes are not periodic along that direction, as illustrated here (the blue diamonds are not periodic in the
length-3 direction). (c) Clifford-deformed stabilizer generators: (left to right) an octahedron acting as XZZX on horizontal qubits and
as Z on vertical qubits above and below, a diamond acting as Z on horizontal qubits and as X on vertical qubits, a diamond acting as
XXXX, and a square acting as XZZX on horizontal qubits.

Note that for periodic boundary conditions with one odd
horizontal dimension, such as in Fig. 24(b), the horizon-
tal planes are periodic in both directions, but the vertical
diamonds are not periodic in the odd-length direction,
resulting in a seam across which the checkerboard pat-
tern of the horizontal planes of octahedron and horizontal
square stabilizers are incompatible, and vertical qubits
are not connected by diamond stabilizers. To ensure that
the octahedron and square stabilizers commute across this
seam, stabilizers touching the seam on only one chosen
side are modified by introducing “defects” at every hor-
izontal qubit on the seam, where a Hadamard is applied
to modify these stabilizer definitions with X ↔ Z at these
defects, as illustrated in Fig. 25(a).

To Clifford deform the code, we apply a Hadamard
only on every second horizontal qubit on each x-y plane
in a checkerboard manner, while leaving vertical qubits
untouched, such that the resulting Clifford-deformed sta-
bilizers are as shown in Fig. 24(c). In the case of an
odd-length lattice, even the stabilizers with defects on

the seam will be of this form after Clifford deformation.
Consequently, all the octahedron and horizontal square sta-
bilizers act as XZZX when restricted to horizontal planes,
as shown in Fig. 25(b), forming Lz coupled layers of 2D
XZZX codes.

B. Pure-Z logical-operator representative

The 2D XZZX code on a rotated layout with periodic
boundaries and coprime dimensions has pure-Z logical
operators supported on O(L2) = O(n) physical qubits [7].
The intuition behind this fact is that syndromes propagate
on the diagonals and when the dimensions of the lattice are
coprime, strings of errors need to wrap around the whole
torus in order to form a nontrivial loop. As a consequence,
the logical error rate p̄ for purely Z-biased noise scales as

p̄ ∝ e−α(p)dZ = e−α(p)n (13)

when the physical error rate p goes to zero, where α(p) is
a polynomial in p and dZ is the Z-distance of the code.

030338-22

THREE-DIMENSIONAL TOPOLOGICAL CODES FOR BIASED NOISE PRX QUANTUM 4, 030338 (2023)

X

X

X

X
Z

Z

Z

Z
X

X

X

X
Z

Z

Z

Z

Z

Z

Z

Z
X

X

X

X
Z

Z

Z

Z
X

X

X

X

X

X

Z

Z
Z

Z

X

X
X

X

Z

Z
Z

Z

X

X

(a)

X

Z

Z

X
X

Z

Z

X
X

Z

Z

X
X

Z

Z

X

X

Z

Z

X
X

Z

Z

X
X

Z

Z

X
X

Z

Z

X

X

Z

Z

X
X

Z

Z

X
X

Z

Z

X
X

Z

Z

X

(b)

FIG. 25. The horizontal layer of a 3D surface code on a
rotated layout with odd × even horizontal dimensions and peri-
odic boundary conditions with a seam (dashed), like that of
Fig. 24(b). The restricted action of the octahedron stabilizers
(orange) and the horizontal square stabilizers (blue) on horizontal
qubits (vertices) in the layer are labeled. The diamond stabiliz-
ers between adjacent layers, the shadows of which are drawn
as faint blue lines, are disconnected across the seam. (a) The
original stabilizers. Stabilizer terms modified by defects on the
seam are labeled in bold. Qubits where the Clifford deforma-
tion is applied as a Hadamard are highlighted in purple. (b) The
Clifford-deformed stabilizers. Note that all stabilizers restricted
on the plane are of the form XZZX, including those on the seam.

We establish a similar result for the Clifford-deformed
3D surface code, summarized in the following theorem.

Theorem 6.—(lowest-weight Z-only logical). Consider
an L × (L + 1) × Lz Clifford-deformed 3D-rotated surface
code with periodic boundary conditions. If L ≡ 1 or 2
mod 4, then the lowest-weight logical operator that con-
sists of only I and Pauli-Z operators acts with Z on all
horizontal qubits.

This means that the Z-distance dZ scales as O
(

L3
)

or, in
other words, the logical error rate for pure-Z-biased noise
scales as

p̄ ∝ e−α(p)n. (14)

We show here that under pure-Z-biased noise, the
minimum distance of a rotated Clifford-deformed 3D

surface code (with periodic boundary conditions) can
scale as O(L3). Recall that our code has two types of
qubits—horizontal qubits that live on horizontal planes
and vertical qubits that live on vertical edges. We can
establish the following theorem.

Proof.—As we only consider Z errors, it suffices to
work with classical parity-check operators that detect Z
errors rather than the full quantum stabilizers, using the
maps I �→ 0, X �→ 1, Y �→ 1, and Z �→ 0. The horizon-
tal parity-check operators are all horizontal squares of the
form 0110, while there are two types of vertical parity
checks—1111 and 0110 (see Fig. 26). We divide our proof
into three distinct parts. In (1), we show that if a Z-logical
has support in a horizontal qubit, then it has support in
the whole horizontal layer containing this qubit. In (2), we
show that if a Z-logical has support in a horizontal layer
and L ≡ 1 or 2 mod 4, then it has support in all horizon-
tal layers. Finally, we show in (3) that a Z-logical cannot
have support uniquely in vertical qubits. It shows that if
L ≡ 1 or 2 mod 4, the minimum-weight logical is the one
with all horizontal qubits activated.

(1) Let L be a pure-Z logical with a horizontal qubit
in its support. We show that L is supported on the
whole horizontal layer containing this qubit. This
problem reduces to showing that there is always a
weight-2 parity check between every pair of qubits
in a chosen layer. Indeed, if that is the case, it
means that the parity of every pair of qubits must
be 0, which eliminates the possibility of the layer
not being entirely composed of 0 or 1. To prove
this, we note that every diagonal line in the 2D
coprime lattice forms a parity check with a 1 at
its boundary, as illustrated in Fig. 27(a). Since
the lattice has coprime dimensions, there exists
a diagonal line that goes through all the qubits
before looping to itself. In particular, this line goes
through every pair of qubits, which achieves our
proof.

(2) If L ≡ 1 or 2 mod 4, this means that one of the
directions contains 4k + 2 cells, for some inte-
ger k ≥ 0. Consider a parity-check operator that
consists of a product of parity-check operators in

FIG. 26. Stabilizers can be converted into binary parity checks for Z errors.

030338-23

ERIC HUANG et al. PRX QUANTUM 4, 030338 (2023)

(a) (b)

FIG. 27. Proof that the pure-Z logical of our tailored 3D-rotated surface code is supported on all horizontal qubits of the code. (a) A
parity check between any two horizontal qubits (red dots) can be constructed by wrapping around the coprime plane along a diagonal
(red squares). (b) The product of zigzag parity-check operators along the 4k + 2 periodic direction, which consists of 2k + 1 0110-type
checks and 2k + 1 1111-type checks.

a zigzag fashion that wraps through the periodic
boundaries of the vertical qubit lattice, as shown
in Fig. 27(b). Such a chain would be made up of
2k + 1 checks of type 1111 and 2k + 1 checks of
type 0110. Their product is an operator that has sup-
port on 2k + 1 horizontal qubits on the horizontal
layer below and 2k + 1 horizontal qubits on the hor-
izontal layer above, in an identical manner. Recall
from (1) that there exists a parity operator that acts
on any two horizontal qubits on the same layer. By
composing this pairwise parity check between every
pair of qubits on a layer, the layers can be removed
pairwise, leaving only one remaining qubit on that
layer. The exact procedure can be applied to the
other layer, resulting in a parity-check operator that
acts only on two qubits, one in each layer. This pro-
vides a constraint that the Z-only logical must be the
same between layers of horizontal qubits; i.e., either
all horizontal qubits are I or all horizontal qubits
are Z.

(3) We show here that there cannot be a logical opera-
tor that has support only on vertical edges. We first
note that there is only one logical qubit encoded in
the Clifford-deformed 3D-rotated surface code. One
pair of anticommuting logical operators has a string
of horizontal qubits of the form XZXZ · · · and a
membrane of horizontal qubits made of Y opera-
tors. Since both the string and the membrane logical
operators do not act on vertical qubits, they would
commute with an only-vertical operator. And since
there is only one logical qubit, such an operator
cannot be a logical operator.

The operator that acts with Z on all horizontal qubits is a
valid logical since it anticommutes with the Y-membrane
logical and it commutes with all the stabilizers. We have
shown that there cannot be a pure-Z logical of lower weight
that acts nontrivially on a horizontal qubit or that is sup-
ported only on vertical qubits. Therefore, the minimum-
weight Z-only logical is one that acts as Z on all horizontal
qubits. �

Note that the proof fails if the even dimension is not
4k + 2 for some integer k, as the constraint between layers
[see (2)] does not apply, in which case the scaling becomes
O(L2) instead.

C. Robustness of the Z-weight scaling

We note that, as in the 2D case [72], the above state-
ment is not robust, in the sense that allowing for a single
X in our logical operator drops the effective scaling down
from O(L3) to O(L2). This can be seen in Fig. 28, where
we present an example of a logical operator that has O(1)

Pauli-X s and
(L2) Pauli-Zs.
However, we show that there is no string logical opera-

tor that contains O(L) Zs and O(1) X s as follows.
Theorem 7.—In a 3D-rotated surface code the dimen-

sions of which satisfy the assumptions of Theorem 6,
any logical operator containing O(1) Xs also contains

(L2) Zs.

Proof.—To prove this theorem, we adopt the follow-
ing strategy. We first show that if such a logical operator
exists, it must belong to the same coset as the logical string
operator that comes from the Clifford deformation of an
X -string logical operator. This logical operator, which we
call the XZ string, by virtue of it having alternating X s and
Zs along its length, is represented in Fig. 28(a). We then
derive all the transformations of this string, through the
application of stabilizers, which results in O(1) X s on hor-
izontal qubits. For that, we show that this is equivalent to
finding all the solutions of a matching problem on a 2D lat-
tice and we prove that all such solutions necessarily result
in creating
(L2) Zs on horizontal qubits.

Let us start by showing that our string logical opera-
tor must be logically equivalent to the XZ string. Since
the XZ string is free to move in 3D by application of sta-
bilizer generators, any other string logical operator must
commute with at least one of its instances by avoidance.
Moreover, the 3D-rotated surface code with the dimen-
sions of Theorem 6 only encodes one qubit. Therefore,
any other string logical operator must either be trivial or
logically equivalent to the XZ string.

030338-24

THREE-DIMENSIONAL TOPOLOGICAL CODES FOR BIASED NOISE PRX QUANTUM 4, 030338 (2023)

(a) (b)

FIG. 28. An example of a membrane logical operator made of O(1) X s and
(L2) Zs. (a) The membrane can be obtained by starting
from a string logical made of alternating X s (red vertices) and Zs (blue vertices) and applying stabilizers (highlighted in the figure)
along the diagonal lines connecting pairs of X s. This has the effect of annihilating all the connected pairs of X s, leaving only one
unpaired X in the logical operator and a trail of
(L2) Zs. (b) The resulting membrane logical operator.

We now show that any logical operator equivalent to the
XZ string with O(1) X s on the horizontal qubits also has

(L2) Zs on the horizontal qubits. This statement, while
restricted to the horizontal qubits, implies the stronger
result that requiring O(1) X s on both the horizontal and
vertical qubits leads to the presence of
(L2) Zs in the
operator. Therefore, we ignore the vertical qubits in the rest
of the proof.

The goal is now to show that, by applying stabilizers
on the XZ string, we can eliminate all X s except for O(1)

of them. To see how X s can be moved and eliminated,
let us focus on the X part of the stabilizers. This cor-
responds to the parity-check operators of Fig. 26. Since
we choose to ignore the vertical qubits, we consider the
restriction of these stabilizers to the horizontal qubits. The
final restricted operators are all weight-2. We can there-
fore represent all the horizontal qubits and stabilizers on a
2D lattice, constructed by taking a diagonal slice of the
3D-rotated surface-code lattice that is vertical and runs
parallel to the line connecting a pair of X s on a horizontal
square stabilizer. Since the code has coprime dimensions,
there is only a single such diagonal slice on which all
the horizontal qubits sit. This 2D lattice is represented in
Fig. 29(a).

The problem can now be formulated as a matching prob-
lem on this 2D lattice. Indeed, since the stabilizers have
X -weight 2 restricted on horizontal qubits, the X s can
only be annihilated in pairs, by applying a chain of sta-
bilizers that connects the pair. Since we allow O(1) X s to
remain in the logical operator, the more precise problem
is to match all but O(1) X s. Any logical operators with
O(1) X s can then be seen as a different solution to this
matching problem.

The next step is to count how many Zs are created
for each matching solution. When applying a horizontal
stabilizer, which is either an octahedron stabilizer or a
horizontal square stabilizer, two Zs are introduced on the
horizontal qubits, located Ly + 1 vertices to the left and
to the right of the stabilizer as viewed on the 2D diago-
nal slice. Note that additional Zs are also introduced on

the vertical qubits for octahedron stabilizers. An example
of a matching solution with its introduced Zs is shown in
Fig. 29(b). To count them, we note that any matching solu-
tion has an alternation of even- and odd-parity sections,
where a section is defined as the space between two origi-
nal X s and its parity is defined as the number of horizontal
stabilizers applied on each column of the section, modulo
two. Since we can choose O(1) X s that are not matched,
this alternating parity pattern breaks at these unmatched
X s, where either two even-parity sections or two odd-
parity sections follow one another. This can be seen in the
rightmost sections of Fig. 29(b). However, since there are
only O(1) unmatched X s, the number of such breaks in
alternation is also O(1).

We can then use this last fact to prove that the number of
Zs is
(L2). Indeed, the number of Zs on a given column
of horizontal qubits is, by construction, equal to the num-
ber of stabilizers applied Ly + 1 columns to the left and
to the right. Those two columns of stabilizers are 2Ly − 1
edges apart and since the size of a section is 2Ly edges, they
belong in different sections as long the column of Zs is not
precisely in the middle of a section. Excluding these O(L)

columns, as well as the O(L) columns located Ly edges
to the left and to the right of a parity-alternation break-
ing point, of which there are only O(1), we can see that the
number of Zs applied to a given column is equal to the sum
of the number of Zs in an odd-parity and in an even-parity
section. Therefore, in
(L2) columns, there is an odd num-
ber of Zs, where the number of Zs must be at least 1. The
logical operator therefore contains
(L2) Zs. �

This theorem shows that under high dephasing bias,
with a low number of X errors, the subthreshold error
rate scales as O(e−αL2

), similarly to the original 3D-rotated
surface code. However, the number of logical operators
with a low number of X s is expected to be lower in the
Clifford-deformed code and we therefore expect the coeffi-
cient α to be higher. This can be seen through the following
heuristic argument. In any transformation of the XZ string
considered in the proof of Theorem 7, applying a verti-
cal stabilizer creates some X s on the vertical qubits. Those

030338-25

ERIC HUANG et al. PRX QUANTUM 4, 030338 (2023)

(a)

odd even odd even even

(b)

FIG. 29. Proof that there is no string logical made of O(1) Xs and O(L) Zs. (a) All the horizontal qubits can be placed on a long
diagonal slice of size (Lx · Ly , Lz). Considering only X s acting on horizontal qubits, all stabilizers become 2-body terms. The lattice
shown is the diagonal slice of a 3D-rotated surface code with dimensions (10, 3, 4). Horizontal qubits are represented as black vertices,
octahedron stabilizers as orange edges, and face stabilizers as blue edges. The leftmost and rightmost vertices are identified to represent
periodic boundary conditions. The support of the XZ-string logical operator is represented by red (X) and blue (Z) vertices. (b) An
example of a matching solution for two pairs of X s belonging to the XZ-string logical operator. The purple edges represent the
stabilizers used in the matching solution. This results in eliminating all but one of the X s (red), while introducing new Zs (blue) on
horizontal qubits located Ly + 1 vertices to the left and to the right of every horizontal stabilizer used in the matching solution. Every
column of horizontal stabilizers has either an odd or an even number used in the matching solution, which is its parity. All 2Ly − 1
columns of horizontal stabilizers between any two neighboring X s have the same parity, as annotated in purple. Adjacent sections
have different parities, except for the sections around unmatched X s, which are instead of equal parity (the two rightmost sections). As
a result of this parity alternation, there are an odd number of Zs introduced in every column of horizontal qubits, except in columns of
horizontal qubits at the midpoint between neighboring X s and in the columns of horizontal qubits around unmatched X s. Since there
are only O(L) such exceptions (boxed in orange), we deduce that
(L2) Zs have been introduced in the process.

X s cannot be eliminated through the application of other
stabilizers, so vertical stabilizers necessarily increase the
number of X s in the operator. In order to keep only one X
in our operator, the matching must therefore be performed
on the horizontal plane. But for a fixed choice of which
X to keep, there are only two possible matching solutions
confined to the plane. By moving the remaining X on the
plane or choosing different planes, we can deduce that the
number of membrane operators with a single X scales as

(L3). This can be compared to the original 3D-rotated
surface code, where the number of such logical operators
scales exponentially in the system size. This reasoning can
be generalized to logical operators containing O(1) X s.
When more than one X is present, each logical operator
is characterized by the planes in which the X s are sup-
ported and the positions of these X s within these planes.
This is due to the confinement property discussed for the
case of a single X . The number of such choices still scales
polynomially with the system size and hence remains an
exponential improvement compared to the original code.

VI. DISCUSSION AND CONCLUSIONS

In this work, we have presented Clifford deformations
of many 3D topological codes with high quantum memory
threshold error rates for biased Pauli noise. One impor-
tant question following our study is whether it is always
possible to design a Clifford deformation of a topological

stabilizer code such that there exists a decoding strat-
egy with a 50% threshold error rate at infinitely biased
noise. On the basis of the wide range of examples we
have presented in this work, we conjecture that this is
true. We have also presented a rotated layout of the sur-
face code for which choosing appropriate dimensions and
boundary conditions leads to a subthreshold scaling of
exp −O(n), for infinitely biased noise. We have shown
that in the regime of large finite bias, which we model as
the presence of O(1) X errors, this subthreshold scaling
becomes exp −O(L2). It would be interesting to consider
how such geometrical optimizations can improve the code
performance for other 3D codes such as the 3D color code.

Families of random Clifford-deformed surface codes in
two dimensions have been shown to exhibit high thresh-
old error rates and subthreshold scaling better than the
XZZX and XY surface codes [8]. The performance of the
random codes at infinite bias can be intuitively explained
via a mapping to percolation problems. One could con-
sider random Clifford-deformed 3D surface codes and
color codes, for which we expect a similar mapping to
percolation problems and a phase diagram containing a
phase of 50% threshold error rate analogous to the ran-
dom Clifford-deformed surface codes in 2D. It would be
also interesting to study how random Clifford deformations
affect the memory performance of fracton codes at infi-
nite bias, which have intrinsically rigid logical operators
irrespective of the bias.

030338-26

THREE-DIMENSIONAL TOPOLOGICAL CODES FOR BIASED NOISE PRX QUANTUM 4, 030338 (2023)

A natural next step is to extend the code-capacity results
in our work to the phenomenological fault-tolerant sce-
nario as well as the more realistic circuit-level scenario. In
the circuit-level scenario, it becomes important to use bias-
preserving gates to maintain the performance advantage
found for biased noise.

In three dimensions, surface codes have been defined
on fractal lattices with Hausdorff dimension DH = 2 + ε

[29,30]. Our Clifford deformation of the 3D surface code
naturally applies to such fractal surface codes that can be
created by punching holes in the 3D surface code.

The source code for the numerical simulations of
the quantum error-correcting codes, noise models, and
decoders described in this paper is freely available on a
GitHub repository via Ref. [73]. This is the source-code
repository for the PanQEC PYTHON package (pronounced
“pancake”). The vision for PanQEC is to be a collec-
tion of quantum error-correcting codes, noise models, and
decoders, which are amenable to numerical simulation
and interactive 3D visualization. The documentation for
PanQEC is available via Ref. [74], which also includes
tutorials on usage. Furthermore, an online demonstra-
tion of its 3D-visualization capabilities is available via
Ref. [75].

ACKNOWLEDGMENTS

We thank Benjamin Brown for showing how to prove
a nontrivial part of Theorem 1, i.e., the decoding of
the plaquette syndromes. We thank Steve Flammia for
comments, especially for asking whether our rotated lay-
out has the robustness discussed in Sec. V C. We thank
Dan Browne, Michael Gullans, Oscar Higgott, Armanda
Quintavalle, Joschka Roffe, and George Umbrarescu for
comments on the manuscript. A.P. is supported by the
Engineering and Physical Sciences Research Council
(EPSRC) (EP/S021582/1). E.H. was supported by the
Perimeter Scholars International scholarship and the Ful-
bright Future Scholarship. E.H. acknowledges support
from the National Science Foundation (NSF) through
Quantum Leap Challenge Institutes (QLCI) Grant No.
OMA-2120757. Research at Perimeter Institute is sup-
ported in part by the Government of Canada through the
Department of Innovation, Science and Economic Devel-
opment Canada and by the Province of Ontario through
the Ministry of Colleges and Universities. CTC acknowl-
edges support from the Swiss National Science Foundation
through the Sinergia grant (CRSII5-186364), the National
Centres for Competence in Research in Quantum Science
and Technology (QSIT) and The Mathematics of Physics
(SwissMAP), and the ETH Zurich Quantum Center. A.D.
is supported by the Simons Foundation through the col-
laboration on Ultra-Quantum Matter (651438, AD) and by
the Institute for Quantum Information and Matter, an NSF
Physics Frontiers Center (PHY-1733907).

APPENDIX A: PROOF OF 50% THRESHOLD FOR
THE 3D SURFACE CODE ON THE

CHECKERBOARD LATTICE

We have presented a Clifford deformation of the
checkerboard-lattice surface code that consists of apply-
ing a Hadamard operation on half of the vertical qubits,
in a 3D-checkerboard manner [see Fig. 7(a)]. For this
Clifford-deformed code, cube-stabilizer generators are vio-
lated under Z errors on the Clifford-deformed edges, while
the triangle-stabilizer generators are violated by Z errors
on the remaining edges. Using this fact, one can show that
the products of cubes and the products of triangles along
the diagonals of the code are effectively identity for pure-Z
errors. The presence of these linear symmetries gives rise
to the following theorem.

Theorem 8.—The Clifford-deformed checkerboard-
lattice surface code has a 50% threshold error rate under
pure-Z noise.

Proof.—The Clifford deformation we consider for the
checkerboard-lattice surface code consists of applying
a Hadamard on half of the vertical qubits, in a 3D-
checkerboard fashion [see Fig. 7(a)]. In this new code,
under pure-Z noise, cube stabilizers can only be excited
by errors acting on the Clifford-deformed qubits, while tri-
angle stabilizers can be excited by any of the remaining
qubits. We now show that this code has a 50% threshold
error rate under pure-Z noise.

We start by decoding the cube stabilizers. Due to the
Clifford deformation, these stabilizers are now effectively
weight-2 at infinite bias and are involved in some linear
symmetries represented in Fig. 30(a). We can therefore
decode the cubes by performing matching along each
symmetry line.

We then tackle the triangle stabilizers. To decode them,
we can perform matching along the two linear symmetries
represented in Figs. 30(b) and 30(c). One symmetry allows
us to decode all the remaining vertical qubits and the other
all the horizontal qubits.

Since all the steps involve decoding a polynomial num-
ber of repetition codes (in the lattice size L) and the
probability of success is lower bounded by the probability
of correctly decoding all these repetition codes, it shows
that this decoding strategy leads to 50% threshold error
rate. �

APPENDIX B: DECODERS

1. The BP OSD

The BP OSD is a generic decoder for quantum LDPC
codes. Based on a classical technique to improve the iter-
ative decoding of linear codes [76,77], it was introduced
to the quantum domain by Panteleev and Kalachev [49]
and has been shown to have high performance on a large
class of LDPC codes, including topological codes [21,50].

030338-27

ERIC HUANG et al. PRX QUANTUM 4, 030338 (2023)

(a)

(b) (c)

FIG. 30. The linear symmetries of the checkerboard-lattice surface code. (a) The symmetry of the cube stabilizers. Due to the
Clifford deformation, the cube stabilizers become weight-2 and are supported on two diagonally opposite edges (red). Multiplying
cubes diagonally effectively gives the identity. Matching along this line allows us to decode all the Clifford-deformed vertical qubits.
(b) The symmetry of the triangle stabilizers involving vertical qubits only. The product of four triangle stabilizers within a cube gives
a four-body stabilizer supported on the four vertical qubits of the cube (blue and red). Due to the Clifford deformation, this becomes a
two-body term, supported on two diagonally opposite qubits (blue). Multiplying these weight-2 stabilizers on a diagonal line (purple)
gives the identity. Matching along all such lines allows us to decode all the undeformed vertical qubits. (c) The symmetry of the
triangle stabilizers involving horizontal qubits only. The triangles containing a Clifford-deformed qubit become two-body terms after
applying the Clifford deformation. Multiplying them along a line (purple) gives the identity. All the other horizontal qubits of the cube
are involved in a similar symmetry. Matching along all these symmetries allows us to decode all the horizontal qubits of the code.

The BP OSD is built from two components: the belief-
propagation (BP) algorithm, which estimates the probabil-
ity for each qubit to have an error, and the ordered statistics
decoder (OSD), which takes these probabilities as input
and proposes a correction that fits the syndrome. It is par-
ticularly well adapted to the decoding of Clifford-deformed
codes under biased noise, as it naturally takes into account
the nonuniform probability of errors along the different
axes in the Clifford-deformed noise model.

a. Belief propagation

The belief-propagation decoder is one of the most com-
monly used decoders for classical LDPC codes [78]. It
is an inference algorithm that computes an approximation
of the probabilities P(ei|s) that an error has occurred on
each bit i given a syndrome s. A correction operator is
then applied to all the bits i such that P(ei|s) > 0.5. While
computing this marginal probability involves, in princi-
ple, summing over an exponential number of terms, belief
propagation exploits the fact that for LDPC codes, this
sum can be factored into a small number of terms. It then
uses an algorithm called the product-sum algorithm (or
its variant, the min-sum algorithm) to calculate this sum,
by iteratively passing messages between parity checks and
data bits. Belief propagation can be shown to converge to
the exact marginal distribution when the Tanner graph is
a tree. For more general Tanner graphs that can contain
loops, it is used as a heuristic algorithm to approximate
the distribution and it is sometimes called loopy belief

propagation. While the approximation is often acceptable
when the girth [79] of the graph is large, the presence of
short cycles tends to be detrimental to the performance of
the BP [78,80].

Several methods have been proposed in the literature
to generalize belief propagation to quantum codes [50,81–
86]. For instance, one can decode X and Z errors separately
using the classical version of the BP. The potential correla-
tions between X and Z errors can be taken into account by
first decoding X errors, adjusting the channel probabilities
based on the correction, and decoding Z errors with this
adjusted probability, as proposed in Ref. [84]. It has also
been proposed to send vector instead of scalar messages,
to compute the probability P(ei = W|s) that a Pauli error
W ∈ {I , X , Y, Z} has occurred on each qubit i [82]. How-
ever, this results in an increase in complexity compared to
the original BP algorithm and sometimes reduced perfor-
mance due to the presence of shorter cycles in the whole
Tanner graph compared to the X and Z ones. A simpli-
fied message-passing rule has been proposed in Ref. [87]
to reduce this complexity while guaranteeing the same out-
put as the original version but the presence of short cycles
is still hindering its performance. In this work, we have
chosen to decode X and Z errors separately.

Apart from the presence of short cycles in quantum Tan-
ner graphs, a major problem with BP decoding of quantum
codes is the degeneracy problem, also called the split-
belief phenomenon [82]. Indeed, in quantum codes, a
syndrome can often be generated by several equally likely
combinations of errors. By symmetry, the BP algorithm

030338-28

THREE-DIMENSIONAL TOPOLOGICAL CODES FOR BIASED NOISE PRX QUANTUM 4, 030338 (2023)

(a) (b)

FIG. 31. An illustration of the BP-OSD decoder on a 2D surface code. (a) The belief-propagation algorithm takes as input a syn-
drome s (yellow dots) and an error model and computes a probability P(ei|s) of error on each individual qubit (red squares). When the
solution is degenerate (e.g., two chains of errors have minimal weight), a high probability (0.9 shown in the figure) is assigned to all
the solutions. (b) The split-belief phenomenon. In the basic version of belief propagation, a correction operator (red edges) is applied
to all qubits i having P(ei|s) > 0.5. In degenerate cases, it can produce an invalid correction, with some defects remaining. The OSD
algorithm consists of solving the parity-check equation He = s for the most probable set of errors, as found by belief propagation,
guaranteeing that the final corrected state lives in the code space.

outputs the same probability for all these errors and if they
are all higher than 0.5, it applies a correction operator to
all these equally likely errors, resulting in an invalid cor-
rection that does not fit the syndrome. An illustration of a
split-belief problem is shown in Fig. 31.

To mitigate the degeneracy problem, several solutions
have been proposed in the literature, such as: breaking the
degeneracy with random noise [82]; adjusting the error
probabilities when the decoder fails [86]; using a neural
network to learn the BP procedure, with a loss function tai-
lored to avoid degeneracies [88]; using previous messages
in the message-passing update rule [85]; or complement-
ing the BP decoder with a second decoder, such as the
ordered statistics decoder (OSD) [50]. Since the OSD
has recently been shown to outperform other methods for
many different codes [49], we are using this solution in our
work.

b. Ordered statistics decoding

For any classical linear code with a parity-check matrix
H, the following equation, called the syndrome equation,
holds:

He = s. (B1)

Since many errors can correspond to a given syndrome, H
is not directly invertible. The idea of the OSD is to only
solve the system for the most likely errors, as given by the
BP algorithm. More precisely, we sort the columns of H by
increasing probability of error and eliminate them one by

one in that order until the system is full rank. We then solve
the reduced system to find a set of errors that respect the
syndrome equation. The remaining qubits can either be set
to have no error or be searched over for a better correction
using some heuristics [49,50].

In the quantum setting, a similar syndrome equation
holds, where the parity-check matrix and the error vector
can either be written over the field GF(4) or in a symplec-
tic form. For CSS codes, we can also consider X and Z
errors separately and write a syndrome equation for each
of them:

HZeX = sZ, (B2a)

HXeZ = sX. (B2b)

A classical OSD algorithm can then be applied separately
for each equation.

In this work, we use the BP OSD through the PYTHON
library BPOSD developed by Roffe [89]. In particular, we
use the min-sum algorithm for BP and the combination
sweep strategy (to order 50) described in Ref. [50] to
search over the remaining errors in the OSD.

c. Limitations of the BP OSD

While the OSD turns the output of the BP into a valid
correction, the algorithm still suffers from the main draw-
backs of loopy belief propagation as discussed, such as
short cycles and error degeneracies. For instance, the effect
of short cycles can be seen when decoding long strings on
the 2D surface code. When the size of a string is higher

030338-29

ERIC HUANG et al. PRX QUANTUM 4, 030338 (2023)

than 8 (the girth of the surface code when considering
X and Z errors separately), short cycles tend to deterio-
rate the messages passed between the two distant defects.
This phenomenon, called bounded information spread, has
been documented in the literature for the 2D surface and
color codes [22]. As a result, decoding topological codes
of large sizes is often harder for the BP OSD than for
small sizes. This can be observed in some threshold-error-
rate plots where the apparent threshold error rate seems to
shrink when increasing the system size. Therefore, finite-
size approximations of the BP-OSD threshold error rate
might not reflect the true threshold error rate, obtained
when taking the system size to infinity. Examples of this
finite-size effect on 3D codes are given in Sec. IV.

Apart from short cycles, error degeneracies can also
have a negative effect on the BP OSD. In general,
split-belief problems appear around stabilizers with even
weight. Indeed, any error supported on half of an even-
weight stabilizer gives the same syndrome after the appli-
cation of the stabilizer, while the new error has the same
weight. This argument has been used to explain why the
BP OSD performs poorly on the 2D surface code while
performing well on the 3D surface code, observing that the
smallest split-belief appears for weight-2 errors on the 2D
surface code but on weight-3 errors on the loop sector of
the 3D surface code [22]. We call the size of the small-
est error that causes a split-belief the split-belief number
of the code. It can be calculated by taking the smallest
even-weight stabilizer and dividing by two. Examples of
split-belief numbers for different 3D codes are given in
Table IV.

2. Sweep-matching decoder

The sweep-matching decoder on the CSS 3D surface
code uses MWPM [43,90,91] between vertices to correct
for pointlike syndromes and the sweep decoder [19,20]
over face syndromes to correct for stringlike syndromes.
The two sectors are decoded independently and the proce-
dure can be generalized for the Clifford-deformed code by
using the Clifford-deformed stabilizer generators instead.

Implementations of MWPM are easily applicable in 3D
for the Clifford-deformed code and for biased noise by
adjusting the graph weights of the match to match the
known noise parameters. In this work, the PYTHON library
PyMatching [92,93] is used for fast MWPM.

The sweep decoder is a local cellular-automaton
decoder, meaning that it is an iterative algorithm where,
at each step, a correction operator is computed locally
according to the current syndrome using a cellular-
automaton rule. To be of use, such a decoder should be
able to eliminate every syndrome after a number of steps
that is polynomial in the size of the code.

The sweep decoder is based on a cellular automa-
ton called the sweep rule [19]. We now briefly review

the sweep rule in the special case of the simple cubic
lattice. We start by choosing a spatial direction, defined
by a 3D vector �v, called the sweep direction, with the
only condition that it is not parallel to an edge of the
lattice. In practice, we choose the sweep direction from
one of eight possibilities (±1, ±1, ±1). As illustrated in
Fig. 32, we then apply the following rule at each iteration,
simultaneously for all the vertices:

1. Find the three oriented lattice edges, �e1, �e2, and �e3,
pointing away from the vertex and in the same direc-
tion as �v, i.e., such that �ei · �v > 0. Each pair of edges
corresponds to a face of the lattice.

2. If two of these faces are excited, then apply a Z oper-
ator to the intersecting edge. If all three faces are
excited, then apply a Z operator to a random edge
among �e1, �e2, and �e3. Otherwise, do nothing.

In the sweep decoder, we apply the sweep rule Tmax =
O(L) times, where L is the linear lattice size. For lattices
with boundaries, we run the decoder multiple times using
different sweep directions, as described in Ref. [20]. The
sweep decoder can fail in two ways: either if the product
of the original error and the operators applied by the sweep
rule is a nontrivial logical operator or if the syndrome is
nontrivial after Tmax applications of the rule.

We have implemented the sweep-matching decoder and
simulated its performance for 3D surface codes defined on
cubic lattices, with and without boundaries. The code is
available on line [94].

APPENDIX C: NUMERICAL-SIMULATION
DETAILS

To compute the threshold error rate of the different
codes, we have simulated up to ntrials = 10 000 for each
physical error rate p and for each lattice size L. Values
of p were taken in intervals between 0 and 0.5, with a
maximum step size of 0.01, while lattice sizes were cho-
sen to be greater than L = 9 and up to L = 21, using at
least three values of L for each p . We have extracted the
threshold error rate from crossover plots using a common
finite-size scaling regression analysis [43,95,96]. The logi-
cal error simulation data is fitted to the following ansatz for
the logical error rate pL(p , L) as a function of the physical
error rate p and system size L:

pL = A + Bx + Cx2, (C1)

x = (p − pth)L1/ν , (C2)

where pth is the threshold error rate that we seek to evalu-
ate, ν is a critical exponent, and A, B, and C are coefficients
of the quadratic ansatz, all of which are free parameters
to be determined by fitting to the data. Here, x is termed
the rescaled physical error rate, which is zero at the phase

030338-30

THREE-DIMENSIONAL TOPOLOGICAL CODES FOR BIASED NOISE PRX QUANTUM 4, 030338 (2023)

FIG. 32. The greedy sweep rule as applied to a single cell. The top figures enumerate the four possible nontrivial initial syndrome
configurations on the three faces of a cell adjoining the vertex that is furthest from the sweep direction, where faces with nontrivial
syndromes are shaded yellow. The corresponding corrections are shown in the figures below, where the Z edge operator to be applied
as a correction is shown in blue and the corresponding syndromes to be flipped and updated are shaded yellow. In the rightmost initial
configuration, where nontrivial syndromes are on all three faces, the correction to apply is chosen randomly out of the three possible
corrections. This rule is greedily applied to all cells at once and repeated Tmax times.

transition p = pth. That pL is a quadratic function of x is
only expected to be a valid approximation near this phase
transition for x, so only data points with physical error rates
close to the phase transition were used for the fitting.

For each given physical error rate p and system size L,
suppose that nfail trials out of ntrials trials result in a logical
error after running the numerical simulations of sampling
the noise model, syndrome extraction, and decoding. The
logical error rate can then be estimated by pL = nfail/ntrials.

Using these estimated logical error rates, we have run an
optimization procedure to obtain the set of free parameters
(pth, ν, A, B, C) that fits the data the best, as measured by
minimizing the mean-squared error.

Uncertainties for the threshold-error-rate estimate pth
have been calculated using the following bootstrap resam-
pling method.

The first step is to obtain a distribution to sample for esti-
mates of the logical error rate pL for each (p , L), to account

for the finite number of trials ntrials. Starting from a uniform
prior distribution before taking into account the number of
trials and failures, the posterior distribution for pL is a beta
distribution with

pL ∼ Beta (ntrials − nfail + 1, nfail + 1) , (C3)

where Beta(a, b) is a probability distribution with support
over the interval [0, 1] and probability density function,

f (x; a, b) = � (a + b) xa−1(1 − x)b−1

� (a) � (b)
(C4)

for real parameters a and b. Here, � is the gamma function,
with the property that �(n) = (n − 1)!. Thus the logical
error rates pL(p , L) for each p and L can be sampled inde-
pendently from these posterior distributions to produce a
resampled set of pL values to use for fitting. The second

(a) (b) FIG. 33. (a) The total logical error rate
pL versus the physical error rate p for Z-
biased noise with η = 30 decoded with the
sweep-matching decoder. (b) Data collapse
onto the quadratic finite-size-scaling ansatz
with bootstrapped error bars and 1σ fitted
bounds. Clifford-deformed surface code on
cubic lattice, ηZ = 30, sweep matching, all
errors.

030338-31

ERIC HUANG et al. PRX QUANTUM 4, 030338 (2023)

step is to reflect the uncertainty that arises from the choice
of data points, which may be done by resampling with
replacement the set of (p , L) pairs to use.

With these two sources of uncertainty accounted for
by resampling nbs = 100 times, the least-squares fit of
pL(p , L) can be done repeatedly on the resampled data to
produce a set of nbs best-fit parameters {(pth, ν, A, B, C)}
for each resampling. This collection of best-fit parame-
ters can be used to produce error bars on the threshold
error rate pth by taking the 1σ bounds of the resampled
threshold-error-rate estimates to be interpreted as a credi-
ble interval. Note that these uncertainty bounds need not
be symmetrical in upper and lower directions, as seen in
Tables I–III. An example of this fitting is shown in Fig. 33,
with the bootstrapped uncertainty estimates shown in pink
and the best-fit value of pth marked with the red dashed
vertical line. The validity of the ansatz may be vindicated
by visual inspection of the so-called data-collapse plot of
the logical error rate pL over the rescaled physical error rate
x = (p − pth)L1/ν , where all data points collapse onto the
fit line per the quadratic ansatz in Eq. (C1) to within rea-
sonable bounds, as quantified by the 1σ envelope above
and below the fit line. This ensures that the data points

chosen for the finite-size scaling have been chosen suf-
ficiently close to the critical point such that the ansatz is
valid.

To verify the reliability of the estimated threshold error
rates, the average X and Z logical failure rates over every
logical qubit have been used as the logical error rates and
subjected to the same analysis to extract corresponding
threshold error rates. This is important since, due to finite-
size effects, the apparent threshold error rate as determined
by the total logical error rate may be higher than the thresh-
old error rates determined by the logical X and Z error
rates. For the case of the X-cube model, where the number
of logical operators increases with the code distance, the
logical X error rate is determined by taking the average
logical X error rate over all logical qubits. The logical Z
error rate has been calculated analogously.

We have used this procedure to compute the threshold
error rate of both the CSS and Clifford-deformed codes, for
bias ratios ηZ ∈ {0.5, 1, 3, 10, 30, 100, ∞}, sampling more
where interesting features are to be elucidated. Represen-
tative examples of crossover plots of the logical error rate
over the physical error rate along with the ansatz fitting for
both X and Z logical errors are given separately in Fig. 34.

(a)

(b)

FIG. 34. Examples of data-collapse plots
in terms of logical (a) X and (b) Z
errors for the 3D surface code under Z-
biased noise, with ηZ = 30 and decoding
by sweep matching. Note that these are the
same parameters as in Fig. 33 but that the
minimum threshold error rate is slightly
lower than that estimated using the total
error rate in Fig. 33 and is thus a more
conservative estimate.

030338-32

THREE-DIMENSIONAL TOPOLOGICAL CODES FOR BIASED NOISE PRX QUANTUM 4, 030338 (2023)

The above procedure produces best-fit estimates and
credible intervals for the threshold error rate pth with
respect to the total logical error rate, logical X errors,
and logical Z errors, which may differ significantly. To be
conservative, the reported threshold error rate is the mini-
mum of these estimates, as determined by which 1σ (68%
equal-tail) credible interval has the lowest lower bound.

[1] P. Aliferis and J. Preskill, Fault-tolerant quantum com-
putation against biased noise, Phys. Rev. A 78, 052331
(2008).

[2] D. K. Tuckett, S. D. Bartlett, and S. T. Flammia, Ultra-
high Error Threshold for Surface Codes with Biased Noise,
Phys. Rev. Lett. 120, 050505 (2018).

[3] P. Aliferis, F. Brito, D. P. DiVincenzo, J. Preskill, M.
Steffen, and B. M. Terhal, Fault-tolerant computing with
biased-noise superconducting qubits: A case study, New J.
Phys. 11, 013061 (2009).

[4] D. Nigg, M. Muller, E. A. Martinez, P. Schindler, M.
Hennrich, T. Monz, M. A. Martin-Delgado, and R. Blatt,
Quantum computations on a topologically encoded qubit,
Science 345, 302 (2014).

[5] G. Burkard, T. D. Ladd, J. M. Nichol, A. Pan,
and J. R. Petta, Semiconductor spin qubits (2021).
ArXiv:2112.08863.

[6] S. Puri, L. St-Jean, J. A. Gross, A. Grimm, N. E. Frattini,
P. S. Iyer, A. Krishna, S. Touzard, L. Jiang, and A. Blais,
et al., Bias-preserving gates with stabilized cat qubits, Sci.
Adv. 6, eaay5901 (2020).

[7] J. Pablo Bonilla Ataides, D. K. Tuckett, S. D. Bartlett, S. T.
Flammia, and B. J. Brown, The XZZX surface code, Nat.
Commun. 12, 2172 (2021).

[8] A. Dua, A. Kubica, L. Jiang, S. T. Flammia, and M. J.
Gullans, Clifford-deformed surface codes (2022).

[9] K. Tiurev, P.-J. H. S. Derks, J. Roffe, J. Eisert,
and J.-M. Reiner, Correcting non-independent and non-
identically distributed errors with surface codes (2022).
ArXiv:2208.02191.

[10] B. Srivastava, A. Frisk Kockum, and M. Granath, The
XYZ2 hexagonal stabilizer code (2021). ArXiv:2112.
06036.

[11] J. F. San Miguel, D. J. Williamson, and B. J. Brown, A cel-
lular automaton decoder for a noise-bias tailored color code
(2022).

[12] H. Bombín and M. A. Martin-Delgado, Topological Com-
putation without Braiding, Phys. Rev. Lett. 98, 160502
(2007).

[13] H. Bombín, Gauge color codes: Optimal transversal gates
and gauge fixing in topological stabilizer codes, New J.
Phys. 17, 083002 (2015).

[14] A. Kubica and M. E. Beverland, Universal transversal gates
with color codes—a simplified approach, Phys. Rev. A 91,
032330 (2015).

[15] A. Kubica, B. Yoshida, and F. Pastawski, Unfolding the
color code, New J. Phys. 17, 083026 (2015).

[16] M. Vasmer and D. E. Browne, Three-dimensional surface
codes: Transversal gates and fault-tolerant architectures,
Phys. Rev. A 100, 012312 (2019).

[17] N. P. Breuckmann, K. Duivenvoorden, D. Michels, and B.
M. Terhal, Local decoders for the 2D and 4D toric code,
Quantum Inf. Comput. 17, 181 (2017).

[18] K. Duivenvoorden, N. P. Breuckmann, and B. M. Ter-
hal, Renormalization group decoder for a four-dimensional
toric code, IEEE Trans. Inform. Theory 65, 2545 (2019).

[19] A. Kubica and J. Preskill, Cellular-Automaton Decoders
with Provable Thresholds for Topological Codes, Phys.
Rev. Lett. 123, 020501 (2019).

[20] M. Vasmer, D. E. Browne, and A. Kubica, Cellular automa-
ton decoders for topological quantum codes with noisy
measurements and beyond, Sci. Rep. 11, 2027 (2021).

[21] A. O. Quintavalle, M. Vasmer, J. Roffe, and E. T. Camp-
bell, Single-Shot Error Correction of Three-Dimensional
Homological Product Codes, PRX Quantum 2, 020340
(2021).

[22] O. Higgott and N. P. Breuckmann, Improved single-shot
decoding of higher dimensional hypergraph product codes
(2022). ArXiv:2206.03122.

[23] H. Bombín, Single-Shot Fault-Tolerant Quantum Error
Correction, Phys. Rev. X 5, 031043 (2015).

[24] B. J. Brown, N. H. Nickerson, and D. E. Browne, Fault-
tolerant error correction with the gauge color code, Nat.
Commun. 7, 12302 (2016).

[25] A. Kubica and M. Vasmer, Single-shot quantum error cor-
rection with the three-dimensional subsystem toric code
(2021). ArXiv:2106.02621.

[26] This should be contrasted with 2D topological codes,
where, in order to ensure fault tolerance, the noisy error
syndrome must be measured d times for a distance-d code.

[27] H. Bombín, Resilience to Time-Correlated Noise in Quan-
tum Computation, Phys. Rev. X 6, 041034 (2016).

[28] B. J. Brown and D. J. Williamson, Parallelized quantum
error correction with fracton topological codes, Phys. Rev.
Res. 2, 013303 (2020).

[29] G. Zhu, T. Jochym-O’Connor, and A. Dua, Topological
Order, Quantum Codes, and Quantum Computation on
Fractal Geometries, PRX Quantum 3, 030338 (2022).

[30] A. Dua, T. Jochym-O’Connor, and G. Zhu, Quantum
error correction with fractal topological codes (2022)
ArXiv:2201.03568.

[31] Z. Cai, A. Siegel, and S. Benjamin, Looped pipelines
enabling effective 3d qubit lattices in a strictly 2D device
(2022). ArXiv:2203.13123.

[32] B. Buonacorsi, Z. Cai, E. B. Ramirez, K. S. Willick, S.
M. Walker, J. Li, B. D. Shaw, X. Xu, S. C. Benjamin,
and J. Baugh, Network architecture for a topological quan-
tum computer in silicon, Quantum Sci. Technol. 4, 025003
(2019).

[33] M. Akhtar, F. Bonus, F. R. Lebrun-Gallagher, N. I. John-
son, M. Siegele-Brown, S. Hong, S. J. Hile, S. A. Kulmiya,
S. Weidt, and W. K. Hensinger, A high-fidelity quantum
matter-link between ion-trap microchip modules (2022).
ArXiv:2203.14062.

[34] D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang, S.
Ebadi, M. Kalinowski, A. Keesling, N. Maskara, H. Pich-
ler, M. Greiner, V. Vuletić, and M. D. Lukin, A quantum
processor based on coherent transport of entangled atom
arrays, Nature 604, 451 (2022).

[35] J. L. Mallek, D.-R. W. Yost, D. Rosenberg, J. L. Yoder, G.
Calusine, M. Cook, R. Das, A. Day, E. Golden, D. K. Kim,

030338-33

https://doi.org/10.1103/PhysRevA.78.052331
https://doi.org/10.1103/physrevlett.120.050505
https://doi.org/10.1088/1367-2630/11/1/013061.
https://doi.org/10.1126/science.1253742
https://arxiv.org/abs/2112.08863
https://doi.org/10.1126/sciadv.aay590
https://doi.org/10.1038/s41467-021-22274-1
https://arxiv.org/abs/2208.02191
https://arxiv.org/abs/2112.06036
https://doi.org/10.1103/PhysRevLett.98.160502
https://doi.org/10.1088/1367-2630/17/8/083002
https://doi.org/10.1103/PhysRevA.91.032330
https://doi.org/10.1088/1367-2630/17/8/083026
https://doi.org/10.1103/physreva.100.012312
https://doi.org/10.26421/QIC17.3-4-1
https://doi.org/10.1109/TIT.2018.2879937
https://doi.org/10.1103/PhysRevLett.123.020501
https://doi.org/10.1038/s41598-021-81138-2
https://doi.org/10.1103/PRXQuantum.2.020340
https://arxiv.org/abs/2206.03122
https://doi.org/10.1103/PhysRevX.5.031043
https://doi.org/10.1038/ncomms12302
https://arxiv.org/abs/2106.02621
https://doi.org/10.1103/PhysRevX.6.041034
https://doi.org/10.1103/physrevresearch.2.013303
https://doi.org/10.1103/PRXQuantum.3.030338
https://arxiv.org/abs/2201.03568
https://arxiv.org/abs/2203.13123
https://doi.org/10.1088/2058-9565/aaf3c4
https://arxiv.org/abs/2203.14062
https://doi.org/10.1038/s41586-022-04592-6

ERIC HUANG et al. PRX QUANTUM 4, 030338 (2023)

J. Knecht, B. M. Niedzielski, M. Schwartz, A. Sevi, C.
Stull, W. Woods, A. J. Kerman, and W. D. Oliver, Fab-
rication of superconducting through-silicon vias (2021).
ArXiv:2103.08536.

[36] D. Rosenberg, D. Kim, R. Das, D. Yost, S. Gustavsson, D.
Hover, P. Krantz, A. Melville, L. Racz, and G. O. Samach,
et al., 3D integrated superconducting qubits, npj Quantum
Inf. 3, 42 (2017).

[37] J. Chow, O. Dial, and J. Gambetta, IBM Quantum breaks
the 100-qubit processor barrier. https://research.ibm.com/
blog/127-qubit-quantum-processor-eagle (2021).

[38] S. Bartolucci, P. Birchall, H. Bombín, H. Cable, C.
Dawson, M. Gimeno-Segovia, E. Johnston, K. Kieling,
N. Nickerson, M. Pant, F. Pastawski, T. Rudolph, and
C. Sparrow, Fusion-based quantum computation (2021).
ArXiv:2101.09310.

[39] H. Bombín, I. H. Kim, D. Litinski, N. Nickerson, M. Pant,
F. Pastawski, S. Roberts, and T. Rudolph, Interleaving:
Modular architectures for fault-tolerant photonic quantum
computing (2021). ArXiv:2103.08612.

[40] J. Eli Bourassa, R. N. Alexander, M. Vasmer, A. Patil,
I. Tzitrin, T. Matsuura, D. Su, B. Q. Baragiola, S. Guha,
G. Dauphinais, K. K. Sabapathy, N. C. Menicucci, and I.
Dhand, Blueprint for a Scalable Photonic Fault-Tolerant
Quantum Computer, Quantum 5, 392 (2021).

[41] I. Tzitrin, T. Matsuura, R. N. Alexander, G. Dauphinais,
J. Eli Bourassa, K. K. Sabapathy, N. C. Menicucci, and I.
Dhand, Fault-Tolerant Quantum Computation with Static
Linear Optics, PRX Quantum 2, 040353 (2021).

[42] H. Bombín, 2D quantum computation with 3D topological
codes (2018).

[43] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topolog-
ical quantum memory, J. Math. Phys. 43, 4452 (2002).

[44] H. Bombín and M. A. Martin-Delgado, Exact topological
quantum order in D = 3 and beyond: Branyons and brane-
net condensates, Phys. Rev. B 75, 075103 (2007).

[45] S. Vijay, J. Haah, and L. Fu, Fracton topological order, gen-
eralized lattice gauge theory, and duality, Phys. Rev. B 94,
235157 (2016).

[46] B. Yoshida, Exotic topological order in fractal spin liquids,
Phys. Rev. B 88, 125122 (2013).

[47] J. Haah, Local stabilizer codes in three dimensions without
string logical operators, Phys. Rev. A 83, 042330 (2011).

[48] B. J. Brown, Conservation laws and quantum error cor-
rection: Towards a generalised matching decoder (2022).
ArXiv:2207.06428.

[49] P. Panteleev and G. Kalachev, Degenerate quantum LDPC
codes with good finite length performance, Quantum 5, 585
(2021).

[50] J. Roffe, D. R. White, S. Burton, and E. T. Campbell,
Decoding across the quantum low-density parity-check
code landscape, Phys. Rev. Res. 2, 043423 (2020).

[51] S. Bravyi, M. Englbrecht, R. König, and N. Peard, Correct-
ing coherent errors with surface codes, npj Quantum Inf. 4,
55 (2018).

[52] D. K. Tuckett, A. S. Darmawan, C. T. Chubb, S. Bravyi,
S. D. Bartlett, and S. T. Flammia, Tailoring Surface
Codes for Highly Biased Noise, Phys. Rev. X 9, 041031
(2019).

[53] S. J. Beale, J. J. Wallman, M. Gutiérrez, K. R. Brown, and
R. Laflamme, Quantum Error Correction Decoheres Noise,
Phys. Rev. Lett. 121, 190501 (2018).

[54] J. Fern, J. Kempe, S. N. Simic, and S. Sastry, Generalized
performance of concatenated quantum codes—a dynami-
cal systems approach, IEEE Trans. Automat. Contr. 51, 448
(2006).

[55] D. Greenbaum and Z. Dutton, Modeling coherent errors in
quantum error correction, Quantum Sci. Technol. 3, 015007
(2017).

[56] E. Huang, A. C. Doherty, and S. Flammia, Performance of
quantum error correction with coherent errors, Phys. Rev.
A 99, 022313 (2019).

[57] F. Venn, J. Behrends, and B. Béri, Coherent error threshold
for surface codes from majorana delocalization (2022).

[58] J. Roffe, L. Z. Cohen, A. O. Quintivalle, D. Chandra, and E.
T. Campbell, Bias-tailored quantum LDPC codes (2022).

[59] B. J. Brown, A fault-tolerant non-Clifford gate for the
surface code in two dimensions, Sci. Adv. 6, eaay4929
(2020).

[60] M. Vasmer and A. Kubica, Morphing Quantum Codes,
PRX Quantum 3, 030319 (2022).

[61] Type-I fracton models have string logical operators while
type-II do not. Fractal type-I fracton models have fractal-
shaped rigid logical operators.

[62] W. Shirley, K. Slagle, Z. Wang, and X. Chen, Fracton Mod-
els on General Three-Dimensional Manifolds, Phys. Rev. X
8, 031051 (2018).

[63] S. Vijay, J. Haah, and L. Fu, Fracton topological order, gen-
eralized lattice gauge theory, and duality, Phys. Rev. B 94,
235157 (2016).

[64] H. Song, J. Schönmeier-Kromer, K. Liu, O. Viyuela, L.
Pollet, and M. A. Martin-Delgado, Optimal thresholds for
fracton codes and random spin models with subsystem
symmetry (2021).

[65] C. Castelnovo and C. Chamon, Topological quantum
glassiness, Philos. Mag. 92, 304 (2012).

[66] B. Yoshida, Exotic topological order in fractal spin liquids,
Phys. Rev. B 88, 125122 (2013).

[67] A. Dua, I. H. Kim, M. Cheng, and D. J. Williamson, Sort-
ing topological stabilizer models in three dimensions, Phys.
Rev. B 100, 155137 (2019).

[68] A. Dua, P. Sarkar, D. J. Williamson, and M. Cheng, Bifur-
cating entanglement-renormalization group flows of fracton
stabilizer models, Phys. Rev. Res. 2, 033021 (2020).

[69] K. Takeda, T. Sasamoto, and H. Nishimori, Exact location
of the multicritical point for finite-dimensional spin glasses:
A conjecture, J. Phys. A: Math. Gen. 38, 3751 (2005).

[70] G. M. Nixon and B. J. Brown, Correcting spanning errors
with a fractal code, IEEE Trans. Inf. Theory 67, 4504
(2021).

[71] Here, we use the fact that lcm(lcm(a, b), c) = lcm(a, b, c).
[72] O. Higgott, T. C. Bohdanowicz, A. Kubica, S. T. Flammia,

and E. T. Campbell, Fragile boundaries of tailored surface
codes and improved decoding of circuit-level noise (2022).
ArXiv:2203.04948.

[73] https://github.com/panqec/panqec
[74] https://panqec.readthedocs.io
[75] https://gui.quantumcodes.io
[76] M. P. C. Fossorier and S. Lin, Soft-decision decoding of

linear block codes based on ordered statistics, IEEE Trans.
Inf. Theory 41, 1379 (1995).

[77] M. P. C. Fossorier, Iterative reliability-based decoding of
low-density parity check codes, IEEE J. Sel. Areas Com-
mun. 19, 908 (2001).

030338-34

https://arxiv.org/abs/2103.08536
https://doi.org/10.1038/s41534-017-0044-0
https://research.ibm.com/blog/127-qubit-quantum-processor-eagle
https://arxiv.org/abs/2101.09310
https://arxiv.org/abs/2103.08612
https://doi.org/10.22331/q-2021-02-04-392
https://doi.org/10.1103/PRXQuantum.2.040353
https://doi.org/10.1063/1.1499754
https://doi.org/10.1103/PhysRevB.75.075103
https://doi.org/10.1103/physrevb.94.235157
https://doi.org/10.1103/physrevb.88.125122
https://doi.org/10.1103/physreva.83.042330
https://arxiv.org/abs/2207.06428
https://doi.org/10.22331/q-2021-11-22-585
https://doi.org/10.1103/PhysRevResearch.2.043423
https://doi.org/10.1038/s41534-018-0106-y
https://doi.org/10.1103/physrevx.9.041031
https://doi.org/10.1103/PhysRevLett.121.190501
https://doi.org/10.1109/TAC.2006.871942
https://doi.org/10.1088/2058-9565/aa9a06
https://doi.org/10.1103/PhysRevA.99.022313
https://doi.org/10.1126/sciadv.aay4929
https://doi.org/10.1103/PRXQuantum.3.030319
https://doi.org/10.1103/PhysRevX.8.031051
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.1080/14786435.2011.609152
https://doi.org/10.1103/PhysRevB.88.125122
https://doi.org/10.1103/physrevb.100.155137
https://doi.org/10.1103/physrevresearch.2.033021
https://doi.org/10.1088/0305-4470/38/17/004
https://doi.org/10.1109/TIT.2021.3068359
https://arxiv.org/abs/2203.04948
https://github.com/panqec/panqec
https://panqec.readthedocs.io
https://gui.quantumcodes.io
https://doi.org/10.1109/18.412683
https://doi.org/10.1109/49.924874

THREE-DIMENSIONAL TOPOLOGICAL CODES FOR BIASED NOISE PRX QUANTUM 4, 030338 (2023)

[78] D. J. C. MacKay, Information Theory, Inference and Learn-
ing Algorithms (Cambridge University Press, 2003).

[79] The girth of a graph is the size of its shortest cycle.
[80] N. Raveendran and B. Vasić, Trapping Sets of Quantum

LDPC Codes, Quantum 5, 562 (2021).
[81] D. Poulin, Optimal and efficient decoding of concatenated

quantum block codes, Phys. Rev. A 74, 052333 (2006).
[82] D. Poulin and Y. Chung, On the iterative decoding of sparse

quantum codes, Quantum Inf. Comput. 8, 987 (2008).
[83] Z. Babar, P. Botsinis, D. Alanis, S. Xin Ng, and L. Hanzo,

Fifteen years of quantum LDPC coding and improved
decoding strategies, IEEE Access 3, 2492 (2015).

[84] A. Rigby, J. C. Olivier, and P. Jarvis, Modified belief prop-
agation decoders for quantum low-density parity-check
codes, Phys. Rev. A 100, 012330 (2019).

[85] K.-Y. Kuo and C.-Y. Lai, Exploiting degeneracy in
belief propagation decoding of quantum codes (2021).
ArXiv:2104.13659.

[86] Y.-J. Wang, B. C. Sanders, B.-M. Bai, and X.-M. Wang,
Enhanced feedback iterative decoding of sparse quantum
codes, IEEE Trans. Inf. Theory 58, 1231 (2012).

[87] K.-Y. Kuo and C.-Y. Lai, Refined belief-propagation decod-
ing of quantum codes with scalar messages. In 2020 IEEE
Globecom Workshops. P. 1. (2020). ArXiv:2102.07122.

[88] Y.-H. Liu and D. Poulin, Neural Belief-Propagation
Decoders for Quantum Error-Correcting Codes, Phys. Rev.
Lett. 122, 200501 (2019).

[89] J. Roffe, BP+OSD: A decoder for quantum LDPC codes.
https://pypi.org/project/bposd/ (2021).

[90] D. S. Wang, A. G. Fowler, A. M. Stephens, and L. C. L.
Hollenberg, Threshold error rates for the toric and planar
codes, Quantum Inf. Comput. 10, 456 (2010).

[91] A. G. Fowler, Minimum weight perfect matching of fault-
tolerant topological quantum error correction in average
O(1) parallel time, Quantum Inf. Comput. 15, 145 (2015).

[92] O. Higgott, PyMatching: A PYTHON package for decoding
quantum codes with minimum-weight perfect matching,
ACM Trans. Quantum Comput. 3, (2022).

[93] B. Dezs, A. Jüttner, and P. Kovács, LEMON—an open
source C++ graph template library, Electron. Notes Theor.
Comput. Sci. 264, 23 (2011).

[94] See the repository at https://github.com/panqec/panqec for
the implementation of the sweep-matching decoder.

[95] C. T. Chubb and S. T. Flammia, Statistical mechanical mod-
els for quantum codes with correlated noise, Ann. de l’Inst.
Henri Poincaré D 8, 269 (2018).

[96] C. T. Chubb, General tensor network decoding of 2D Pauli
codes (2021), ArXiv:2101.04125.

030338-35

https://doi.org/10.22331/q-2021-10-14-562
https://doi.org/10.1103/PhysRevA.74.052333
https://doi.org/10.26421/QIC8.10-8
https://doi.org/10.1109/ACCESS.2015.2503267
https://doi.org/10.1103/PhysRevA.100.012330
https://arxiv.org/abs/2104.13659
https://doi.org/10.1109/TIT.2011.2169534
https://arxiv.org/abs/2102.07122
https://doi.org/10.1103/PhysRevLett.122.200501
https://pypi.org/project/bposd/
https://doi.org/10.26421/QIC10.5-6-6
https://doi.org/10.26421/QIC15.1-2-9
https://doi.org/10.1145/3505637
https://doi.org/10.1016/j.entcs.2011.06.003
https://github.com/panqec/panqec
https://doi.org/10.4171/AIHPD/105
https://arxiv.org/abs/2101.04125

	I.. INTRODUCTION
	II.. BACKGROUND
	A.. Biased Pauli noise
	B.. Clifford-deformed codes
	C.. XZZX code: Materialized symmetries and conserved quantities under biased noise
	D.. XY code: Weight-reduction technique

	III.. 3D CLIFFORD-DEFORMED TOPOLOGICAL CODES
	A.. 3D surface code
	1.. 3D surface code on the checkerboard lattice

	B.. 3D color code
	C.. Fracton codes
	1.. X-cube model
	2.. Sierpinski fractal model
	3.. The Haah code

	IV.. THRESHOLD ERROR RATES AT FINITE BIAS
	A.. Limitations of the BP OSD

	V.. ROTATED LAYOUT AND SUBTHRESHOLD SCALING
	A.. Rotated layout for the 3D surface code
	B.. Pure-Z logical-operator representativeQ17
	C.. Robustness of the Z-weight scaling

	VI.. DISCUSSION AND CONCLUSIONS
	. ACKNOWLEDGMENTS
	. APPENDIX A: PROOF OF 50% THRESHOLD FOR THE 3D SURFACE CODE ON THE CHECKERBOARD LATTICE
	. APPENDIX B: DECODERS
	1.. The BP OSD
	a.. Belief propagation
	b.. Ordered statistics decoding
	c.. Limitations of the BP OSD

	2.. Sweep-matching decoder

	. APPENDIX C: NUMERICAL-SIMULATION DETAILS
	. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

