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ABSTRACT 
Background: The gut microbiome is altered in several neurologic disorders including 
Parkinson’s disease (PD).  
 
Objectives: Profile the fecal gut metagenome in PD for alterations in microbial composition, 
taxon abundance, metabolic pathways, and microbial gene products, and their relationship with 
disease progression. 
 
Methods: Shotgun metagenomic sequencing was conducted on 244 stool donors from two 
independent cohorts in the United States, including individuals with PD (n=48, n=47, 
respectively), environmental Household Controls (HC, n=29, n=30), and community Population 
Controls (PC, n=41, n=49). Microbial features consistently altered in PD compared to HC and 
PC subjects were identified. Data were cross-referenced to public metagenomic datasets from 
two previous studies in Germany and China to determine generalizable microbiome features. 
 
Results: The gut microbiome in PD shows significant alterations in community composition. 
Robust taxonomic alterations include depletion of putative “beneficial” gut commensals 
Faecalibacterium prausnitzii and Eubacterium and Roseburia species, and increased abundance 
of Akkermansia muciniphila and Bifidobacterium species. Pathway enrichment analysis and 
metabolic potential, constructed from microbial gene abundance, revealed disruptions in 
microbial carbohydrate and lipid metabolism and increased amino acid and nucleotide 
metabolism. These global gene-level signatures indicate an increased response to oxidative 
stress, decreased cellular growth and microbial motility, and disrupted inter-community 
signaling.  
 
Conclusions: A metagenomic meta-analysis of PD shows consistent and novel alterations in 
taxonomic representation, functional metabolic potential, and microbial gene abundance across 
four independent studies from three continents. These data reveal stereotypic changes in the gut 
microbiome are a consistent feature of PD, highlighting potential diagnostic and therapeutic 
avenues for future research. 
 
KEY WORDS: 
Parkinson’s disease, gut microbiome, shotgun metagenomics, dysbiosis, microbial metabolism 
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INTRODUCTION 

Parkinson’s Disease (PD) is a progressive movement disorder estimated to affect over 1.2 

million people in the United States by 20301–3. Only 15% of diagnoses are attributed to a 

monogenic cause, suggesting a strong environmental role in PD4. Indeed, environmental risk 

factors for PD include geographic location, exposure to pesticides, and certain solvents and 

metals5–7. PD presents with motor symptoms including tremors, bradykinesia, muscle rigidity, 

impaired posture, and difficulty in speech and swallowing8. Curiously, non-motor symptoms, 

including hyposmia, depression, sleep disruption, and gastrointestinal (GI) distress such as 

constipation may appear years prior to PD diagnosis9–12.  

 

The gut microbiome represents hundreds of species of bacteria, fungi, archaea, and viruses that 

have been linked to the regulation of the immune, metabolic, and nervous systems13–17. 

Dysbiosis, defined as a comparative alteration in microbiome composition18, has been implicated 

in PD and may be linked to the comorbidity of prodromal constipation19–30. Previous studies 

analyzing the fecal microbiome in PD via 16S amplicon profiling have found changes in multiple 

taxa compared to healthy controls. In contrast to 16S rRNA amplicon sequencing, shotgun 

metagenomics provides an untargeted sequencing approach that allows for the estimation of both 

microbial community composition and its potential functions31,32. Notable depletions at the genus 

level in PD are the commensal bacteria Roseburia, Lachnospiraceae, Blautia, Prevotella, 

Faecalibacterium, and Eubacterium, while Lactobacillus, Bifidobacterium, Akkermansia, and 

Alistipes are typically enriched in PD compared to healthy controls23,25,27,33–36. Studies examining 

the gut metagenome in PD have identified PD-related alterations in microbial metabolic 

pathways including homocysteine, folate, and sulfur metabolism20,36–38. Using integrated 

modeling of metagenomic and metabolomic data, these studies have identified differentially 

abundant plasma metabolites in PD that are consistent with dysregulation in microbial metabolic 

pathways including cysteine metabolism, a process associated with oxidative stress37.  

 

While prior work has focused on PD-associated microbial dysbiosis at the taxonomic level, it is 

still unknown how these taxonomic differences translate to functional contributions in the 

development of PD. Accordingly, we sought to characterize alterations of gut microbiome 

metabolic potential in PD in both the early and late stages of disease, incorporating household 
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control samples that allow insights into the shared environment between people discordant for 

disease. We conducted metagenomic sequencing on stool samples of 244 participants across two 

distinct cohorts in the United States and extended our findings with an additional 137 samples 

from publicly available datasets from two additional cohorts in Germany and China. This study 

represents the first meta-analysis of metagenomic data in PD, integrating findings across 

populations in three continents to identify novel microbial features consistently altered in PD, 

revealing that globally generalizable signatures in the gut are associated with a major 

neurogenerative disorder. 

 

METHODS 

Study Design 

Samples were provided by the BioCollective (TBC) and Rush University Medical Center 

(RUMC; Chicago, IL) with respective recruitment of: individuals with Parkinson’s Disease (PD, 

n=48, n=47), Household Controls (HC, n=29, n=30), and healthy Population Controls (PC, n=41, 

n=49). RUMC participants were recruited at the Movement Disorders Clinic with clinical 

assessments conducted at the RUMC Parkinson’s Disease Gastroenterology Clinic (PDGC).  

 

RUMC Participants 

Prior to the clinical visit, movement disorder specialists examined and confirmed the diagnosis 

of all PD participants at a baseline screening. Parkinsonian symptoms were assessed using the 

Unified Parkinson’s Disease Rating Scale (UPDRS)39 and Hoehn and Yahr (H&Y) staging 

scale40. 

 

Inclusion criteria for PD participants: 1) age between 40 and 80 years, and 2) a current diagnosis 

of PD (UK Brain Bank Criteria, H&Y stages 1-4 inclusive)41. Inclusion criteria for HC and PC 

participants: 1) age between 40 and 80 years, 2) no history of neurological disorders or 

neurodegenerative disease, and 3) for HC only - living in the same household and consuming a 

similar diet as an enrolled PD participant. Exclusion criteria for PD, HC and PC participants: 1) 

Presence of symptomatically active gastrointestinal diseases such as inflammatory bowel disease 

(IBD) or celiac disease (except for hemorrhoids, hiatal hernia, or occasional (˂3 times a week) 

heartburn), 2) Antibiotics, probiotics (except yogurt), prebiotics usage, or intentional diet change 
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within 12 weeks of sample collection, 3) Abdominal surgeries for GI disease such as bowel 

resection, diverticular surgery, colostomy (surgery for hemorrhoids and cholecystectomy or 

appendectomy for benign disease more than 5 years prior to enrollment were allowed), 4) 

Symptomatic functional GI disease that could impair intestinal motility such as scleroderma, 5) 

Acute illness requiring hospitalization, 6) Pre-existent organ failure or comorbidities: a) liver 

disease (cirrhosis or persistently abnormal AST or ALT that are 2X˃ normal); b) kidney disease 

(creatinine ˃ 2.0mg/dL); c) uncontrolled psychiatric illness; d) clinically active lung disease or 

decompensated heart failure; e) known HIV infection; f) alcoholism; g) transplant recipients; h) 

diabetes, 6) Presence of short bowel syndrome or severe malnutrition, 7) Chronic use of 

diuretics, 8) Chronic use of NSAIDS. A washout period of three weeks was needed before the 

subject could be enrolled into the study. Low dose aspirin was allowed. Participants from Rush 

University signed the RUMC Institutional Review Board (IRB) approved informed consent 

forms (ORA # 16111903 and 10062805) and the study was registered (ClinicalTrials.gov 

Identifier: NCT03705520).  

 

TBC Participants 

Samples included from TBC’s biobank are approved under guidance of the Caltech IRB.  PD 

participants were self-identified, verifying that they have received a PD diagnosis from a 

qualified physician. HC criteria required only that they share a household with the PD 

participant, while PC patients were selected to match the PD sample averages for age, sex, BMI, 

and race and have no current illness.   

 

Sample Collection 

Stool samples were self-collected at home using either the anaerobic home collection kit (BD 

Gaspak, Becton Dickinson and Company, Sparks, MD) or the BioCollector™ kit to minimize the 

exposure of stool to oxygen42,43. Upon arrival, Bristol stool scores were recorded, and samples 

aliquoted and stored at -80°C.  

 

Questionnaire Collection 

Prior to fecal collection, RUMC PD and HC participants completed questionnaires regarding 

diet, smell, sleep and adverse events related to gastrointestinal symptoms.  Dietary 
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questionnaires included the automated self-administered 24-hour recall (ASA24®)44, and three 

month-recall Vioscreen Food and Frequency of Consumption Questionnaire (FFQ)45. Smell 

assessments used the University of Pennsylvania Smell Identification Test (UPSIT)46. Sleep 

evaluations used the Idiopathic Rapid Eye Movement (REM) Sleep Behavior Disorder (RBD) 

single-question screen (RBD1Q)47, the Pittsburgh Sleep Quality Index (PSQI) self-reported 

questionnaire to assess the sleep habits48, and the Munich ChronoType Questionnaire (MCTQ) 

pertaining to sleep, activity times, and jet lag49. Gastrointestinal evaluation used the Patient-

Reported Outcomes Measurement Information System (PROMIS) gastrointestinal symptom 

scale to examine GI symptoms and severity50. TBC participants completed an optional TBC 

specific questionnaire documenting dietary habits, supplement usage, general and PD medication 

usage, demographic, and various miscellaneous metadata (Fig S1B). Additionally, PD 

participants from TBC were invited to complete the self-reported sections of the MDS-UPDRS 

(parts I & II). Further details about questionnaires are described in the supplementary material. 

 

Sequencing, Data Handling, and Pre-Processing 

gDNA was extracted using the Qiagen MagAttract PowerSoil gDNA kit. DNA quality was 

evaluated visually via gel electrophoresis and quantified using a Qubit 3.0 fluorometer (Thermo-

Fisher, Waltham, MA, USA) and Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen, Waltham, 

MA, USA) for TBC and RUMC samples, respectively. Libraries were prepared using an 

Illumina Nextera XT library preparation kit following the standard protocol (Illumina, San 

Diego, CA, USA). 

 

Samples were sequenced using 150 bp paired-end reads with the Illumina NextSeq and NovaSeq 

for TBC and RUMC samples, respectively. Taxonomic and functional profiles were generated 

with the bioBakery meta’omics workflow (v3.0.0-a.4)31. Metagenomic reads were filtered using 

KneadData (v0.7.4) to remove reads with low quality or that map to the human genome. 

Taxonomic profiles were generated with MetaPhlAn3 (v3.0.7) and functional profiling with 

HUMAnN3 (v3.0.0.a.3) mapping to the UniRef90 catalogue (UniRef release 2019_01). 

UniRef90 relative abundance tables were then regrouped into the following higher-level 

organizations: Enzymes, MetaCyc pathways, Gene Ontology (GO), KEGG Orthology, protein 

families (Pfams), and eggNOGs. For each organization level, unmapped or ungrouped 
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abundance variables were removed prior to analysis. A threshold of 1 million quality reads was 

set for study inclusion. In total, 227 samples, including 51 household and PD pairs, 83 healthy 

controls, and 88 PD samples met all listed criteria and were included for analysis. 

 

Community Composition Analysis 

For community-level analyses, data were first rarefied to an even depth by generating pseudo-

counts by multiplying MetaPhlAn3/HUMANn3 relative abundance profiles with total quality 

reads per sample and sub-sampling counts to match the minimum number of reads of a sample (> 

1 million). Alpha-diversity metrics (i.e., observed features, Shannon’s Diversity Index, and 

Simpson's Evenness) were calculated from MetaPhlAn3 taxonomic profiles using the 

microbiome R package v1.14.10. Statistical analysis was conducted using the mixed models 

specified below with lmer (lme4 R package v1.1-27.1) (Eq. 1; Eq. 2). Beta-diversity analysis was 

conducted using Aitchison distance calculated with the phyloseq R package (v1.36.0). To 

estimate the contribution of metadata variables on community composition, a Permutational 

Multivariate Analysis of Variance (PERMANOVA) was conducted using adonis (vegan package 

R v2.5-7) on the Aitchison distance of species abundance profiles with 99,999 permutations. 

Each metadata variable was uniquely processed to remove samples with missing values and run 

in an independent model. Variables for usage of PD medications were tested exclusively within 

PD samples, removing the potential for donor group signatures confounding PD-specific 

variables. We then applied a P-value correction False Discovery Rate (FDR) for multiple 

comparisons using the Benjamini-Hochberg method.  

 

Statistical Analysis  

All statistical analysis was conducted in R (v4.1.0). To determine feature associations with PD 

status, we utilized Multivariable Association with Linear Models (MaAsLin2)51. Prior to 

differential abundance testing, data tables were filtered for features with a minimum prevalence 

of 10%. Biobakery relative abundance tables were scaled to a total sum of one followed by an 

arcsine square root transformation for variance stability. We then applied a feature-level specific 

variance filter based on the variance distribution and the number of features present at each level. 

Two separate analyses were conducted in parallel for each feature level. The first includes all PD 

donors and all PC donors: 
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(1)				𝑓𝑒𝑎𝑡𝑢𝑟𝑒	~	𝑔𝑟𝑜𝑢𝑝 + 𝑎𝑔𝑒 + 𝑠𝑒𝑥 + 𝐵𝑀𝐼 + (1|𝐶𝑜ℎ𝑜𝑟𝑡) 

The second model includes all HC pairs and their respective PD donors: 

(2)				𝑓𝑒𝑎𝑡𝑢𝑟𝑒	~	𝑔𝑟𝑜𝑢𝑝 + (1|𝐶𝑜ℎ𝑜𝑟𝑡: 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑#). 

For our generalized mixed linear models, we denote (q £ 0.1) as significance and (q £ 0.25) as 

association. 

 

As an assessment for the confounding potential of covariates, we devised an iterative testing 

strategy where relevant variables are selected and appended to a generalized linear model 

containing all participants with the following formula: 
(3)				𝑓𝑒𝑎𝑡𝑢𝑟𝑒	~	𝑔𝑟𝑜𝑢𝑝 + 𝑎𝑔𝑒 + 𝑠𝑒𝑥 + 𝐵𝑀𝐼 + 𝐴𝑑𝑑𝑒𝑑𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 +	(1|𝐶𝑜ℎ𝑜𝑟𝑡)  

repeated for each feature level. The following variables on supplement intake or usage are tested 

for their overlap with disease signature feature significance: calcium, vitamin C, non-steroidal 

anti-inflammatories, proton pump inhibitors, laxatives. The impact of PD medications was 

similarly tested using a model akin to Eq.3, but only within PD donors and removing the donor 

group variable from the model. This strategy is designed to maximize use of provided metadata, 

whereas an analysis combining multiple metadata variables with sporadic responses in a single 

model would undermine the power of the analysis. All features with reported significance for PD 

status that also appear significant in any model for a confounding variable are reported (Table 

S7). 

 

Spearman’s correlation was conducted for clinical and dietary metadata variables using cor.test 

(stats R package). For gene and pathway feature levels, variables which showed an association (q 

£ 0.25) with PD donors in at least one multivariate analysis from MaAsLin2 are included. All 

correlations for a specific feature type between dietary or clinical variables categories are 

corrected for multiple comparisons together. To determine broad, high-level alterations in 

metabolic and functional microbial processes we performed pathway enrichment analysis on 

KEGG Orthology hierarchies utilizing a hypergeometric P-value test (Eq. 4) for PD vs. HC and 

PD vs. PC separately. Gene families with an association to disease status are defined by (q £ 

0.25) in prior MaAsLin2 modeling and partitioned into enrichment and depletion: 

(4)				𝑆𝑐𝑜𝑟𝑒 = − log!"(1 −	0
1#$ 21

%&#
'&$ 2

1%'2

(

$)"
) 
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where N is the number of total features quantified, n is the total number of associated features, m 

is the number of detected features in the pathway, and k is the number of associated features in 

the pathway. 

 

To identify the most robust metagenomic microbial feature associations with PD, we accessed 

metagenomics reads from two additional studies on Parkinson’s disease20,52 (NCBI BioProject 

accessions PRJEB17784 and PRJNA433459). Generalized linear mixed models were employed 

with MaAsLin2, testing only for PD status as a fixed effect with study of origin as a random 

effect. As a scale-invariant approach for quantifying feature effect sizes we implemented 

AUROC values with the pROC R package53,54. Values for features of each cohort were 

calculated using relative abundance profiles and confidence intervals were generated using 

permutations.  

 

RESULTS 

Subject Demographics Associate with Microbiome Composition  

Stool samples from Parkinson’s Disease (PD), Population Controls (PC), and Household 

Controls (HC) were processed and analyzed for metagenomic (shotgun) sequencing (Fig. 1A). 

Biospecimens were collected from studies at the BioCollective (TBC) and Rush University 

Medical Center (RUMC), with the inclusion of HCs without PD allowing for analysis of a shared 

environment which is known to impact microbiome composition. Descriptive statistics for 

demographic metadata and PD clinical features are shown in Table S1. To assess metadata-

explained variance in microbial community composition, we combined cohorts and conducted a 

PERMANOVA on various feature levels using the Aitchison distance, a linear measure of 

sample dissimilarity for compositional data55 (Fig. 1B; Table S2). We found several significant 

anthropomorphic, environmental, drug, and donor-group related associations. Notable 

environmental factors included household (R2 = 29.1 to 30.2 %) and cohort effects (R2 = 2.4 to 

8.3 %), which independently explained a large percentage of variance. Disease status, donor 

group, and disease severity imparted significant effects on gut microbiome composition. General 

and PD-specific medication usage also appeared to explain gut microbiome variance and were 

tested for confounding potential (Table S7). 
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Microbial Community Composition and Differentially Abundant Taxa 

Diversity metrics provide a high-level assessment of microbial community composition. Alpha-

diversity analyses revealed a subtle increase in unique taxa in PD subjects relative to PC in the 

TBC cohort (Fig. 1C), while no differences were observed in the RUMC samples (Fig. 1D). 

These findings are in agreement with previous studies showing a modest or no additional unique 

taxa in PD33. To better understand community structure and group variability, we separately 

calculated the Aitchison distance on species abundance within each cohort. PD status 

significantly explained a low percentage of variance in both TBC (R2 = 3.59 %) (Fig. 1E) and 

RUMC (R2 = 2.95 %) (Fig. 1F) cohorts, consistent with previous 16S rRNA gene sequencing 

studies33. 

 

Differential abundance of individual taxa in disease states can inform potential microbiome 

influences on host physiology56. In joint modeling of cohorts, we observed several significant (q 

£ 0.1) and associated (q £ 0.25) taxonomic features in PD samples. Across both PD-PC and PD-

HC comparisons, we observed enriched taxa in PD including associations with the 

Actinobacteria phylum (Fig. S2), and Eisenbergiella tayi and Bifidobacterium bifidum species 

(Fig. 2). Consistent PD-associated depletions included Faecalibacterium and Roseburia genera 

(Fig. S2), and Faecalibacterium prausnitzii species, known producers of short-chain fatty acids 

(Fig. 2). In accordance with previous studies, we observed PD-specific enrichment of 

Akkermansia muciniphila and Ruthenibacterium lactatiformans and depletions of Eubacterium 

species, though these differences were unique to either PD-HC or PD-PC comparisons (Fig. 

2)20,23,25,33. These data show robust gut dysbiosis at the level of microbial abundance, but not 

taxonomic representation which is more uniform across study groups. 

 

Altered Metabolic Potential of the PD Metagenome 

Microbial metabolites influence function of the metabolic, immune, and nervous systems in 

animals and humans57–59. We inferred the microbial metabolic potential of the PD microbiome 

through MetaCyc pathway abundance. Across comparisons between PD and both control groups, 

we observed significant increases in genes associated with pyruvate fermentation to acetone in 

the PD microbiome, and predicted depletions of CDP-diacylglycerol (CDP-DAG) biosynthesis 

steps I & II (Fig 3; Fig S3; Table S4). CDP-DAG is an essential intermediate in the production of 
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phospholipids60,61. Downstream products of CDP-DAG can be integrated into bacterial 

membranes, and regulate cytoplasmic transport62. Pathway associations shared in both control 

group comparisons include 55 enrichments and 12 depletions in PD. The enrichments include 

synthesis and breakdown of fatty acids as well as biosynthesis of menaquinol, the reduced form 

of vitamin K2. Shared depletions in PD included synthesis of vitamins B1 and B2 (Fig 3A; Fig 

S3; Table S4).  

 

For an unbiased synopsis of potential microbiome functions, we conducted pathway enrichment 

analysis of KEGG hierarchies which revealed notable shifts in carbohydrate, amino acid, and 

lipid metabolism (Fig. 3B). Genes for metabolic processes depleted in PD suggest alterations in 

carbohydrate metabolism with gene families related to glycolysis/gluconeogenesis, TCA cycle, 

and galactose metabolism. Enrichments across both PD-control comparisons included pathways 

for carbohydrate, amino acid, and lipid metabolism. These data are the first to highlight altered 

fatty acid metabolism in the gut microbiome of PD. 

 

Microbial Gene Signatures of PD 

In addition to differences in functional metabolic pathways, we tested for alterations in the 

annotated genetic repertoire of the gut microbiome. Enzymes, KEGG Orthology (KO), Gene 

Ontology (GO), Pfams, and eggNOG gene families were constructed and assessed for disease 

associations. 

 

Significantly enriched genes encoding enzymes shared across both PD comparisons included 

EC: 6.2.1.5 (succinate:CoA ligase (ADP-forming)) and EC: 1.3.5.2 ((S)-dihydroorotate:quinone 

oxidoreductase), while depletions included EC: 3.1.26.11 (tRNA 3’ endonuclease) and EC: 

1.1.1.40 (malate dehydrogenase) (Table S3). KO analyses exclusively displayed shared 

significance for depletion including the lantibiotic transport system ATP-binding protein, and 

large subunit ribosomal protein L4. GO analyses revealed four shared enrichments and twelve 

depletions, including many genes involved in bacterial flagellar motility (Fig. S4). These 

alterations at the GO level are consistent with depletions in Pfams, largely of flagellar 

components, which are known to potently activate the immune system. For a complete summary 

of significant results for enzymes, KOs, GOs, Pfams, and eggNOGs, see Table S3. 



 

 12 

 

Pathway enrichment analysis of KEGG hierarchies exhibited robust alterations in ABC 

transporters, with both enrichments and depletions in PD (Fig. S4C). Other disease state-

enriched annotations include nucleotide and amino acid metabolism. Depleted hierarchies 

include cell growth, ribosomes, and multiple aspects of microbial motility and signaling 

(flagellar assembly, bacterial chemotaxis, and motility proteins), largely encoded within 

Eubacterium and Roseburia. This rich dataset may inform how biosynthetic functions harbored 

within the gut microbiome may influence disease status, a hypothesis that requires further 

investigation. 

 

Metagenomic Correlations with Disease Severity and Diet  

Feature-wise associations with disease severity and dietary metadata were interrogated using 

Spearman’s rank-based correlations. We note 75 clinical and 252 dietary correlations across all 

metagenomic feature levels that are significantly altered. Of the features with the strongest and 

most significant correlations to clinical metadata (|r| ³ 0.75 & q £ 0.1), we observed 9 

distinguishing associations (Fig. 4A). MDS-UPDRS Part III scores positively associated with 

three KO gene families including anthranilate synthase component I (Fig. 4B). Curiously, loss of 

olfactory function, as captured by olfactory diagnosis and the UPSIT smell score, showed strong 

associations with microbial adenosine de-novo biosynthesis. Both correlations suggest that an 

increase of microbially produced adenosine is associated with an improved sense of smell.  

 

Several interesting correlations between taxa and dietary intake frequency were also captured.  

Fermented product consumption positively associated with Agathobaculum butyriciproducens, 

and negatively associated with Bifidobacterium longum, a microbe consistently enriched in PD 

patient microbiomes20,52(Fig. 4C,D). Additionally, we found that Lawsonibacter 

asaccharolyticus positively associated with caffeine consumption frequency, which has been 

proposed to be protective in PD63–65. The potential impact of this interesting correlation remains 

unknown. A comprehensive list of associations can be found in Table S5. 

 

Generalizable Microbial Signatures Across Four Independent PD Cohorts 
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Metagenomic features with generalizability for disease status across geographic locations and 

cohorts could provide tremendous value as potential biomarkers. Two previously assessed 

metagenomic cohorts of PD and controls, one from Bonn, Germany and another from Shanghai, 

China, were re-analyzed in parallel with the TBC and RUMC cohorts. Statistical analysis using 

all four cohorts revealed 12 species, 10 genera, 21 MetaCyc pathways, 232 Enzymes, 255 KOs, 

541 GOs, 939 Pfams, and 1500 eggNOGs that significantly associated with disease status. 

 

At the taxonomic level, we observed signatures concordant with previous 16S rRNA amplicon 

sequence analysis findings19–30. R. lactatiformans, Gordonibacter pamelaeae, A. muciniphila, 

and Intestinimonas butyriciproducens display a robust increase in PD. Consistently depleted taxa 

include F. prausnitzii and various Roseburia species (Fig. 5A; Fig S5A). Assessment of 

pathways related to production of cell membrane components showed an enrichment for 

lipopolysaccharide (LPS) and depletion in peptidoglycan biosynthesis, associated with Gram-

negative and Gram-positive microbes, respectively (Fig. 5B). This may reflect a shift toward 

increased Gram-negative bacteria in PD, which is supported the observed increase in 

Akkermansia muciniphila and proportional decreases in Faecalibacterium and Eubacterium and 

Roseburia species. 

 

Additional significant metabolic pathways and gene associations indicate signatures of oxidative 

stress and dysbiosis. Genes associated with response to oxidative stress included PD-specific 

enrichment of NAD-quinone oxidoreductase, SelR domains, indigoidine synthase A-like protein, 

and methionine sulfoxide reductase [EC 1.8.4.12] (Fig. 5C,D; Fig. S5).  

 

Disrupted community signaling is inferred from signatures including numerous alterations in 

metal and ion transporters and permeases related to microbial defense mechanisms and quorum 

signaling (K09819: manganese/iron transport system permease protein, K02032: peptide/nickel 

transport system ATP-binding protein, etc.), proteins associated with biofilm formation and/or 

responses to hypoxic stress in biofilms (PF02567: phenazine biosynthesis-like protein, PF13277: 

YmdB-like protein), and PF07931: chloramphenicol phosphotransferase-like protein (Fig S5C). 

 



 

 14 

Metabolism and biosynthesis of flavin and pterin compounds appear to be altered in PD. One of 

the strongest generalizable signatures was a PD enrichment in K09007: GTP cyclohydrolase I 

[EC:3.5.4.16] (Fig. 5D). Further, the MetaCyc pathway RIBOSYN2-PWY: flavin biosynthesis I 

(bacteria and plants) was considerably depleted in PD, along with PWY-6147: 6-hydroxymethyl-

dihydropterin diphosphate biosynthesis I (Fig. 5B).  

 

Collectively, despite differences in geographies (and associated diets), sequencing platform, and 

disease stage of study participants, analysis of this intercontinental sample set reveals that the PD 

microbiome displays robust and consistent signatures that differ from healthy controls. 

Functional consequences or diagnostic application of these findings to motor performance, GI 

symptoms, or other aspects of PD remains to be determined. 

 

DISCUSSION 

Microbiome changes at the taxonomic (e.g., genus, species) level have been described for 

various neuropsychiatric and neurodegenerative disorders, including PD. Herein, we employed 

shotgun metagenomics to reveal that the PD microbiome shows consistent shifts not only in 

microbial composition, but also alterations in functional metabolic processes related to cellular 

growth, and gene-level signatures, potentially indicative of a gut environment under stress. In our 

meta-analysis, we identify multiple taxonomic, metabolic, and gene-level microbial features with 

consistent changes across multiple PD cohorts. Recurring signatures include putative responses 

to oxidative stress and disruption of microbial community signaling. Enrichment of methionine 

sulfoxide reductase [EC 1.8.4.12] and SelR are strongly suggestive of an oxidative environment, 

since these enzymes reduce the oxidized form of methionine, which plays a significant role in 

reactive oxygen species (ROS) damage66. Additionally, indigoidine synthase A-like protein is a 

potent antioxidant and pterin and flavin are important co-factors in enzymatic redox reactions. It 

is tempting to speculate that enrichment of these microbial elements is a response to oxidative 

stress in the gut, potentially in response to the intestinal inflammation that has been reported in 

PD25,67. Interestingly, oxidative stress has previously been associated with alpha-synuclein 

misfolding, a contributor to PD pathophysiology68,69. 
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Additional gene-level signatures suggestive of a dysbiotic microbial environment include a 

depletion in the quorum signaling GO pathway (GO:0009372), robust depletion of flagellar 

genes, and increases in transporters with involvement in microbial defense mechanisms. 

Curiously, depletion of flagellar genes in the microbiome has been associated with fibrosis 

severity in patients with non-alcoholic fatty liver disease70, and type 2 diabetes71. Additionally, 

loss of flagella has been tied to an increase in cellular growth rate72, possibly related to immune 

evasion. Flagella are highly immunogenic features targeted by both innate and adaptive host 

immune systems73. A possible explanation for the observed depletion of flagella may be 

increased targeting of flagellated bacteria by innate or adaptive immunity, a testable hypothesis 

with mucosal immune profiling of gut biopsies from PD patients.  

 

Our data provide novel insight into gut microbial metabolic processes in PD patients, but several 

questions remain. A primary limitation of our study is the sparsity of metadata collection across 

cohorts by questionnaires about medication usage, limiting our ability to account for the impact of 

drug treatment in our modeling. As with all cross-sectional sampling, no cause-and-effect 

associations can be inferred from this study. Longitudinal studies incorporating individuals prior to 

onset of PD symptoms (i.e., prodromal cohorts), capturing newly diagnosed or treatment-naïve 

patients would be invaluable for determining directionality of gut microbiome perturbations and 

PD status or severity. While gut bacteria have been shown to modulate motor performance, 

intestinal transit, neuroinflammation, a-synuclein pathology and neurodegeneration in PD mouse 

models74,75, the contribution of the microbiome to outcomes in human PD remains speculative. 

 

Together, our data suggest the PD microbiome is defined by modest alterations in community 

composition, but robust dysregulation in carbohydrate, lipid, and amino acid metabolism, an 

enrichment of gene-level signatures for responses to oxidative stress, and depletion of gene-level 

signatures of cellular growth, microbial motility, and disrupted community signaling. This study 

therefore presents novel generalizable disease associations that may lead to a better understanding 

of how the gut microbiome may influence, or be influenced by, PD symptoms and lifestyles. 
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TABLE AND FIGURE LEGENDS 

FIG. 1 | Parkinson's disease microbial communities differ from healthy population and 

household controls. 

(A) Schematic visualizing the donor groups and two distinct cohorts within our study. (B) 

Metadata explained variance across various feature levels using a PERMANOVA on the 

Aitchison distance. (C-D) Alpha diversity measures of observed species, Shannon diversity, and 

Simpson’s evenness on TBC (C) and RUMC (D) cohorts. (E-F) Relative abundance of species 

displayed by principal coordinates analysis (PCoA) of Aitchison distance on TBC (E) and 

RUMC (F) cohorts. Violin plots (left) show distance of samples within each group from samples 

from the population control group. 

 

FIG. 1 Supplement 

(A) Top 30 most abundant bacterial genera colored by gradient within the order level for both 

TBC (top) and RUMC (bottom) samples. (B) TBC survey responses displayed as a heatmap. (C-

D) Stacked bar plots displaying responses for PD medications (C) and other known potentially 

confounding factors (D) from both cohorts. 

 

FIG. 2 | Parkinson’s disease patients have decreased abundance of putative beneficial anti-

inflammatory short chain fatty acid-producing bacterial species.  

(A, B) Differentially abundant species determined through generalized linear models, displayed 

as relative abundance, prevalence (fraction each group with detection of taxa), and generalized or 

pseudo fold-change (average difference between groups across a range of quantiles). Comparison 

between (A) healthy population control (PC) samples and PD patients and (B) household 

controls (HC) and PD patients. 

 

FIG. 2 Supplement 

(A, B) Differentially abundant bacterial phyla and genera determined through general linear 

models are displayed by relative abundance, prevalence, and generalized or pseudo fold-change. 

Models are as previously described. 
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FIG. 3 | Microbial carbohydrate, amino acid, and lipid metabolism pathways are altered in 

Parkinson’s disease. 

(A) Altered MetaCyc pathways in PD visualized as a scatterplot of log2[ (mean PD + 1)/ (mean 

HC + 1)] values by log2[ (mean PD + 1)/ (mean PC + 1)]. Color indicates feature associations 

determined using the general linear models previously described. Labels are provided for the top 

8 most significant features based on the average q-value between analyses. (B) KEGG 

metabolism pathway enrichment analysis displayed by bubble plots. 

 

FIG. 3 Supplement 

Differentially abundant MetaCyc pathways between (A) healthy population control (PC) samples 

and PD participants and (B) household controls (HC) and PD participants. 

 

FIG. 4 | Dietary habits and disease severity correlate with metagenomic features. 

(A) Spearman’s correlations of metagenomic features and PD clinical metadata selecting for 

strongest associations (|r| ³ 0.75, FDR £ 0.1). Data points are colored by the feature level. (B, D) 

Scatterplots with linear regression for select correlations to PD clinical variables (B) and dietary 

habits (D). (C) Heatmap of correlations between species and dietary survey variables. The top 13 

species with the largest number of associations (q £ 0.25) were selected for visualization. 

 

FIG. 4 Supplement | Gene-level analysis reveals signatures of intestinal stress. 

(A-B) Scatterplots visualizing features of interest for KEGG Orthology (A) and Gene-Ontology 

(B) features. (C) Bubble plots of enrichment for all other categories of KEGG annotation. 

 

FIG. 5 | Meta-analysis of microbial features reveals generalizable Parkinson’s disease 

signatures across cohorts. 

(A-D) AUROC values and 95% confidence intervals per cohort for up to 25 significant features 

with the largest average absolute value of (AUROC-0.5) across all cohorts at the species (A), 

MetaCyc pathway (B), Gene Ontology (C), and KEGG Orthology (D) levels.  

 

FIG. 5 Supplement 
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(A-D) AUROC values and 95% confidence intervals per cohort for up to 25 features with the 

largest average absolute value of (AUROC-0.5) across all cohorts at the genus (A), enzyme (B), 

Pfam (C) and eggNOG (D) levels.  

 

FIG. 6 Supplement 

(A) Shiny application interface for exploration of metagenomic features in PD. (B) Example of 

interactive downloadable stratified abundance table. 

 
SUPPLEMENTARY TABLES 
Table S1: Sample Demographics 
Table S2: PERMANOVA statistics 
Table S3: Differentially Abundant Features  
Table S4: Pathway Enrichment Analysis 
Table S5: Spearman’s Correlation with Dietary Metadata  
Table S6: Spearman’s Correlation with Clinical Metadata 
Table S7: Confounder Estimation 
Table S8: Feature AUROC and Meta-Analysis 
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SUPPLEMENTARY METHODS 

Automated Self-Administered 24-Hour Recall 
The PD and HC participants completed the Automated Self-Administered 24-hour (ASA24®) 
recall. The ASA24® recall is a validated and reliable web-based tool developed by the National 
Cancer Institute to capture 24-hour dietary intake44,76,77. The PD and HC participants reported 
each food item that they consumed in the last 24 hours using the gold standard, automated 
multiple-pass method (AMPM)77. The Computer-Assisted Self-Interviewing (CASI) 
methodology is used to guide the respondent through multiple steps of recalls that include 
reporting each meal or snack or any other time that food or beverage was consumed, a 
comprehensive list of foods and drinks consumed, and finally a detail step that includes quantity 
of food consumed, any forgotten foods, and a final review. The criterion validity of the ASA24® 
recall is supported by high agreement (~80%) with traditional interviewer-administered recalls 
and comparable energy intake estimates between ASA24® recalls and AMPM in healthy men 
and women76,78. The ASA24® recall was used to identify dietary intake consistency to determine 
its influence on gut microbiota and secondary outcome measurements. 
 
Vioscreen Dietary Questionnaire 
The PD and HC participants completed the Vioscreen Food Frequency Questionnaire, an adult-
validated, self-administered, web-based dietary assessment tool45. This questionnaire captures 19 
food components.  

 
University of Pennsylvania Smell Identification Test 
The PD and HC participants completed the University of Pennsylvania Smell Identification Test 
(UPSIT)46. The UPSIT is a self-administered clinical test of olfactory function (i.e, evaluating 
changes in smell) that uses microencapsulated odorants which are released by scratching 
standardized odor-impregnated test booklets. 
 
Sleep Behavior Disorder and Sleep Disturbance Questionnaires 
The PD and HC participants completed the idiopathic rapid eye movement (REM) sleep 
behavior disorder (RBD) single-question screen (RBD1Q). The RBD1Q is a screening tool for 
diagnosis of REM Sleep Behavior Disorder, which is an important risk factor for PD47. The 
RBD1Q questionnaire consists of a single question, answered "yes" or "no," as follows: "Have 
you ever been told, or suspected yourself, that you seem to 'act out your dreams' while asleep (for 
example, punching, flailing your arms in the air, making running movements, etc.)?" 
 
Additionally, the PD and HC participants completed the Pittsburgh Sleep Quality Index 
(PSQI)48, which is a self-rated questionnaire which assesses sleep quality and disturbances over a 
1-month time interval. 
 
Munich ChronoType Questionnaire 
The PD and HC participants completed the Munich ChronoType Questionnaire (MCTQ) which 
contains 60 questions pertaining to sleep and activity times such as: bedtime, length of time to 
fall asleep, time of awakening, and use of alarm clock on workdays and work-free days49. All 
questions are asked separately for work and for work-free days. Chronotype is estimated as the 
midpoint of sleep on work-free days minus half of the difference between sleep duration on 
work-free days and average sleep duration of the week to control for sleep debt (Midpoint of 
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Sleep on Work-Free days, Sleep-Corrected, MSFsc)79. The classification of the MCTQ can be 
extreme early, normal or extreme late80. The MCTQ was also used to calculate social jet lag and 
sleep debt79. Social jet lag (SJL) is the difference between the timing of the midpoint of sleep on 
work days and work-free days81, and is considered significant if greater than two hours82. Sleep 
debt is the difference between average sleep duration for the week and sleep duration during 
work days81. 
 
Patient-Reported Outcomes Measurements Information System Gastrointestinal Symptom Scale. 
The PD and HC participants completed the validated National Institutes of Health (NIH) Patient-
Reported Outcomes Measurements Information System (PROMIS) gastrointestinal symptom 
scale. The NIH PROMIS uses eight GI symptom scales that are used for clinical care and 
research across the full range of GI disorders50. Only four GI symptoms scales were measured 
across time for this study. Belly pain (six questions), bowel incontinence (four questions), 
constipation (9 questions), and gas & bloating (12 questions) were reported by both the PD and 
HC participants. Higher scores denoted more GI symptoms. Lower scores denoted less GI 
symptoms. Scores range from 20 (low) to 80 (high). A score of 50 denotes the general population 
average. 
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FIG. 1 | Parkinson's disease microbial communities differ from healthy population and house-
hold controls.
(A) Schematic visualizing the donor groups and two distinct cohorts within our study. (B) Metadata 
explained variance across various feature levels using a PERMANOVA on the Aitchison distance. 
(C-D) Alpha diversity measures of observed species, Shannon diversity, and Simpson’s evenness on 
TBC (C) and RUMC (D) cohorts. (E-F) Relative abundance of species displayed by principal coordi-
nates analysis (PCoA) of Aitchison distance on TBC (E) and RUMC (F) cohorts. Violin plots (left) 
show distance of samples within each group from samples from the population control group.
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FIG. 1 Supplement
(A) Top 30 most abundant bacterial genera colored by gradient within the order level for both TBC 
(top) and RUMC (bottom) samples. (B) TBC survey responses displayed as a heatmap. (C-D) Stacked 
bar plots displaying responses for PD medications (C) and other known potentially confounding 
factors (D) from both cohorts.
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FIG. 2 | Parkinson’s disease patients have decreased abundance of putative beneficial anti-in-
flammatory short chain fatty acid-producing bacterial species.
(A, B) Differentially abundant species determined through generalized linear models, displayed as 
relative abundance, prevalence (fraction each group with detection of taxa), and generalized or pseudo 
fold-change (average difference between groups across a range of quantiles). Comparison between 
(A) healthy population control (PC) samples and PD patients and (B) household controls (HC) and PD 
patients.
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FIG. 2 Supplement
(A, B) Differentially abundant bacterial phyla and genera determined through general linear models 
are displayed by relative abundance, prevalence, and generalized or pseudo fold-change. Models are 
as previously described.
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FIG. 3 | Microbial carbohydrate, amino acid, and lipid metabolism pathways are altered in 
Parkinson’s disease.
(A) Altered MetaCyc pathways in PD visualized as a scatterplot of log2[ (mean PD + 1)/ (mean HC + 
1)] values by log2[ (mean PD + 1)/ (mean PC + 1)]. Color indicates feature associations determined 
using the general linear models previously described. Labels are provided for the top 8 most signifi-
cant features based on the average q-value between analyses. (B) KEGG metabolism pathway enrich-
ment analysis displayed by bubble plots.
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FIG. 3 Supplement
Differentially abundant MetaCyc pathways between (A) healthy population control (PC) samples and 
PD participants and (B) household controls (HC) and PD participants.
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FIG. 4 | Dietary habits and disease severity correlate with metagenomic features.
(A) Spearman’s correlations of metagenomic features and PD clinical metadata selecting for strongest 
associations (|rho|≤ 0.75, FDR ≤ 0.1). Data points are colored by the feature level. (B, D) Scatterplots 
with linear regression for select correlations to PD clinical variables (B) and dietary habits (D). (C) 
Heatmap of correlations between species and dietary survey variables. The top 13 species with the 
largest number of associations (q ≤ 0.25) were selected for visualization.
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09183 Protein families: signaling and cellular processes

09191 Unclassified: metabolism

09192 Unclassified: genetic information processing

09193 Unclassified: signaling and cellular processes

09194 Poorly characterized

K00077: 2-dehydropantoate 2-reductase [EC:1.1.1.169]

K01703: 3-isopropylmalate/(R)-2-methylmalate dehydratase large subunit [EC:4.2.1.33 4.2.1.35]

K01992: ABC-2 type transport system permease protein

K02112: F-type H+-transporting ATPase subunit beta [EC:3.6.3.14]

K02926: large subunit ribosomal protein L4

K04032: ethanolamine utilization cobalamin adenosyltransferase [EC:2.5.1.17]

K05942: NO_NAME

K05964: holo-ACP synthase [EC:2.7.7.61]

K06075: MarR family transcriptional regulator, transcriptional regulator for

K07216: hemerythrin

K09759: nondiscriminating aspartyl-tRNA synthetase [EC:6.1.1.23]

K15772: arabinogalactan oligomer / maltooligosaccharide transport system permease protein

K15777: 4,5-DOPA dioxygenase extradiol [EC:1.13.11.-]

K16511: NO_NAME

K20490: lantibiotic transport system ATP-binding protein
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GO:0004134: [MF] 4-alpha-glucanotransferase activity

GO:0004591: [MF] oxoglutarate dehydrogenase (succinyl-transferring) activity

GO:0004775: [MF] succinate-CoA ligase (ADP-forming) activity

GO:0004844: [MF] uracil DNA N-glycosylase activity GO:0009081: [BP] branched-chain amino acid metabolic process

GO:0009190: [BP] cyclic nucleotide biosynthetic process

GO:0009372: [BP] quorum sensing

GO:0009420: [CC] bacterial-type flagellum filament

GO:0009421: [CC] bacterial-type flagellum filament cap

GO:0015321: [MF] sodium-dependent phosphate transmembrane transporter activity

GO:0016844: [MF] strictosidine synthase activity

GO:0016849: [MF] phosphorus-oxygen lyase activity
GO:0042781: [MF] 3'-tRNA processing endoribonuclease activity

GO:0044780: [BP] bacterial-type flagellum assembly

GO:0071973: [BP] bacterial-type flagellum-dependent cell motility
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FIG. 4 Supplement | Gene-level analysis reveals signatures of intestinal stress.
(A-B) Scatterplots visualizing features of interest for KEGG Orthology (A) and Gene-Ontology (B) 
features. (C) Bubble plots of enrichment for all other categories of KEGG annotation.
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PWY-7539: 6-hydroxymethyl-dihydropterin diphosphate biosynthesis III (Chlamydia)
PWY-6147: 6-hydroxymethyl-dihydropterin diphosphate biosynthesis I

THISYNARA-PWY: superpathway of thiamin diphosphate biosynthesis III (eukaryotes)
ASPASN-PWY: superpathway of L-aspartate and L-asparagine biosynthesis

PWY-7242: D-fructuronate degradation
PWY-6168: flavin biosynthesis III (fungi)

RIBOSYN2-PWY: flavin biosynthesis I (bacteria and plants)
PWY0-1586: peptidoglycan maturation (meso-diaminopimelate containing)

PWY-6936: seleno-amino acid biosynthesis
GALACT-GLUCUROCAT-PWY: superpathway of hexuronide and hexuronate degradation

TRPSYN-PWY: L-tryptophan biosynthesis
PWY-622: starch biosynthesis

PWY-7234: inosine-5'-phosphate biosynthesis III
PWY-6595: superpathway of guanosine nucleotides degradation (plants)

PWY-6588: pyruvate fermentation to acetone
PWY-6263: superpathway of menaquinol-8 biosynthesis II

PWY-5188: tetrapyrrole biosynthesis I (from glutamate)
PWY-7383: anaerobic energy metabolism (invertebrates, cytosol)

PWY66-399: gluconeogenesis III
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GO:0006168: [BP] adenine salvage
GO:0003999: [MF] adenine phosphoribosyltransferase activity

GO:0045490: [BP] pectin catabolic process
GO:0004844: [MF] uracil DNA N-glycosylase activity

GO:0010285: [MF] L,L-diaminopimelate aminotransferase activity
GO:0043755: [MF] alpha-ribazole phosphatase activity

GO:0015321: [MF] sodium-dependent phosphate transmembrane transporter activity
GO:0033362: [BP] lysine biosynthetic process via diaminopimelate, diaminopimelate-aminotransferase pathway

GO:0008835: [MF] diaminohydroxyphosphoribosylaminopyrimidine deaminase activity
GO:0019546: [BP] arginine deiminase pathway

GO:0006824: [BP] cobalt ion transport
GO:0016977: [MF] chitosanase activity

GO:0004427: [MF] inorganic diphosphatase activity
GO:0004310: [MF] farnesyl-diphosphate farnesyltransferase activity

GO:0006696: [BP] ergosterol biosynthetic process
GO:0009247: [BP] glycolipid biosynthetic process

GO:0000175: [MF] 3'-5'-exoribonuclease activity
GO:0017065: [MF] single-strand selective uracil DNA N-glycosylase activity

GO:0009022: [MF] tRNA nucleotidyltransferase activity
GO:0004613: [MF] phosphoenolpyruvate carboxykinase (GTP) activity

GO:0097056: [BP] selenocysteinyl-tRNA(Sec) biosynthetic process
GO:0046113: [BP] nucleobase catabolic process

GO:0019547: [BP] arginine catabolic process to ornithine
GO:0004798: [MF] thymidylate kinase activity
GO:0006233: [BP] dTDP biosynthetic process

K02933: large subunit ribosomal protein L6
K01903: succinyl-CoA synthetase beta subunit [EC:6.2.1.5]

K02032: peptide/nickel transport system ATP-binding protein
K02445: MFS transporter, OPA family, glycerol-3-phosphate transporter

K00611: ornithine carbamoyltransferase [EC:2.1.3.3]
K00340: NADH-quinone oxidoreductase subunit K [EC:1.6.5.3]

K01703: 3-isopropylmalate/(R)-2-methylmalate dehydratase large subunit [EC:4.2.1.33 4.2.1.35]
K09819: manganese/iron transport system permease protein

K12339: cysteine synthase B [EC:2.5.1.47]
K00333: NADH-quinone oxidoreductase subunit D [EC:1.6.5.3]

K01447: N-acetylmuramoyl-L-alanine amidase
K07040: NO_NAME

K03621: glycerol-3-phosphate acyltransferase PlsX [EC:2.3.1.15]
K02022: NO_NAME

K01875: seryl-tRNA synthetase [EC:6.1.1.11]
K06167: phosphoribosyl 1,2-cyclic phosphate phosphodiesterase [EC:3.1.4.55]

K03733: integrase/recombinase XerC
K02825: pyrimidine operon attenuation protein / uracil phosphoribosyltransferase [EC:2.4.2.9]

K00627: pyruvate dehydrogenase E2 component (dihydrolipoamide acetyltransferase) [EC:2.3.1.12]
K00567: methylated-DNA-[protein]-cysteine S-methyltransferase

K02066: phospholipid/cholesterol/gamma-HCH transport system permease protein
K00060: threonine 3-dehydrogenase [EC:1.1.1.103]

K00215: 4-hydroxy-tetrahydrodipicolinate reductase [EC:1.17.1.8]
K09007: GTP cyclohydrolase I [EC:3.5.4.16]

K01693: imidazoleglycerol-phosphate dehydratase [EC:4.2.1.19]
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FIG. 5 | Meta-analysis of microbial features reveals generalizable Parkinson’s disease signatures 
across cohorts.
(A-D) AUROC values and 95% confidence intervals per cohort for up to 25 significant features with 
the largest average absolute value of (AUROC-0.5) across all cohorts at the species (A), MetaCyc 
pathway (B), Gene Ontology (C), and KEGG Orthology (D) levels. 
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PF04962: KduI/IolB family
PF01928: CYTH domain

PF03788: LrgA family
PF10555: Phospho-N-acetylmuramoyl-pentapeptide-transferase signature 1

PF06271: RDD family
PF04015: Domain of unknown function (DUF362)

PF06925: Monogalactosyldiacylglycerol (MGDG) synthase
PF01641: SelR domain

PF10588: NADH-ubiquinone oxidoreductase-G iron-sulfur binding region
PF00432: Prenyltransferase and squalene oxidase repeat

PF04227: Indigoidine synthase A like protein
PF13277: YmdB-like protein

PF07399: Putative Na+/H+ antiporter
PF07335: Fungal chitosanase of glycosyl hydrolase group 75

PF07931: Chloramphenicol phosphotransferase-like protein
PF00821: Phosphoenolpyruvate carboxykinase

PF13344: Haloacid dehalogenase-like hydrolase
PF02223: Thymidylate kinase

PF08471: Class II vitamin B12-dependent ribonucleotide reductase
PF16798: Domain of unknown function (DUF5069)

PF10722: Putative bacterial sensory transduction regulator
PF13202: EF hand

PF02567: Phenazine biosynthesis-like protein
PF13768: von Willebrand factor type A domain

PF12872: OST-HTH/LOTUS domain
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FIG. 5 Supplement
(A-D) AUROC values and 95% confidence intervals per cohort for up to 25 features with the largest 
average absolute value of (AUROC-0.5) across all cohorts at the genus (A), enzyme (B), Pfam (C) 
and eggNOG (D) levels.
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FIG. 6 Supplement
(A) Shiny application interface for exploration of metagenomic features in PD. (B) Example of inter-
active downloadable stratified abundance table.
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