
The impact of package selection and versioning on
single-cell RNA-seq analysis

Joseph M Rich1,2, Lambda Moses1, Pétur Helgi Einarsson3, Kayla
Jackson1,2, Laura Luebbert1, A. Sina Booeshaghi4, Sindri Antonsson3,

Delaney K. Sullivan1,5, Nicolas Bray6, Páll Melsted3, and Lior Pachter*1,7,8

1Biology and Biological Engineering, California Institute of Technology,
Pasadena, CA, 91125, USA

2USC-Caltech MD/PhD Program, Keck School of Medicine, Los Angeles,
CA, 90033, USA

3Faculty of Industrial Engineering, Mechanical Engineering and Computer
Science, Reykjav́ık, Iceland

4Department of Bioengineering, University of California Berkeley, Berkeley,
CA, USA

5UCLA-Caltech Medical Scientist Training Program, David Geffen School of
Medicine, University of California, Los Angeles, Los Angeles, CA, 90095,

USA
6Boston, MA

7Computing and Mathematical Sciences, California Institute of Technology,
Pasadena, CA, 91125, USA

8Lead Contact

April 11, 2024

*Correspondence: lpachter@caltech.edu.

1

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

Summary

Standard single-cell RNA-sequencing analysis (scRNA-seq) workflows consist of converting
raw read data into cell-gene count matrices through sequence alignment, followed by anal-
yses including filtering, highly variable gene selection, dimensionality reduction, clustering,
and differential expression analysis. Seurat and Scanpy are the most widely-used packages
implementing such workflows, and are generally thought to implement individual steps sim-
ilarly. We investigate in detail the algorithms and methods underlying Seurat and Scanpy
and find that there are, in fact, considerable differences in the outputs of Seurat and Scanpy.
The extent of differences between the programs is approximately equivalent to the variabil-
ity that would be introduced in benchmarking scRNA-seq datasets by sequencing less than
5% of the reads or analyzing less than 20% of the cell population. Additionally, distinct
versions of Seurat and Scanpy can produce very different results, especially during parts of
differential expression analysis. Our analysis highlights the need for users of scRNA-seq to
carefully assess the tools on which they rely, and the importance of developers of scientific
software to prioritize transparency, consistency, and reproducibility for their tools.

Keywords: single-cell RNA-seq, Scanpy, Seurat, open source software

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

1 Introduction

Single-cell RNA-sequencing (scRNA-seq) is a powerful experimental method that provides
cellular resolution to gene expression analysis. In tandem with the widespread adoption
of scRNA-seq technologies, there has been a proliferation of methods for the analysis of
scRNA-seq data1. However, despite the large number of tools that have been developed,
the majority of analysis of scRNA-seq takes place with one of two analysis platforms: Seu-
rat2 or Scanpy3. These programs are ostensibly thought to implement the same, or very
similar, workflows for analysis4. The first step in the computational analysis of scRNA-seq
results is converting the raw read data into a cell-gene count matrix X, where entry Xig

is the number of RNA transcripts of gene g expressed by cell i. Typically, cells and genes
are filtered to remove poor-quality cells and minimally expressed genes. Then, the data are
normalized to control for non-meaningful sources of variability, such as sequencing depth,
technical noise, library size, and batch effects. Highly variable genes (HVGs) are then se-
lected from the normalized data to identify potential genes of interest and to reduce the
dimensionality of the data. Subsequently, gene expression values are scaled to a mean of
zero and variance of one across cells. This scaling is done primarily to be able to apply prin-
cipal component analysis (PCA) to further reduce dimensionality, and to provide meaningful
embeddings that describe sources of variability between cells. The PCA embeddings of the
cells are then passed through a k-nearest neighbors (KNN) algorithm in order to describe
the relationships of cells to each other based on their gene expression. The KNN graph is
used to produce an undirected shared nearest neighbor (SNN) graph for further analysis,
and the nearest neighbor graph(s) are passed into a clustering algorithms to group similar
cells together. The graph(s) are also used for further non-linear dimensionality reduction
with t-distributed stochastic neighbour embedding (t-SNE) or Uniform Approximation and
Projection method (UMAP) to graphically depict the structure of these neighborhoods in
two dimensions. Finally, cluster-specific marker genes are identified through differential ex-
pression (DE) analysis, in which each gene’s expression is compared between each cluster
and all other clusters and quantified with a fold-change and p-value.

Seurat, written in the programming language R in 2015, is particularly favored in the bioin-
formatics community as one of the first platforms for comprehensive scRNA-seq analysis2.
Scanpy is a Python-based tool that was developed after Seurat in 2017 and now offers a
similar set of features and capabilities3. Both tools have a wide range of options for analysis
and active communities. The choice between Seurat and Scanpy often boils down to the
user’s programming preference.

The input to Seurat and Scanpy is a cell-gene count matrix, with two popular packages for
count matrix generation being Cell Ranger and kallisto-bustools (kb). Cell Ranger, devel-
oped by 10x Genomics, is specifically optimized for processing data from the Chromium
platform, providing a solution that includes barcode processing, read alignment (using the
STAR aligner5), and gene expression analysis6. It is popular for its user-friendliness and
seamless integration with 10x Genomics data. However, Cell Ranger’s robustness comes
with the trade-off of high computational demands, particularly for larger datasets7. On
the other hand, kb7;8 is an open-source alternative to Cell Ranger known for its efficiency

3

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

and speed7. kb-python is a wrapper around kallisto9 and bustools10, which pseudoaligns
reads to produce a barcode, unique molecular identifier (UMI), set (BUS) file, which is then
processed into a cell-by-gene count matrix. Utilizing the kallisto pseudoalignment algorithm
and the bustools toolkit, kb provides a fast, lightweight solution for quantifying transcript
abundances and handling BUS files. This efficiency makes it particularly suitable for en-
vironments with constrained computational resources. Additionally, kb is accurate11 and
stands out for its flexibility, allowing researchers to tailor the analysis pipeline to a broader
range of experimental designs and research needs. New versions of each of these packages
are periodically released, contributing improvements in algorithm design and efficiency, new
capabilities, and integration with new sequencing technologies.

A “standard” scRNA-seq experiment costs thousands of dollars, with exact pricing influenced
largely by data size. While it is difficult to provide an exact cost as a result of variability
between methods, it is estimated that a typical sequencing kit costs approximated in the
range of hundreds to thousands of dollars, and sequencing costs add up to an additional $5
per million reads12. The necessary number of reads per cell for high-quality data depends
on the context of the experiment, but as an example, Cell Ranger typically recommends
20,000 read pairs per cell for its v3 technologies, and 50,000 read pairs per cell for its
v2 technologies13. Sample preparation also has substantial costs, often requiring precious
patient samples, or maintenance of cell or animal lines for months to years in preparation
for experimental analysis. A standard 10x Genomics scRNA-seq experiment sequences tens
of millions to billions of reads, with a recommended cell count ranging from 500-10,000+
depending on the context. These estimates do not factor in additional costs including labor,
experimental setup, and follow-up analysis. Therefore, it is desirable to try to achieve a
middle ground between dataset richness and experimental costs, which requires evaluating
the additional information provided by marginal increases in data size.

A typical implicit assumption in bioinformatics data analysis is that the choice among pack-
ages and versioning should have little to no impact on the interpretation of results. However,
sizeable variability has been observed between packages or versions, even when performing
otherwise similar or seemingly identical analyses14. The goal of this study is to quantify the
variability in the standard scRNA-seq pipeline between packages (i.e., Seurat vs. Scanpy)
and between multiple versions of the same package (i.e., Seurat v5 vs. v4, Scanpy v1.9 vs.
v1.4, Cell Ranger v7 vs. v6). Additionally, we quantify the variability introduced through a
range of read or cell downsampling and compare this to the variability between Seurat and
Scanpy.

2 Results

2.1 Seurat and Scanpy Show Considerable Differences in ScRNA-
seq Workflow with Defaults

Figure 1 shows the results of comparing Seurat v5.0.2 and Scanpy v1.9.5 with default settings
using the PBMC 10k dataset, demonstrating the typical variability to be expected between

4

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

the two implementations of the “standard” single-cell RNA-seq workflow. Additional pipeline
settings run were those with aligned function argument values (Supp Fig 2), identical input
data preceding each step (Supp Fig 3), and both aligned function argument values and
identical input data preceding each step in the manner of Seurat (Supp Fig 4) and Scanpy
(Supp Fig 5).

There was no difference in cell or gene filtering between the packages after filtering UMIs,
minimum genes per cell, minimum cells per gene, and maximum mitochondrial gene content
(Fig 1a, i-ii). Furthermore, given the same matrices as input, Seurat and Scanpy handled log
normalization identically as well, producing equivalent output (data not shown). However,
the programs deviated from their default algorithm for HVG selection, with a Jaccard index
(intersection over union between two sets) of 0.22 (Fig 1a, iii). This difference could be re-
solved either by selecting the “seurat v3” flavor for Scanpy or the “mean.var.plot” algorithm
for Seurat (Supp Fig 2a, Supp Fig 5a).

Further differences were observed with PCA analysis, which also yielded different results
when run with default parameters. The PCA plots showed noticeable differences in the
plotted positions of each cell on the PC1-2 space, although the same general shape of the
plot is preserved (Fig 1b, i). The Scree plots also displayed differences, most notably with the
proportion of variance explained by the first PC differing by 0.1 (Fig 1b, ii). The eigenvectors
demonstrated differences, with the angle between the first PC vectors having a sine of 0.1,
the angle between the second PCs having a sine of 0.5, i.e., 30 degrees apart, and PCs 3+
being nearly orthogonal (Fig 1b, ii). All of these changes could be resolved with HVG-
set standardization and with the clipping and regression settings prior to PCA adjusted
accordingly (Supp Fig 2b, Supp Fig 5b). Seurat, by default, clips values to a maximum of
10 during scaling and does not perform any regression, whereas Scanpy, by default, does not
implement clipping and regresses by total counts and percentage of mitochondrial content.

Next, the packages differed substantially in their production of an SNN graph. Both the
content and size of each neighborhood per cell differed greatly (Fig 1c). The median Jaccard
index between the neighborhood of each cell from Seurat and Scanpy was 0.11, and the
median degree ratio (Seurat/Scanpy) magnitude was 2.05. The degree ratio for each was
nearly always greater than 1, indicating that Seurat, by default, yields more highly connected
SNN graphs than Scanpy. Given that the points in Fig 1c are distributed relatively evenly
between 0 and the maximum potential Jaccard index across all degree ratios, it appears
that it is not simply the degree difference driving the low median Jaccard index. When
aligning the function arguments when generating the SNN graph, there was no qualitative
improvement in median degree ratio magnitude, but there was a slight improvement in
median Jaccard index (Supp Fig 4c, Supp Fig 5c).

Clustering with default settings also resulted in differences in output, as seen by the discor-
dance in the alluvial plot and the Adjusted Rand Index (ARI) of 0.53 (Fig 1d). Alluvial
plots were aligned to maximize cluster alignment and coloring between groups, as to allow vi-
sual discordance to correlate with dissimilarity (see Methods). Even when aligning function
arguments and input SNN graphs, Seurat and Scanpy demonstrated differences in Louvain

5

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

clustering (Supp Fig 4d), but were identical in their implementation of the Leiden algorithm
(Supp Fig 5d).

UMAP plots visually showed some differences in the shapes of local and neighboring clusters,
even when controlling for global shifts or rotations (Fig 1d). For instance, the Seurat UMAP
shows that clusters 7 (pink) and 8 (grey) are very distinct from all other clusters on the
plot, whereas in the Scanpy UMAP plot, the analogous clusters are located much closer
to other clusters, such as 19 (black) and 20 (orange). Comparing neighborhood similarity
of KNN graphs constructed from these UMAP data revealed poor neighborhood overlap
that modestly improves as the similarity between function arguments and preceding input
are aligned (Supp Fig 6). Performing Leiden clustering and subsequent UMAP plotting
of these UMAP-derived KNN graphs revealed that the general characteristics of the UMAP
plots between packages were maintained, but there were still some considerable irreconcilable
differences (Supp Fig 6).

Upon DE analysis, Seurat and Scanpy overlapped with a Jaccard index of 0.62 for their
significant marker genes (i.e., the total set of genes with adjusted p-value < 0.05 across all
clusters), but Seurat had approximately 50% more significant marker genes than Scanpy.
(Fig 1e). The difference in significant marker genes is a result of a few differences in default
settings between packages. First, each package implements the Wilcoxon function separately,
with Seurat requiring tie correction and Scanpy by default omitting tie correction. Addition-
ally, each package adjusts p-values differently by default - Seurat with Bonferroni multiple
testing correction, and Scanpy with Benjamini-Hochberg multiple testing correction. Finally,
Seurat, by default, filters markers by p-value, percentage of cells per group possessing the
gene, and log-fold change (logFC) prior to performing the Wilcoxon rank-sum test; Scanpy
does not perform this type of filtering without invoking additional functions. Setting the
filtering arguments and clusters of Scanpy to be the same as Seurat (filtering, tie-correction,
Bonferroni correction) for DE analysis improved the Jaccard index of significant marker gene
overlap to 0.73 (Supp Fig 2e), and providing the same cluster assignments further improved
the Jaccard index to 0.99 (Supp Fig 4e, i). The remaining 1% of genes differ as a result
of differences in logFC calculation discussed later. Setting the methods to be like Scanpy
(no filtering, Benjamini-Hochberg) worsened the Jaccard index to 0.38, as a result of the
inability to turn off tie correction in Seurat (Supp Fig 5e, i).

When aligning the cluster assignments between groups, further DE analysis can be performed
that compares differences in expression levels per gene per cluster. In addition to comparing
the sets of significant marker genes across all clusters, the similarity in markers (i.e., genes
per cluster after DE analysis and any potential filtering for differential expression) can be
compared. As mentioned previously, Scanpy’s lack of filtering means that Scanpy includes
all genes in all clusters, even when that gene is minimally- or non-differentially expressed in
that cluster; whereas Seurat, by default, includes only a small percentage of genes per cluster
based on logFC, p-value, and number of cells expressing the gene in the reference groups
(Supp Fig 3e, ii). Applying analogous thresholding to Scanpy vastly reduces the problem,
increasing the Jaccard index from 0.22 to 0.92, but not fulling resolving the discrepancy
(Supp 4e, ii). Removing all filtering from Seurat fully removes all differences in marker sets

6

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

between packages (Supp Fig 5e, ii).

Seurat and Scanpy compute logFC differently as well. Comparing each analogous gene per
cluster across packages resulted in a concordance correlation coefficient (CCC) of 0.98 and
a PCA fit line with a slope of 1, indicating strong correlation across packages. Briefly, CCC
measures the agreement between two variables both in terms of correlation and variance.
However, observing the scatterplot of logFC values revealed noticeable differences in a large
number of values (Supp Fig 3, iii). Specifically, there were a handful of cases (4,109 out of
135,185 markers) where Scanpy predicted a logFC near ±30 for a gene in a cluster while
Seurat predicted a logFC near 0. The reasons for this are elaborated in the Discussion

Regarding adjusted p-value, there were also differences between Seurat and Scanpy (Supp
Fig 3e, iv). With default function arguments, Seurat predicted p-values either less than or
similar to Scanpy, but never substantially greater. Most p-values were near the maximum
of 1, but there was a wide degree of variability. A considerable number of p-values were
far from the y=x line, including those below 1e-50 for Seurat but near 1 for Scanpy. 20%
of markers had their p-values flip across the p=0.05 threshold between packages, with it
being fairly even flipping in either direction (i.e., significant only in Seurat, or significant
only in Scanpy). When function arguments were aligned to be like Seurat, virtually all
differences in adjusted p-value disappeared (Supp Fig 4e, iv). However, the differences could
not be reconciled with Scanpy-like function arguments, due to the lack of ability to toggle
tie correction in Seurat’s/presto’s Wilcoxon rank sum calculation.

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

Figure 1: Seurat and Scanpy show considerable differences in scRNA-seq workflow results
with default function arguments. (A) Filtering and HVG selection analysis UpSet plots
consisting of overlap of sets of cells, genes, and HVGs. (B) PCA analysis through projection
onto first 2 PCs, Scree plot comparison of proportion of variance explained, and sine of
eigenvectors. Black lines = point mapping between conditions. (C) KNN/SNN analysis
through SNN neighborhood Jaccard index and degree ratio (Seurat/Scanpy) per cell. (D)
Clustering and UMAP analysis through UMAP plots of each condition, with alluvial plot
showing cluster assignment mapping and degree of agreement. Numbers at the bottom of
each alluvial plot show the total number of clusters in each group. (E) Differential expression
analysis UpSet plot through overlap of all significant (p < 0.05) marker genes across all
clusters.

8

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

The comparison of Seurat and Scanpy reveals that, in some but not all cases, the results
between programs can be reconciled. There are three classes of possible alignment between
functions: aligned by default, aligned when function arguments are matched, and incompat-
ible for alignment. The classification of each function into these classes is shown in Table 1.
Supplemental Tables 1 (Seurat) and 2 (Scanpy) go into detail for each step of analysis on the
function name, the default arguments, the arguments needed to match the other package as
closely as possible, and the parameters unique to that package.

Table 1: Seurat and Scanpy function agreement for scRNA-seq pipeline. Green = equivalent
by default; yellow = equivalent with matched arguments; red = incompatible. HVG = Highly
Variable Genes; PCA = Principal Component Analysis; SNN = Shared Nearest Neighbors;
UMAP = Uniform Manifold Approximation and Projection; DE = Differential Expression

2.2 Read and Cell Downsampling Retain Most Information Com-
pared to Seurat vs. Scanpy Down to Small Fractions of Dataset
Size

Given the variability introduced between packages, a natural question that arises is how to
benchmark the magnitude of these differences. To this end, we simulated the downsampling
of reads and cells before generating the filtered count matrix and compared the differences
introduced along a gradient of downsampled fractions to the full-size data. We performed
each step of the analysis with default function arguments for the respective package and
without aligning input data preceding each step, except for those steps of DE analysis which
required input aligning before each step in order to compare marker gene statistics in iden-
tical clusters (marker selection, logFC, and adjusted p-value). For each step of analysis, in
addition to generating all plots as in Fig 1, we selected a single numeric metric that would
capture the degree of variability between groups as follows:

• Cell filtering: Jaccard index of cell sets

• Gene filtering: Jaccard index of gene sets

9

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

• HVG selection: Jaccard index of HVG sets

• PCA: Mean of difference in corresponding PC loadings PCs 1-3

• KNN/SNN: Median magnitude of log of SNN degree ratio

• Clustering: ARI

• UMAP: Median Jaccard index of UMAP-derived KNN neighborhoods across all cells

• Marker gene selection: Jaccard index of significant marker gene sets

• Marker selection: Jaccard index of marker sets

• logFC: CCC

• Adjusted p-value: Fraction of adjusted p-values that flipped across the p=0.05 thresh-
old between conditions

The summary for the fraction of downsampling sufficient to achieve results at least as good as
the variability between default Seurat vs. Scanpy within a 5% margin is shown in Figure 2.
These methods are especially robust to read downsampling, with most steps achieving similar
results with less than 5% of the original reads present (Fig 2a). The methods are also robust
to cell downsampling, although to a lesser extent, with most methods performing similarly
to baseline at less than 25% of the original number of cells (Fig 2b). The step least robust
to downsampling for both reads and cells was gene selection; however, given the similarity
of HVGs and marker genes to the full-size dataset across downsampled fractions, it appears
that the difference in gene sets lies largely in less significant genes. Plots similar to Figure
1 for downsampled fractions of reads and cells, for both Seurat and Scanpy, that generally
achieve similar performance to the variability introduced between default Seurat vs. Scanpy
can be found in Supplemental Figures 7-10. Metric calculation across downsampled fractions
can be found in Supplemental Figures 11-12.

Figure 2: (A) Read and (B) cell downsampling retain most information compared to Seurat
vs. Scanpy down to small fractions of dataset size. A minimum downsampled fraction of
0.01 was used as a lower bound. Orange = Seurat; blue = Scanpy.

10

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

2.3 Package Versioning has Significant Implications with DE Anal-
ysis

In addition to package selection (i.e., Seurat vs. Scanpy), package version can also play
a role in the interpretation of results. Comparing Seurat v5 to v4, there were sizeable
differences in sets of significant marker genes, markers, and logFC estimates (Fig 3a-b). The
difference in marker selection arises entirely from differences in logFC calculations and the
implications for filtering. The difference in logFC calculation results from a change in the
application of pseudocount between versions discussed further in the Discussion. Seurat v4
vs. Scanpy demonstrates the same trend as Seurat v4 vs. v5. The calculation for adjusted
p-value remained the same (Fig 3c). Comparing Scanpy v1.9 to the older v1.4 also revealed
large differences in sets of significant marker genes and markers as a result of the removal
of filtering of markers between releases (Fig 3d). There was no difference in calculation
of logFC or adjusted p-value between these versions (Fig 3e-f). And comparing the count
matrix generated from Cell Ranger software v7 to Cell Ranger v6 with default settings also
revealed differences across all DE metrics (Fig 3g-i). Analysis across Cell Ranger versions
showed considerable differences for all steps of the pipeline, as outlined in Supp Fig 13. The
primary difference between these commands was the default inclusion of intron counts in the
gene count matrix in v7, as opposed to the default exclusion of intron counts in v6. This
distinction has implications for UMI filtering and gene per cell violin plots, with Cell Ranger
v6 being slightly more restrictive (Supp Fig 14).

11

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

Figure 3: Package versioning has significant implications on DE analysis. (A-C) Seurat
v5 vs. v4 differences in (A) significant marker and marker selection, (B) logFC, and (C)
Adjusted p-value calculation. (D-F) Scanpy v1.9 vs. v1.4 differences in (D) significant
marker and marker selection, (E) logFC, and (F) Adjusted p-value calculation. (G-I) Cell
Ranger v7 vs. v6 differences in (G) significant marker and marker selection, (H) logFC, and
(I) Adjusted p-value calculation.

2.4 Random seeds

The steps of the workflow which involve the influence of randomization are approximate
KNN search, graphical clustering with Louvain/Leiden, and UMAP. In order to benchmark

12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

the magnitude of difference across packages or data sizes, we ran each of these steps with
identical input data and package selection, only varying the random seed applied. The results
of comparing each step of Seurat vs. Scanpy with aligned function arguments and identical
input preceding each step (Supp figs 4-5) were compared to the variability introduced by
differences in random seeds alone (Supp fig 15).

The variations in median Jaccard index and magnitude of log degree ratio of SNN neighbor-
hoods between the same algorithm across random seeds, (0.85 and 0.05 for Annoy, and 1 and
0 for umap-learn/PyNNDescent, respectively), were much less significant than the observed
values of 0.27 Jaccard index and 1.61 magnitude log degree ratio observed between and Seu-
rat and Scanpy given identical PCA inputs (Supp Fig 4c, Supp Fig 15a, Supp Fig 15e). The
ARI after Louvain clustering between random seeds of 0.96 was significantly higher than
that between Louvain implementations in Seurat and Scanpy of 0.85 (Supp Fig 4d, Supp Fig
15b, Supp Fig 15f). The median Jaccard indices of the UMAP-derived KNN across random
UMAP seeds, being 0.41 for Seurat and 0.47 for Scanpy, were significantly higher than that
when comparing UMAP plots between Seurat and Scanpy with identical input of 0.21 (Supp
Fig 6d, Supp Fig 15c, Supp Fig 15g). However, the ARI after Leiden clustering of the same
data across random UMAP seeds of 0.64, both for Seurat and Scanpy, was similar to the
observed ARI calculated from Seurat vs. Scanpy, given identical PCA and SNN inputs for
UMAP of 0.69 (Supp Fig 6d, Supp Fig 15d, Supp Fig 15h). This indicates that despite the
higher degree of similarity of UMAP plots generated across random seeds within Seurat or
Scanpy, versus UMAP plots generated between the packages, the Leiden algorithm cannot
fully capture this similarity.

3 Discussion

3.1 Matrix generation

There are some assumptions implicit in the discussions above that deserve further scrutiny.
First, the assumption that the expression estimates the log-normalized Yig derived from the
counts Xig represent accurate measures of expression is frequently taken for granted but
is not self-evident. In practice, there is no consensus on how the counts Xig should be
obtained15;16. In particular, the pre-processing of single-cell RNA-seq data requires making
choices about whether to include inXig counts of molecules that are from nascent transcripts,
or of molecules that are ambiguous as to their origin from mature or nascent transcripts.
These issues are particularly vexing when working with single-nuclear RNA-seq17. One
approach to “integrating” counts of nascent and mature molecules is to use them together
to parameterize models of transcription18, raising the question of whether comparisons of
parameter estimates in such models are more suitable for assessing differences in transcription
between cell types rather than log-fold change estimates based on the Yig. Moreover, even if
one accepts that the (scaled) Yig are relevant for measuring expression differences between
cell types, it may be that the instability of log-fold change with low expression estimates,
which are the norm in single-cell RNA-seq experiments due to the sparsity of data, make
them inappropriate as proxies for effect sizes19. Finally, implicit in all of the above is the

13

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

emphasis on effect size, frequently in addition to but sometimes in lieu of the use of p-
values to assess statistical significance. The importance of effect size thresholding in biology
research may reflect skepticism of p-values, but may also be popular due to the lack of
standards for thresholding allowing for the tuning of thresholds to achieve desired results.
Sometimes different thresholds are used within a single paper20.

3.2 A walk through version histories

Seurat has gone through a series of updates since its initial release in 2015. Seurat v1 in-
troduced tools for the analysis of single-cell RNA-seq data, focusing on spatial localization,
clustering, visualization, and identification of markers for cell populations. It was based
on the Seurat object, which is a way to store and manipulate single-cell data2. Seurat v2
introduced the ability to perform analysis on cell subpopulations across multiple datasets,
including the introduction of canonical correlation analysis (CCA)21. Seurat v3-v5 further
extended the package with a focus on multimodal data integration combining gene expres-
sion, spatial transcriptomics, assay for transposase-accessible chromatin with sequencing
(ATAC-seq), and immunophenotyping. Seurat v3 helped achieve this with the concept of
utilizing anchor cells (cells with a similar biological state across datasets) to merge modali-
ties22. Seurat v4 introduced weighted nearest neighbor analysis, an unsupervised approach
that determines the weight of each modality in terms of its importance on downstream anal-
ysis23. Seurat v5 introduced bridge integration inspired by dictionary learning, in which the
information of each cell is represented as a linear combination of “atoms” in a dictionary
representing information across modalities24.

Each major version release was accompanied by additional new features as well. For instance,
Seurat v5 includes support for additional assays and datatypes, functionality to explore
datasets with large cell numbers without needing to fully load the data into memory, and
pseudobulk analysis (aggregating cells within a subpopulation to reduce noise). On a smaller
scale, each version of Seurat introduced new function parameters, changes in default settings,
and bug fixes. For instance, in the FindAllMarkers function, the default fraction of cells per
gene was changed from 0.1 in Seurat v4 to 0.01 in Seurat v5; the default minimum logFC was
changed from 0.25 in Seurat v4 to 0.1 in Seurat v5; and the log base was changed from e in
Seurat v3 to 2 in Seurat v4. While seemingly small, some of these changes had major effects
on results, highlighting the importance for users to consider version release statements, and
to implement careful environment control for reproducible data analysis.

Scanpy has also had a series of updates since its release in 2017. Throughout development, it
references workflows and properties of Seurat. Version 1.0 brought the first major updates,
increasing speed and memory efficiency, introducing the Neighbors class, changing PCA im-
plementation through the upgrade of scikit-learn, modifying the input for graph-based tools
such as Louvain, and introducing UMAP. Version 1.3 introduced Leiden clustering, batch
correction, and calculation of quality control metrics. It also updated the highly variable
genes function, and changed behavior to expect log normalized data and not to automati-
cally subset the data structure by HVGs. Version 1.4 introduced filter rank genes groups as
a way to provide some filtering functionality after marker gene expression, updated UMAP

14

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

code, introduced batching in HVG selection, changed solver in the PCA function from auto
to arpack, and changed marker gene selection’s t-test implementation to scipy’s. Version
1.5 brought a lot of new changes as a result of AnnData updates, including spatial support,
updates to the storage of neighbor and UMAP objects, expanding of scaling and log normal-
ization, PCA implicit centering for sparse matrices (which slightly changes PCA output),
and bug fixes to the regression function. Version 1.6 introduced an overhauled tutorial and
updated the internals for rank genes groups, including tie correction for Wilcoxon in this
function. Versions 1.7 and 1.8 increased spatial support, increased functionality of differen-
tial expression analysis, and corrected the output of highly variable gene calculation with
seurat v3 flavor and batch key. Version 1.9 introduced usage of Pearson Residuals, fixed
multiple bugs with the HVG function (including edge cases with cellranger flavor and the
modification of the used layer with seurat flavor), and changed package compatibility with
igraph, matplotlib, and scikit-learn versions, among others.

The kallisto quantification tool has also been continually updated since its release in 2015.
These changes include the production of BAM and BUS files, implementation of a D-list
feature11, strand-awareness, workflows to include introns or other custom specifications, the
addition of new technologies, and improvement in the pseudoalignment algorithm. kb-python
has also gone through a number of changes since its release in 2019, largely reflecting the
changes implemented in kallisto and bustools. New versions were accompanied by updated
versions in kallisto and bustools, with kallisto v46 with kb-python v0.24.4, kallisto v48 with
kb-python v0.27.0, and kallisto v50 with kb-python 0.28.0.

Cell Ranger software was first released in 2016 and has also been continually updated. Early
additions to cellranger count included the ability to specify particular genes for analysis or
have the ability to exclude some genes for analysis, as well as allowing hard trimming of
input FASTQs. Version 3 introduced the EmptyDrops cell calling algorithm called more low
RNA content cells, as well as major changes to the VDJ algorithm. Version 4 brought the
functionality to trim template switch oligo (TSO) and poly-A sequences from reads, improv-
ing alignment and mapping rates. This version also updated the reference transcriptome
to 2020-A. Version 5 introduced the ability to include introns in analysis, with the default
being false, as well as the multi pipeline to combine gene expression, feature barcode, and
V(D)J libraries from a single GEM well. Version 6 introduced support for cell multiplexing,
low throughput analysis, and 3’ and 5’ High Throughput kits. It also added the feature that
unfiltered feature-barcode matrix files only contain barcodes with at least one read rather
than all possible barcodes from the whitelist, shifting the UMI count distribution. Version 7
introduced fixed RNA profiling, modified the batch effect score calculation to normalize and
scale with the number of cells in the dataset, and allowed support for FASTQs with quality
scores up to the higher upper range of 93 instead of the typical 41. Version 7 also changed the
default to include introns to true and removed the necessity to specify the expected number
of cells (previously with a default input of 3,000), instead having the ability to calculate a
prediction internally by default. The full list of changes introduced with each release can be
found on the Cell Ranger website25.

15

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

3.3 Challenges with Seurat and Scanpy

Working across multiple conditions and versions of both Seurat and Scanpy presented pro-
grammatic challenges. With Seurat, the FindClusters function with the Leiden algorithm
crashed the Rstudio session in the docker container used to run the program as a result of
the high-memory intensity of the process. Interestingly, Scanpy implemented Leiden with
the same underlying leiden package and produced the same results without the same compu-
tational cost. Also, Seurat v4’s FindAllMarkers function was very slow as a result of the slow
implementation of the Wilcoxon rank sum test, which was addressed with Seurat v5 with
the recommended download of the immunogenomics/presto package. The adjusted p-value
calculation outputs are identical between Seurat v5 and v4. Seurat v5 was also not fully
compatible with Seurat v4, with some users reporting scripts breaking between versions as a
result of changes in assay structure of the Seurat object. Some solutions created by users can
be implemented to remedy these discrepancies, but none of these are officially implemented
in the package.

Also, running Scanpy 1.4.6 presented issues with package dependency conflicts and a lack
of full backward compatibility. Many dependencies did not have upper limits on compat-
ible versions, so these had to be uncovered manually. In our environment, this amounted
to matplotlib 3.6.3 and pandas 1.5.3. Additionally, the KNN/SNN method seemingly only
worked with umap-learn version 0.5.0 or greater, but the UMAP method seemingly only
worked with umap-learn version 0.4.6 or less (which itself required numpy 1.23.0, numba
0.49.1, llvmdev 8.0.0, and pynndescent 0.4.7). Other changes included issues with the cal-
culate qc metrics method, changes to the names of the gene observation column (“n genes”
instead of “n genes by counts”) and count observation column (“n counts” instead of “to-
tal counts”), use of base e by default during log normalization (instead of base 2) and the
need to manually store this base in anndata.uns for the rank genes groups method, storing
of KNN/SNN results in anndata.uns (instead of anndata.obsp), and the lack of the “pts”
parameter in the rank genes groups method.

3.4 HVG selection

The difference in HVG calculation comes entirely from a choice in algorithm, for which the
default of each package has an equivalent implementation in the other package. Seurat’s
default HVG algorithm is “vst” (equivalent to Scanpy’s “seurat v3” flavor), while Scanpy’s
default HVG algorithm is “seurat” (equivalent to Seurat’s “mean.var.plot”). Each of these
algorithms calculates the mean and variance of expression values across all cells for each
gene, takes some measure to control for the mean-variance relationship, and selects the
most variable genes from this list. However, the method for controlling the mean-variance
relationship and how they compute their metric for variability in expression differ.

mean.var.plot/seurat bins all genes based on ranked mean expression across all cells in order
to control for the mean-variance relationship, where the number of bins B is user-provided.
For each gene, the dispersion dg = σg

µg
is computed, where σg and µg are the variance and

16

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

mean expression of the gene g across all cells i ∈ I, respectively. Within each bin, the mean

dispersion µbd =
∑

g∈b log(dg)

G/B
and variance of dispersion σ2

db
=
∑

g

log(dg−µdb
)2

G/B−1
are calculated,

where G is the total number of genes. A z-score normalized dispersion zdg =
log(dg)−µdb√

σ2
db

is

calculated for each dispersion value based on the mean µbd and variance σ2
db

for that gene’s
bin. The highly variable genes are either selected based on user-provided thresholds for mean
and dispersion values, or by taking the genes with the top n dispersion values where n is a
user-provided fixed cutoff.

vst/seurat v3, rather than binning genes, fits a loess model to the variance and mean ex-
pression across all cells of all genes to compute a predicted variance per gene, such that
σ2
g,pred = loess[log10(σ

2
g) ∼ log10(µg)]. The expression level Xig for each gene g and each cell

i is “z-score” normalized with its mean expression across all cells and its predicted variance
across all cells, such that zig =

Xig−µg√
σ2
g,pred

. Rather than ranking z-score normalized dispersion

values as before, this method then computes the variance of each z-score normalized gene

expression values across all cells σ2
zg =

∑
j

z2ig
I−1

and selects the genes with the top n normal-
ized variance values where n is a user-provided fixed cutoff (there is no thresholding option
as with vst/seurat v3).

3.5 PCA

The three methods we used for evaluating PCA similarity - projection of cells onto first 2
PCs, variance explained by eigenvalues, and sine of of the angle between eigenvectors - all
generally correlate with each other. The benchmark displayed on the eigenvector graph is the
square root of the double precision limit, which represents a number close to the numerical
precision of computers. This benchmark provides a marker to assess when two eigenvectors
become so similar as to be technically indistinguishable, but this may be smaller than the
smallest difference that is biologically relevant. In all cases where the PCA embeddings were
not identical, the sine of even the most similar eigenvectors would never drop below 0.01,
even when the PCA plots in 2 dimensions looked reasonably similar.

3.6 KNN/SNN

Both Seurat and Scanpy generate two graphs, a KNN and SNN graph, from their nearest
neighbors functions. While the KNN graph is a directed graph describing the k nearest
neighbors for each cell in PCA space (with a fixed k), the SNN graph is an undirected graph
and more broadly groups cells together based on the similarity of their neighborhoods (Supp
Fig 16). Unlike the KNN graph, the SNN graph is reciprocal, meaning that if cell A is a
neighbor in the SNN graph of cell B, then cell B is a neighbor in the SNN graph of cell
A. Additionally, the neighborhood degree (size) is not fixed in the SNN graph, with a wide
range of degrees that includes upper bound that can exceed many times the k parameter.
When constructing a KNN graph from an SNN graph, edges are connected based on their
similarity in KNN space, although how this similarity is defined differs between approaches
(Supp Fig 16, 17). Regarding change in neighborhood degree from the KNN to SNN graph,

17

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

the trend is that hub nodes, where a hub node a node that is a k-nearest neighbor of many
other nodes), tend to have a relatively large number of edges due to their involvement in
many other neighborhoods. And peripheral nodes, where a peripheral node is a node that
is a k-nearest neighbor of few other nodes), tend to have a relatively small number of edges.

Both Seurat and Scanpy use an SNN graph for downstream clustering, and a KNN graph
generated from this step is not used in the rest of the standard workflow followed in this
study (i.e., clustering, UMAP). When it comes to UMAP, however, the two packages differ.
Seurat’s default UMAP function with uwot uses a newly-generated KNN graph from the
PCA embeddings built with the approximate KNN graph program Annoy internal to this
function for UMAP. On the other hand, Scanpy’s default UMAP function with umap-learn
uses the previously-generated SNN graph to generate the UMAP plot (Supp Fig 17).

Seurat defaults to using the Annoy (Approximate Nearest Neighbors Oh Yeah) algorithm
from the RcppAnnoy package for computing an approximate solution to the KNN problem26.
Annoy optimizes the neighbor search space through the construction of multiple binary
trees. Each tree recursively divides the dataset with randomly-selected hyperplanes in high-
dimensional space until the subsets at the leaf nodes contain approximately 100 data points.
This approach effectively reduces the number of candidate neighbors to those within the
same and neighboring leaves. For each data point, Annoy traverses the trees, collecting data
points within the corresponding leaf and some neighboring leaves, calculates distances to
all these points, and selects the k closest points as neighbors. This process is repeated for
each data point to construct the KNN graph. An alternative algorithm available through
Seurat is RANN (R Approximate Nearest Neighbors), which wraps around the C++ library
developed by Arya and Mount27.

To compute the SNN graph from the KNN graph, Seurat calculates the Jaccard index of
neighborhood overlap for each pair of cells and prunes edges that fall below the user-defined
prune threshold (default 1/15), with relevant code on the Seurat Github repository28. This
means that it is not directly relevant whether any two nodes i and j are in each other’s KNN
graphs, but rather whether they share some number of neighbors, above a threshold, overall.

Scanpy by default uses the umap-learn package for handling nearest neighbors search, which
itself makes use an exact KNN algorithm for small datasets (either less than 4096 cells, or less
than 8192 cells if the distance metric is Euclidean), or an approximate nearest neighbor search
using of the NN Descent algorithm through the PyNNDescent package for large datasets
to implement KNN graph construction29. In contrast to the binary tree-based approach
of annoy, NN Descent uses a graph search approach to build the KNN graph. NN Descent
initializes a KNN graph with a random projection forest similar to Annoy, and then optimizes
this initial guess with graph search. For each node, it randomly selects a candidate node
as a potential nearest neighbor, expands the search to all nodes connected to the candidate
node with an edge, adds all of these new nodes as new potential candidate notes, and then
keeps the k best new nodes as new candidates for further search based on evaluation with a
distance metric. It repeats this process for the best candidate node - expand the search from
the best untried candidate node to all connected nodes, add all expanded nodes as potential

18

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

candidates, rank by distance to point of interest, and select the top k nodes - until there are
no untried candidate nodes remaining or a stopping criterion is reached based on minimal
improvements. The remaining k nodes (including the self node) are selected as the k nearest
neighbor for that node.

To construct the SNN graph from the KNN graph in Scanpy, it makes a connection between
each cell i and j in the KNN graph if and only if either i is a k-nearest neighbor of j or j is
a k-nearest neighbor of i (excluding the self node), with relevant code on the UMAP-learn
GitHub repository30. In other words, the SNN graph for Scanpy is the undirected KNN
graph. This means that the degree of each node for the SNN graph is bounded below by
k− 1, but is theoretically bounded above by N − 1 (where N is the number of nodes). This
would be the case when a cell is a k-nearest neighbor of all other cells. While this upper
bound is essentially never realized with scRNA-seq data, these hub nodes can exist, with
degrees in the hundreds for the SNN graph.

For large datasets, both Seurat and Scanpy utilize approximate KNN search algorithms. For
each node, an exact KNN algorithm requires searching through each of the other n nodes
and ranking the distance between points in d dimensional space, giving rise to O(d ·n2) time
complexity. Approximate KNN algorithms, making use of the fact that a node is less likely
to be neighbors with other far-away nodes, can reduce the time complexity to O(d ·n log(n))
with techniques such as greedy approaches or binary search trees.

3.7 Clustering

Seurat and Scanpy yield different clustering results with the Louvain algorithm, despite
following the approach described originally by Blondel et al.31. In short, the Louvain method
starts by considering each node as an individual community and iteratively reassigns nodes
to maximize modularity, thereby clustering nodes based on the density of intra-community
edges. This process of local optimization is followed by grouping the formed communities
into a new, reduced network, where each community becomes a node, and the steps are
repeated. The algorithm continues until it achieves maximal modularity, effectively revealing
the hierarchical community structure within the network at a given resolution. The size of the
resulting network can be tuned with the resolution parameter. Interestingly, the packages
approach more similar results using their differing default resolution arguments (1.0 for
Seurat, 0.8 for Scanpy) rather than the same resolution parameter (Supp Figs 3d, 4d),

Seurat has developed its own implementation of the Louvain algorithm, encapsulated within
the ‘RunModularityClusteringCpp‘ function. On the other hand, Scanpy leverages the
‘vtraag/louvain-igraph‘ package. The difference in outcome results from the differential
implementations of the optimizers in C++ that perform the local moves to maximize mod-
ularity. In particular, during the moving step of the algorithm, Seurat’s implementation
considers only local communities for possible moves, while Scanpy considers all communities.
Scanpy’s implementation also provides the possibility to move nodes to empty communities
as an option to escape local minima. Each function utilizes different pseudo-random num-
bers for the influence of random seeds, such as in the order of nodes considered for each

19

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

moving step, although the influence of randomness in each algorithm is small (i.e., affects
ARI by < 0.02) (Supp fig 15). Both approaches involve iterating the algorithm until zero
nodes move, suggesting an optimal arrangement has been reached, but Seurat additionally
implements a user-provided upper limit on number of iterations. And another way that the
packages differ is in their calculation of the quality score. Both quality scores are based on
modularity. However, Seurat’s implementation compares a cluster’s score to what would be
randomly expected with quality = quality − resolution ∗ (total edges community)2, and
further normalizes the score by the total weights of the whole network to control for cluster
size when comparing scores. Scanpy, on the other hand, directly calculates the expected
number of intracommunity edge by chance (rather than implying a relationship with the
square of total edge weights in that community like Seurat), and thus adjusts the quality
score with quality = quality − resolution ∗ expected edges community random. Scanpy
does not incorporate normalization by total network size.

3.8 UMAP

The differences between the underlying packages that implement UMAP for Seurat (uwot)
and Scanpy (umap-learn) have been addressed in the uwot documentation32. The magnitude
of visual differences outlined in the examples discussed on this page are similar to those
observed with the PBMC 10k dataset used in this study. The source of these differences
includes differences in initialization - while both packages use spectral initialization when
only one component is present, they differ in initialization approaches when more than one
component is present. In these cases, uwot falls back to PCA, while umap-learn uses meta-
embedding of the separate components. Additionally, as discussed earlier, uwot internally
constructs a new KNN graph (exact if dataset size < 4096 observations, Annoy otherwise
also implemented by RcppAnnoy) from the PCA embeddings, whereas Scanpy feeds in the
SNN graph generated from the previously-run nearest neighbors method for umap-learn.
For umap-learn, if it is not provided a nearest neighbor graph (which would be the case if
sc.pp.neighbors is not run), the package by default will generate a KNN graph internally
with the package PyNNDescent (without as strong of a need to run PCA beforehand if
not done already, with the same threshold of 4096 observations for exact vs. approximate
implementation, and with PyNNDescent rather than Annoy for when approximate KNN is
used). In summary, the differences in UMAP plots can likely be mostly explained by the
different approaches of initialization, different nearest neighbor graphs (KNN with Annoy
for uwot, SNN with UMAP by default for umap-learn), and random variation introduced
with different random seeds.

Interestingly, when overlaying Louvain/Leiden clusters on the UMAP plots, Seurat tends to
display more examples of overlapping cluster regions on UMAP space compared to Scanpy.
This behavior is likely due to the use of a separate nearest neighbors graph for clustering
vs. UMAP generation by Seurat, whereas Scanpy uses the same nearest neighbors graph for
each of these. Within Seurat, using Louvain with multilevel refinement (algorithm 2) can
reduce this overlap in Seurat clusters in some cases.

20

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

3.9 Marker selection

For differential expression testing, each package performs logFC and p-value calculations
for each gene, comparing each cluster to all other combined clusters. Seurat internally pos-
sesses the ability to perform other p-value corrections besides Bonferroni, such as Benjamini
Hochberg as Scanpy uses, but does not provide a function parameter to change the correc-
tion method; however, this can be performed directly in R. Only Seurat’s DE function also
possesses the ability to internally filter genes by logFC, percentage of cells expressing that
gene in either comparison group, and p-value, which it does by default; Scanpy requires a
separate function for filtering the results of DE after it has been performed, and no way to
filter by p-value, although these operations too can be easily performed directly in Python.
Without an additional filtering step, Scanpy does not filter any genes during the marker
gene identification process. But while each package’s respective marker identification and
adjusted p-value calculation can be made identical, the sets of significant marker genes across
all clusters do slightly differ when filtering by logFC as a result of each package’s different
implementation of logFC calculation.

3.10 logFC

Log-fold change is defined as the logarithm of the ratio of expression values between groups,
taking the following form

Lg = log2

(
1
n1

∑
i∈G1

(exp(Yig)− 1) + ϵ
1
n2

∑
i∈G2

(exp(Yig)− 1) + ϵ

)
(1)

= log2

(
1

n1

∑
i∈G1

(exp(Yig)− 1) + ϵ

)
− log2

(
1

n2

∑
i∈G2

(exp(Yig)− 1) + ϵ

)
(2)

where Yig is the log-transformed expression value for cell i and gene g derived during the
log-normalization step of a standard pipeline (i.e., Yig = ln(Xig + 1), where Xig is the raw
expression value for cell i and gene g), G1 and G2 are the indices for two groups of cells, n1

and n2 are the numbers of cells in the respective groups, and ϵ is a very small pseudocount
to avoid log(0) or div(0) errors.

In a recent survey of methods for finding marker genes from single-cell RNA-seq data33,
the authors urge that “extreme care should be taken when comparing the log fold-changes
output by Seurat (version 4) and Scanpy” because the programs are using different formulas
for the calculations. Specifically, the Seurat v5 calculation is given by

Rg = log2

(∑
i∈G1

(exp(Yig)− 1) + 1

n1

)
− log2

(∑
i∈G2

(exp(Yig)− 1) + 1

n2

)
(3)

= log2

(
1

n1

∑
i∈G1

(exp(Yig)− 1) +
1

n1

)
− log2

(
1

n2

∑
i∈G2

(exp(Yig)− 1) +
1

n2

)
, (4)

The relevant code can be found on the Seurat GitHub repository34.

21

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

In contrast, the Scanpy calculation is

Pg = log2

(
exp

(
1

n1

∑
i∈G1

Yig

)
− 1 + ϵ

)
− log2

(
exp

(
1

n2

∑
i∈G2

Yig

)
− 1 + ϵ

)
, (5)

where ϵ = 10−9. The relevant code can be found on the Scanpy GitHub repository35.

There are two noteworthy differences in the calculations between packages. The first dif-
ference is in the pseudocount, which is 1

nc
for Seurat (where c is the group identity), while

it is ϵ = 10−9 for Scanpy. Seurat incorporates cluster size into its pseudocount, meaning
that the pseudocount will increase for smaller clusters (in the range of 0.0001 to 0.1 for
a typical dataset). This pseudocount-cluster size dependence means that both the expres-
sion level and cluster size will affect the calculated value, such that two clusters with equal
mean expression levels for a gene will have a non-zero logFC if the cluster sizes are different.
The second difference is that Seurat reverses the log transform before calculating the mean
across all cells, while Scanpy reverses the log1p transform after calculating the mean. In
other words, Scanpy erroneously computes exp(arithmetic mean(Yig))− 1, rather than the
correct arithmetic mean(exp(Yig − 1)).

Seurat v4 calculates the logFC similarly to Seurat v5, but with the crucial difference that
the pseudocount is added after dividing by total cells in Seurat v4, whereas the pseudocount
is added before dividing by all cells in Seurat v5, yielding the following equation for logFC
in Seurat v4

Rg = log2

(
1

n1

∑
i∈G1

(exp(Yig)− 1) + 1

)
− log2

(
1

n2

∑
i∈G2

(exp(Yig)− 1) + 1

)
, (6)

This difference effectively means that the added pseudocount in Seurat v4 is 1, while the
added pseudocount in Seurat v5 is 1

nc
. This explains the difference in logFC calculation

between Seurat versions. The relevant code can be found on the Seurat GitHub repository
under the version 4 release36.

It is the difference in handling of the pseudocount (1
nc

for Seurat v5, 1 for Seurat v4, ϵ
for Scanpy) which contributes to the large slant when comparing analogous logFC values
between Seurat v5 and v4 (Fig 3a), as well as the presence of outliers near (±30, 0) when
comparing Seurat to Scanpy (Supp Fig 3g). The relatively large pseudocount in Seurat
v4 drives all fold-change ratios toward 1, or all log-fold changes toward 0, while Seurat
v5’s relatively small pseudocount does not significantly sway its log-fold change values, thus
generally trending Seurat’s logFC values to be smaller than Scanpy’s. And between Seurat
and Scanpy when a gene is not expressed in one of the groups, rather than treating logFC as
±∞ as would be technically correct, the pseudocount treats these edge cases differently. As
an example, let’s simplify the logFC calculation to logFCg =

a1+p1
a2+p2

, where a1 and a2 are the
mean unlogged expression values for logFC calculation, and p1 and p2 are the pseudocounts,
respectively. For Seurat, let’s set p1 = 0.01 (a reasonable value for a small cluster), and
p2 = 10−4. If the expression in group 1 is 0 and the expression in group 2 is 1, then rather

22

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

than setting the numerator to 0 (and thus providing a logFC of −∞), Seurat would calculate
logFC as logFCg = log2(

a1+p1
a2+p2

) = log2(
p1

a2+p2
) = log2(

0.01
1+10−4) ≈ log2(0.01) ≈ −6.6. However,

Scanpy would make the calculation as logFCg = log2(
a1+p1
a2+p2

) = log2(
p1

a2+p2
) = log2(

10−9

1+10−9) ≈
log2(10

−9) ≈ −29.90 (and similarly logFC ≈ +29.90 if groups 1 and 2 are swapped).

Additionally, the values of Yig that appear in each equation are not simply log1p(Xig) as
discussed above. Rather Yig is typically normalized before being logged, obtained by divid-
ing the raw count Xig by the total number of counts in cell i, and then multiplying by the

number 10, 000 (user-defined in Seurat, fixed in Scanpy). Specifically, Yig = log(
Xig

Si
+ 1)

where Si =
∑

g Xig

10,000
. Thus, exp(Yig) − 1 =

Xig

Si
, and 1

n1

∑
i∈G1

(exp(Yig)− 1) (respectively
1
n2

∑
i∈G2

(exp(Yig)− 1)) is the arithmetic mean of
Xig

Si
computed across the cells in G1 (re-

spectively G2).

Seurat computes the log of the arithmetic mean 1
n1

∑
i∈G1

Xig (in what follows we focus on
G1, although the claims and results hold for computations with respect to G2 as well), which
makes sense as it can be understood to be the maximum likelihood estimate (MLE) for the
mean of a negative binomial distribution, namely the distribution for the molecule counts
Xig. The modeling of the Xig with a negative binomial distribution represents an assumption
about the data in an experiment, but is justifiable37. The arithmetic means computed in Rg

are not, however of the Xig. As noted above, they are of
Xig

Si
, whose distribution will depend

on the cell depths Si; moreover the values
Xig

Si
are not integers. Thus, the use of the MLE for

the negative binomial distribution may not be appropriate, although in practice the log-fold
change is computed for cells in two distinct cell types, and therefore the sets G1 and G2 will
be homogeneous leading to

Xig

Si
being (approximately) a constant multiple of the Xig. When

this is the case, the sample mean 1
n1

∑
i∈G1

Xig is likely to yield a good estimate of the scaled
mean for the negative binomial distribution of the Xig.

However, Scanpy computes the log of 1
n1

∑
i∈G1

Yig, which is equivalent to the log of the

geometric mean of exp(Yig), i.e log((
∏

i∈G1
(
Xig

Si
+ 1))

!
n). The log of geometric mean is the

MLE for the mean of log-normal distributed data, so it makes sense to use the geometric
mean if one assumes that the exp(Yig) are log-normally distributed, however the authors
of Scanpy explain that this is not the case, writing4 that “scRNA-seq data are not in fact
log-normally distributed”. Moreover, there is an arithmetic error in the computation of
Pg, evident in the subtraction of 1 after computing the geometric mean in the Pg formula

log2

(
exp

(
1
n1

∑
i∈G1

Yig

)
− 1 + ϵ

)
. The subtraction is intended to adjust for the fact that

the geometric mean is computed for
Xig

Si
+ 1 and not

Xig

Si
; presumably this was a matter of

convenience as the Yig are stored in the anndata object that Scanpy uses for other purposes.
However, while the arithmetic mean is linear, the geometric mean is not, and in general
((x1 + 1) · · · (xn + 1))

1
n − 1 ̸= (x1 · · · xn)

1
n . Again, in most cases, the homogeneity of the

groups G1 and G2 comes to the rescue as ((x1+1) · · · (xn+1))
1
n − 1 ≈ (x1 · · · xn)

1
n when the

xi are close to each other. The formula Pg also includes a pseudocount to avoid an error in
the case when the Yig are all equal to zero for a group (and thus the attempted evaluation of

23

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

the logarithm of zero), but in the case of Pg the pseudocount used is ϵ = 10−9, thus avoiding
the problems with the +1 pseudocount in Rg.

Interestingly, Seurat’s logFC calculation is much more stable to reduced read counts than
Scanpy’s. Given the general correlation between Seurat’s and Scanpy’s logFC calculations at
baseline, it would be more accurate to compute logFC for a dataset with Seurat if hoping to
recapitulate results of a larger dataset, even if hoping to mimic the Scanpy logFC calculation.

3.11 Adjusted p-value

As the DE output of both Seurat and Scanpy contains p-values and users may use the
adjusted p < 0.05 cutoff to select genes for further analyses, we compare the p-values to
compare the DE results from the standard workflow (Supplemental Figure 9A). Despite
using the more conservative Bonferroni correction, Seurat tends to report more significant
p-values than Scanpy, which uses the Benjamini-Hochberg correction. The difference in
adjusted p-value calculation between packages nearly entirely boils down the required use of
tie-correction by Seurat, in contrast to the omission of tie-correction by default in Scanpy.
Both Seurat, directly or through immunogenics/presto, and Scanpy perform the Wilcoxon
rank sum test in essentially the same way. To briefly review the algorithm, for each gene,
it ranks the cells by expression value of that gene, adjusting for ties if indicated. It then
loops through the clusters, comparing each cluster to a reference group (by default, all other
clusters combined); calculates the mean and standard deviation gene expression for the
selected gene in each group across all cells; and sums the ranks of the cells for the selected
gene expression values within each group. For the selected cluster, it calculates the standard
deviation of all ranks, adjusts the rank sum by the sum expected when no difference is
present (dependent on the size of the selected cluster and the size of the reference group)
dividing by the standard deviation of ranks, and computes a two-tailed p-value based on this
adjusted rank sum score. The use of presto for DE calculations including Wilcoxon rank
sum test, new to Seurat v5, reduces the calculation time per run by approximately 80-90%,
while providing identical results to the method built into Seurat.

3.12 Downsampling

Most results observed with the PBMC 10k dataset are also similarly observed when running
the same analysis on the PBMC 5k dataset. One exception, however, is that the number of
reads needed to preserve a similar degree of variability introduced by Seurat and Scanpy in
the PBMC 5k dataset is nearer 10-25% downsampled, rather than the 1-5% observed with
PBMC 10k. Given that the PBMC 10k dataset has approximately five times more reads than
the PBMC 5k dataset, it is possible that the fraction of necessary reads to preserve informa-
tion depends not only on the fraction of total reads, but additionally on the number of reads
after downsampling, the number of cells, and other specifications of the dataset. Further
datasets with a range of sequencing technologies, cell sample sizes, sequencing depths, and
tissue pathologies can be tested to improve the robustness and quantitativeness of these re-
sults, although even these two datasets alone provide evidence that at least some datasets are
large enough that technical noise between methods can outweigh significant downsampling.

24

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

With the downsampling analysis, the point of comparison for the degree of information
preservation was always the variability introduced between Seurat and Scanpy. Without
extensive biological validation, it is not clear how much the observed differences between the
packages, or between versions within a package, matter in practice. However, even without
validation, two points are made clear. The first point is that the variability introduced
between packages is appreciable for most steps of the pipeline. The second point is that
given that similar information is preserved with a small fraction of the original reads, it is
true either that the difference in results between default Seurat and Scanpy is significant in
the interpretation of biological analysis (in which case the acceptable degree of downsampling
is overestimated in this paper), or that similar results can be achieved in some cases with a
small fraction of the reads or cells.

4 Conclusion

This study lays the foundation for comparing similarity in the outputs of each step in a
standard scRNA-seq analysis. While we have illustrated differences between scRNA-seq
software tools using 10x Genomics PBMC datasets that are standard for benchmarking, our
comparisons can be readily conducted on other datasets. Future efforts could include the
broadening of this study to further packages, package versions, and datasets. Additional
metrics involved in scRNA-seq can be analyzed, including those in related workflows such
as spatial transcriptomics and scATAC-seq. Datasets with various sequencing depths, cell
sample sizes, and tissue sources could be studied in order to better understand the necessary
dataset sizes needed to capture relevant information across different conditions. Another
avenue that was not explored in depth was the effect of argument choice on the divergence
of output among conditions. One study found some deviations from default arguments in
Seurat to particularly impact clustering results such as number of dimensional reductions to
use, k-parameter of KNN, prune parameter of SNN, and resolution parameter of clustering38.
It would be interesting to apply this analysis to other output metrics, such as UMAP and
DE, and see if the impact of these arguments propagates across packages and versions. And
applications of this workflow could be applied to biological workflows with well-established
ground truths in order to determine to what extent these discrepancies lead to differences in
biological interpretation.

We provide guidelines for best practice that can mitigate the differences observed in this
study. For developers, maintaining backward compatibility is crucial. Ideally, a unified
backend framework can significantly minimize discrepancies between frontend tools. Default
function arguments should be justified, especially if they deviate from other popular choices
in the field. Announcing all changes to function parameters and default values can provide
users to easily understand how analytical steps differ between versions. For users, careful
programming environment setup with tools such as virtual environments, Anaconda, Docker,
and Google Colab is important for reproducibility. The selection of function arguments
should be intentional. A single pipeline should be established within each study to avoid
introducing some of the discrepancies discussed in this study. And one should interpret
results across studies with caution when different packages, versions, and function arguments

25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

are utilized.

In conclusion, we establish a series of methods for assessing the similarity in function of
each step of a standard scRNA-seq analysis pipeline from filtering to DE. We highlight how
Seurat and Scanpy possess sizeable differences in the way they perform analysis with default
settings, which can only be partially reconciled by aligning function arguments. These
differences amount to the variability introduced when downsampling reads to less than 5%,
or when downsampling cells to less than 20% in the dataset analyzed. Version control
of packages involved in count matrix generation and analysis can also have an impact on
downstream analysis, especially without careful consideration of changes in behavior across
versions. Consistent package selection, thoughtful argument choices, and intentional version
control must be practiced in order to achieve accuracy and reproducibility in scRNA-seq
analysis.

Acknowledgements

This work was supported in part by NIH 5UM1HG012077-02. D.K.S. was funded by
the UCLA-Caltech Medical Scientist Training Program (NIH NIGMS training grant T32
GM008042). We thank Bernadett Gaál for the feedback of dedicating a study to pack-
age comparisons in the scRNA-seq workflow. We thank Tara Chari for providing feedback
and assisting with data management. The authors acknowledge the Howard Hughes Med-
ical Institute for funding A.S.B. through the Hanna H. Gray Fellows program. We thank
the Caltech Bioinformatics Resource Center for providing computing resources during the
development of the project.

Author Contributions

Work on this paper was led by J.R., who implemented the comparisons, produced the results,
and drafted an initial version of this manuscript. The project emerged from discussions
among various combinations of the authors: J.R., L.M., P.H.E., K.J., L.L., A.S.B., S.A.,
D.K.S, N.B, P.M., L.P. The methods for benchmarking and comparisons of results were
developed by J.M.R., L.M., L.P.; Software was written primarily by J.M.R. with the help
of L.M.; Formal analysis and investigation was conducted by J.M.R., L.M., L.P.; Writing –
Original Draft, J.M.R.; Writing – Review & Editing, J.M.R., L.M., P.H.E., K.J., L.L., A.S.B.,
S.A., D.K.S, N.B, P.M., L.P.; Visualization, J.M.R., L.M., L.P.; Funding Acquisition, L.P.;
Resources, L.P.; Supervision, L.P.

Declaration of Interests

The authors declare no competing interests.

26

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

STAR Methods

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Deposited data
10k Peripheral Blood
Mononuclear Cells (PBMCs)
from a Healthy Donor, Single
Indexed

10x Genomics https://www.10xgenomics.com/
datasets/10-k-peripheral-
blood-mononuclear-cells-
pbm-cs-from-a-healthy-
donor-single-indexed-3-1-
standard-4-0-0

5k Peripheral blood mononuclear
cells (PBMCs) from a healthy
donor (v3 chemistry)

10x Genomics https:
//support.10xgenomics.com/
single-cell-gene-
expression/datasets/3.0.2/
5k pbmc v3?

Count matrices, text files of
statistics from downsampling,
and Seurat/Anndata objects
across Seurat and Scanpy
versions

This study https://caltech.box.com/s/
i4dk3iwdg1ufmryyblg9pcszl
5b08gsc

Software and algorithms
R version 4.3.1 CRAN https://cran.r-project.org/

bin/windows/base/
Python version 3.9.18 Python https://www.python.org
Seurat versions 5.0.2, 4.3.0 Hao et al.23;24 https:

//satijalab.org/seurat/
Scanpy versions 1.9.5, 1.4.6 Wolf et al.3 https:

//scanpy.readthedocs.io/en/
stable/

Tidyverse (dplyr, ggplot2) Wickham et al.39 https://www.tidyverse.org
kb-python Sullivan et al.8 https://github.com/

pachterlab/kb python
Kallisto Bray et al.9 https:

//pachterlab.github.io/
kallisto/

Bustools Melsted et al.10 https://bustools.github.io
Cell Ranger 10x Genomics https://www.10xgenomics.com/

support/software/cell-
ranger/latest

Data processing and analysis
code

This study https:
//github.com/pachterlab/
RMEJLBASBMP 2024.git

Data processing and analysis
Docker images

This study https://hub.docker.com/
repository/docker/
josephrich98/
scrnaseq packages and versio
ning/general

27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://www.10xgenomics.com/datasets/10-k-peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-single-indexed-3-1-standard-4-0-0
https://www.10xgenomics.com/datasets/10-k-peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-single-indexed-3-1-standard-4-0-0
https://www.10xgenomics.com/datasets/10-k-peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-single-indexed-3-1-standard-4-0-0
https://www.10xgenomics.com/datasets/10-k-peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-single-indexed-3-1-standard-4-0-0
https://www.10xgenomics.com/datasets/10-k-peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-single-indexed-3-1-standard-4-0-0
https://www.10xgenomics.com/datasets/10-k-peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-single-indexed-3-1-standard-4-0-0
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_v3?
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_v3?
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_v3?
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_v3?
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_v3?
https://caltech.box.com/s/i4dk3iwdg1ufmryyblg9pcszl5b08gsc
https://caltech.box.com/s/i4dk3iwdg1ufmryyblg9pcszl5b08gsc
https://caltech.box.com/s/i4dk3iwdg1ufmryyblg9pcszl5b08gsc
https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/base/
https://www.python.org
https://satijalab.org/seurat/
https://satijalab.org/seurat/
https://scanpy.readthedocs.io/en/stable/
https://scanpy.readthedocs.io/en/stable/
https://scanpy.readthedocs.io/en/stable/
https://www.tidyverse.org
https://github.com/pachterlab/kb_python
https://github.com/pachterlab/kb_python
https://pachterlab.github.io/kallisto/
https://pachterlab.github.io/kallisto/
https://pachterlab.github.io/kallisto/
https://bustools.github.io
https://www.10xgenomics.com/support/software/cell-ranger/latest
https://www.10xgenomics.com/support/software/cell-ranger/latest
https://www.10xgenomics.com/support/software/cell-ranger/latest
https://github.com/pachterlab/RMEJLBASBMP_2024.git
https://github.com/pachterlab/RMEJLBASBMP_2024.git
https://github.com/pachterlab/RMEJLBASBMP_2024.git
https://hub.docker.com/repository/docker/josephrich98/scrnaseq_packages_and_versioning/general
https://hub.docker.com/repository/docker/josephrich98/scrnaseq_packages_and_versioning/general
https://hub.docker.com/repository/docker/josephrich98/scrnaseq_packages_and_versioning/general
https://hub.docker.com/repository/docker/josephrich98/scrnaseq_packages_and_versioning/general
https://hub.docker.com/repository/docker/josephrich98/scrnaseq_packages_and_versioning/general
https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by
the lead contact, Lior Pachter (lpachter@caltech.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All original code has been deposited at GitHub and is publicly available as of the date of
publication. The Docker image that provides the virtual environment in which all analysis
was performed has been deposited at DockerHub and is publicly available as of the date of
publication. Count matrix generation from FASTQ files was performed in a conda environ-
ment, also deposited on the GitHub repository. The original FASTQ files of the PBMC 10k
dataset, shown in figures, and the PBMC 5k dataset, used for validation (figures not shown)
can be found on the 10x Genomics website. The count matrices generated with kb-python
and Cell Ranger from the PBMC 10k dataset FASTQ files have been deposited at Box and
are publicly available as of the date of publication. Links to all materials can be found in
the Key Resources table.

METHOD DETAILS

Count Matrix Generation
Count matrices were generated using either kb or Cell Ranger. The workflow used in most
figures (unless stated otherwise) involved kb v0.28.0 (kallisto v0.50.1, bustools v0.43.1) and
standard arguments. Other package versions used include Cell Ranger v7.2.0 and Cell Ranger
v6.1.2. Reference transcriptomes for kb were built using kb ref with Ensembl release 111,
downloaded with gget40; for Cell Ranger, the 2020-A reference transcriptome was used.

Read downsampling was simulated with the seqtk package. Cell downsampling was simulated
with the “sample” function in base R.

Analysis
All analysis was performed in R markdown files (R v4.3.1) with the reticulate package for
Anaconda Python integration (v3.9.18)41. Data processing was performed with dplyr and
tidyr39. All plots unless stated otherwise were generated with ggplot239. The standard
pipeline for Seurat v5.0.242, and Scanpy v1.9.543 were followed for comparison within and
between packages.

Filtering

28

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

Data were loaded and filtered by UMI counts with the Matrix and DropletUtils packages44.
Filtering by cells and genes was performed with thresholding with standard values (minimum
3 cells per gene, minimum 200 genes per cell) for full-sized datasets. For datasets involving
downsampled reads, these parameters were tuned to generally maximize the overlap of cell
and gene sets between full and downsampled data. For datasets involving downsampled cells,
the minimum cells per gene parameter was tuned to generally maximize the Jaccard index
of gene sets, where Jaccard index is defined as intersection over union (i.e., the number of
elements shared between two sets divided by the total number of elements between two com-
bined sets). Filtering by mitochondrial gene content was performed with simple thresholding
to remove cells with extremely high mitochondrial gene content as determined by violin plots
(typically > 20% for the PBMC 10k dataset). Mitochondrial gene content was assessed by
cross-referencing with the list of mitochondrial genes as determined by biomaRt45. Filtering
results were visualized with UpSet plots using the UpSetR package46 (also used for all Up-
Set plots in this study) for the sets of cells and genes, and assessed using the Jaccard index
between conditions.

Normalization
Data normalization was performed by dividing each value in the count matrix by the total
counts per cell, multiplying by a scaling factor of 10,000, and and then taking the log1p

transform of this value. In other words, Yig = log(
Xig

Si
+1) where Si =

∑
g Xig

10,000
. Normalization

results were assessed by comparing the mean difference in entries after normalization of
identical count matrices.

Highly Variable Gene Selection
Highly variable genes were selected based on demonstrating high variance (normalized to
mean expression) across all cells. In the case of Scanpy, subsequent analysis up until differ-
ential expression was performed exclusively on highly variable gene data. HVG set similarity
was visualized with UpSet plots and assessed with Jaccard index.

Principal Component Analysis
PCA analysis was performed, reducing the dimensionality of gene to the top 50 PCs. Analysis
of PCA results was performed in three ways: by overlaying the PCA plots in two dimensions;
by comparing the magnitudes of eigenvalues (Scree plots); and by comparing the sines of
eigenvectors (where sin(θ) = ±

√
1− cos2(θ) by the Pythagorean identity). The sine of the

eigenvectors should be equal to 0 for identical vectors, and equal to 1 for perpendicular
vectors, thus providing a quantification for similarity of vectors in high-dimensional space.

Scaling and Regression
Gene expression data were scaled to have a mean of 0 and variance of 1 per gene across all
cells, with user-defined clipping (upper-bound scaled expression). Optionally, features such
as total counts and percentage of mitochondrial gene content could be regressed out during
or after this step. Scaling and regression equivalence between packages was assessed by
determining the equivalence of PCA embeddings when identical HVGs were fed into scaling
and regression, and assessing the similarity of output through identical PCA steps.

29

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

K-Nearest Neighbors and Shared Nearest Neighbors
The cell coordinates on the top 50 PCA embeddings were passed into KNN search algorithms
in order to begin identifying similar groups of cells. For large datasets, Seurat used the
Annoy algorithm through the RcppAnnoy package26, and Scanpy used NN Descent through
the PyNNDescent package, called by umap-learn. The source code of Seurat’s FindNeighbors
internal function calls was slightly modified in order to provide an interface to set the random
seed of KNN graph generation with Annoy. SNN graphs were created from the KNN graphs
based on neighborhood similarity of cells. The similarity of SNN graphs was assessed by
computing the median Jaccard index and the median magnitude in the logarithm of the
degree ratio between conditions.

The maximum Jaccard index Jmax is equal to the degree ratio D = d1
d2
, where d1 < d2.

Jaccard index is intersection over union. The maximum overlap is given by d1, and the
minimum union is given by d2. This ratio d1

d2
gives both the degree ratio and the upper

bound on the Jaccard index.

Clustering Analysis
Clustering was performed with the Louvain or Leiden algorithm. Seurat implemented Lou-
vain itself, and Scanpy used louvain-igraph. Both packages used leidanalg for Leiden47.
Assessment of cluster similarity was assessed visually with alluvial plots generated with the
ggalluvial package48, and with the ARI calculated with the mclust package49.

The order of clusters and colors appearing in the alluvial plots was modified in a novel way
from the capabilities of the ggalluvial package. The algorithm for the order of clusters, de-
signed to minimize crossover in the alluvial plot and thus allow general cluster disorganization
to correlate with agreement of clusters between groups, is as follows:

1. Order the left side from top down by decreasing cluster size

2. Order the right side such that it shares the nearest available rank to the cluster on the
left with which is possesses its maximum Jaccard index

(a) If there are multiple clusters on the right that share the same cluster on the left
for its highest Jaccard index, then these clusters are sorted by decreasing cluster
size

Below is pseudocode that describes the implementation of this algorithm, which can be found
implemented on this study’s GitHub repository50:

30

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

Algorithm 1 sort clusters by agreement

Require: A dataframe df containing three columns: Cluster number for group 1
(cluster 1), cluster number for group 2 (cluster 2), and the number of cells in both
clusters (n overlap) where the dataframe only keeps rows where the number of cells in
both clusters > 0

Ensure: Updated df with adjusted cluster numbers based on largest overlap and continuity
checks in a new column cluster 2 updated.
for each cluster in unique(cluster 2) do
Subset df for the current cluster number

Identify the row from cluster 1 with the largest overlap value with cluster number

in cluster 2

Determine the new cluster number based on the corresponding Group 1 number
Assign this new number as the best cluster number for agreement
while there is any cluster with the current new cluster number do
Increment the new cluster number
if there is at least one other cluster with a conflicting cluster number, but whose best
cluster is greater than the best cluster of the cluster currently being considered then
Increment all values of cluster 2 updated for which the cluster number is >
new cluster number
Break the loop

end if
end while
Assign the new cluster number to the current subset based on original cluster number
for each number from the new cluster number + 1 to the maximum number of clusters
do
if no cluster matches the current new number then
Decrement the reordered column and cluster 2 updated values for which the clus-
ter number is > new cluster number
Break the loop

end if
end for

end for
rewrite cluster 2 updated, replacing cluster values with their ranks
return df with the new column cluster 2 updated

31

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

The algorithm for the order of colors follows the maximum weight matching algorithm in
order to align the colors of the two groups as closely as possible.

UMAP
UMAP plots were created from PCA-derived nearest neighbor graphs. By default, Seurat
uses the uwot package51, and Scanpy uses umap-learn29. Analogous clusters were visually
compared in local structure and relation to neighboring clusters to assess plot similarity.

UMAP data extended analysis was performed by constructing a KNN graph from the UMAP
space, passing this KNN graph through Leiden clustering, and further projecting the UMAP-
derived KNN graph in UMAP space. KNN construction from UMAP space was performed
with an exact KNN graph implementation from the FNN package, which implements an
exact KNN with Kd trees52. Leiden clustering was implemented with the bluster package53,
which internally implements an exact KNN algorithm for input into Leiden using the k-
means k-nearest neighbor algorithm54. Further UMAP projection of the FNN-derived KNN
graphs was implemented with the uwot package (the same underlying package as Seurat).

Differential Expression
DE analysis was performed on the clustered genes by computing a logFC and p-value for
each gene per cluster compared to all other clusters. Optionally, genes per cluster could be
filtered with thresholding for logFC, p-value, or percentage of cells expressing the gene in a
reference group to only select the best markers. We wrote a function to convert the data
structure holding the values of percentage of cells in each reference group expressing a gene
from a pandas dataframe to a numpy recarray to make it compatible with the other DE
statistics stored in the Scanpy Anndata object. p-values were adjusted with the Bonferroni
or Benjamini-Hochberg correction. Analysis of significant marker gene similarity (all genes
across all clusters with adjusted p-value < 0.05) and marker similarity (all cluster-specific
marker genes after any implemented filtering) was performed with UpSet plots and Jaccard
indices of gene sets. Analysis of logFC similarity was performed with scatterplots, computa-
tion of the CCC, median and mean magnitude of difference of logFC for analogous marker
genes, and a PCA best-fit line. CCC is defined as follows:

ρc =
2ρσxσy

σ2
x+σ2

y+(µx−µy)2

Analysis of adjusted p-value similarity was assessed with log scatterplots and by computing
the percentage of marker genes which flipped across the significance threshold of p=0.05.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data were loaded and filtered by UMI counts with the Matrix package44. Each pipeline
generally consisted of the following steps: filtering (UMIs, cells and genes, mitochondrial
gene content), log normalization, HVG selection, feature regression, scaling, PCA, KNN
and SNN graph formation, clustering, UMAP projection, and DE analysis (Supplemental
Figure 1). Mitochondrial gene content was facilitated with biomaRt45. Filtering similarity

32

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

was assessed by comparing similarity of cell and gene sets with UpSet plots. Normalization
similarity between packages was assessed by providing the same data to each normalization
function as input and comparing the similarity of output matrix values. HVG selection
similarity was assessed by comparing overlap with UpSet plots and Jaccard index. PCA
similarity was assessed by overlaying the PCA plots on the first two PCs, comparing the
difference in corresponding eigenvector values on Scree plots, and comparing the sine of
corresponding eigenvectors. SNN graph similarity was assessed by computing the Jaccard
index for the overlap in neighborhoods, as well as the median magnitude in the ratio in
degree of neighborhoods, for each cell between conditions. Cluster similarity was assessed
by visually determining the degree of alignment in alluvial plots between clusters, as well
as computing the ARI. UMAP similarity was determined by visually comparing plots, as
well as by computing KNN graphs from the UMAP space, followed by subsequent Leiden
clustering and UMAP projection of these UMAP-space derived KNN graphs, with assessment
completed as before (Jaccard indices of KNN graph neighborhoods, alluvial plotting and ARI
computation for clusters, and visual comparison of UMAP plots). DE similarity was assessed
with comparing overlap of the union of significant marker genes across all clusters between
conditions with UpSet plots. When cluster assignments could be unified between conditions,
additional analysis of DE similarity was performed for each marker per cluster by calculating
similarity of marker genes per cluster, by plotting logFC and computing the CCC and PCA
fit line, and by plotting adjusted p-value between conditions and computing the percentage
of markers which flipped across the p=0.05 threshold.

33

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

References

[1] Dragomirka Jovic, Xue Liang, Hua Zeng, Lin Lin, Fengping Xu, and Yonglun Luo.
Single-cell RNA sequencing technologies and applications: A brief overview. Clinical
and Translational Medicine, 12(3):e694, March 2022. ISSN 2001-1326. doi: 10.1002/
ctm2.694.

[2] Rahul Satija, Jeffrey A. Farrell, David Gennert, Alexander F. Schier, and Aviv Regev.
Spatial reconstruction of single-cell gene expression data. Nature Biotechnology, 33(5):
495–502, May 2015. ISSN 1546-1696. doi: 10.1038/nbt.3192.

[3] F. Alexander Wolf, Philipp Angerer, and Fabian J. Theis. SCANPY: Large-scale single-
cell gene expression data analysis. Genome Biology, 19(1):15, February 2018. ISSN
1474-760X. doi: 10.1186/s13059-017-1382-0.

[4] Malte D Luecken and Fabian J Theis. Current best practices in single-cell RNA-seq
analysis: A tutorial. Molecular Systems Biology, 15(6):e8746, June 2019. ISSN 1744-
4292, 1744-4292. doi: 10.15252/msb.20188746.

[5] Alexander Dobin, Carrie A Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali
Jha, Philippe Batut, Mark Chaisson, and Thomas R Gingeras. Star: ultrafast universal
rna-seq aligner. Bioinformatics, 29(1):15–21, 2013.

[6] 10x Genomics. Cell ranger, 2024.

[7] Páll Melsted, A. Sina Booeshaghi, Lauren Liu, Fan Gao, Lambda Lu, Kyung Hoi
Min, Eduardo Da Veiga Beltrame, Kristján Eldjárn Hjörleifsson, Jase Gehring, and
Lior Pachter. Modular, efficient and constant-memory single-cell RNA-seq preprocess-
ing. Nature Biotechnology, 39(7):813–818, July 2021. ISSN 1087-0156, 1546-1696. doi:
10.1038/s41587-021-00870-2.

[8] Delaney K. Sullivan, Kyung Hoi (Joseph) Min, Kristján Eldjárn Hjörleifsson, Laura
Luebbert, Guillaume Holley, Lambda Moses, Johan Gustafsson, Nicolas L. Bray, Harold
Pimentel, A. Sina Booeshaghi, Páll Melsted, and Lior Pachter. Kallisto, bustools,
and kb-python for quantifying bulk, single-cell, and single-nucleus RNA-seq. Preprint,
BioRxiv, November 2023.

[9] Nicolas L. Bray, Harold Pimentel, Páll Melsted, and Lior Pachter. Near-optimal proba-
bilistic RNA-seq quantification. Nature Biotechnology, 34(5):525–527, May 2016. ISSN
1546-1696. doi: 10.1038/nbt.3519.

[10] Páll Melsted, Vasilis Ntranos, and Lior Pachter. The barcode, UMI, set format and
BUStools. Bioinformatics, 35(21):4472–4473, November 2019. ISSN 1367-4803. doi:
10.1093/bioinformatics/btz279.

[11] Kristján Eldjárn Hjörleifsson, Delaney K. Sullivan, Nikhila P. Swarna, Guillaume Holley,
Páll Melsted, and Lior Pachter. Accurate quantification of single-cell and single-nucleus
RNA-seq transcripts using distinguishing flanking k-mers, January 2024.

34

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

[12] Christoph Ziegenhain, Beate Vieth, Swati Parekh, Björn Reinius, Amy Guillaumet-
Adkins, Martha Smets, Heinrich Leonhardt, Holger Heyn, Ines Hellmann, and Wolfgang
Enard. Comparative Analysis of Single-Cell RNA Sequencing Methods. Molecular Cell,
65(4):631–643.e4, February 2017. ISSN 10972765. doi: 10.1016/j.molcel.2017.01.023.

[13] What is the recommended sequencing depth for single cell 3’ and 5’ gene ex-
pression libraries?, 2024. https://kb.10xgenomics.com/hc/en-us/articles/
115002022743-What-is-the-recommended-sequencing-depth-for-Single-Cell-

3-and-5-Gene-Expression-libraries#:~:text=For%20Single%20Cell%203’%

20v2,The%20experimental%20question%20being%20addressed. [Accessed: 2024-03-
29].

[14] Lambda Moses, Pétur Helgi Einarsson, Kayla Jackson, Laura Luebbert, A. Sina Booe-
shaghi, Sindri Antonsson, Nicolas Bray, Páll Melsted, and Lior Pachter. Voyager: Ex-
ploratory single-cell genomics data analysis with geospatial statistics. Preprint, Bioin-
formatics, July 2023.

[15] Ales Varabyou, Steven L. Salzberg, and Mihaela Pertea. Effects of transcriptional noise
on estimates of gene and transcript expression in RNA sequencing experiments. Genome
Research, 31(2):301–308, February 2021. ISSN 1088-9051. doi: 10.1101/gr.266213.120.

[16] Kristoffer Vitting-Seerup. On the Analysis of Transcriptional Noise From RNA-
sequencing Data. Preprint, Bioinformatics, April 2021.

[17] Albert Kuo, Kasper D Hansen, and Stephanie C Hicks. Quantification and statisti-
cal modeling of droplet-based single-nucleus RNA-sequencing data. Biostatistics, page
kxad010, May 2023. ISSN 1465-4644, 1468-4357. doi: 10.1093/biostatistics/kxad010.

[18] Gennady Gorin, John J. Vastola, and Lior Pachter. Studying stochastic systems biology
of the cell with single-cell genomics data. Cell Systems, 14(10):822–843.e22, October
2023. ISSN 24054712. doi: 10.1016/j.cels.2023.08.004.

[19] Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12):550,
December 2014. ISSN 1474-760X. doi: 10.1186/s13059-014-0550-8.

[20] Ruidong Xue, Qiming Zhang, Qi Cao, Ruirui Kong, Xiao Xiang, Hengkang Liu, Mei
Feng, Fangyanni Wang, Jinghui Cheng, Zhao Li, Qimin Zhan, Mi Deng, Jiye Zhu,
Zemin Zhang, and Ning Zhang. Liver tumour immune microenvironment subtypes and
neutrophil heterogeneity. Nature, 612(7938):141–147, December 2022. ISSN 1476-4687.
doi: 10.1038/s41586-022-05400-x.

[21] Andrew Butler, Paul Hoffman, Peter Smibert, Efthymia Papalexi, and Rahul Satija.
Integrating single-cell transcriptomic data across different conditions, technologies, and
species. Nature Biotechnology, 36(5):411–420, June 2018. ISSN 1546-1696. doi: 10.1038/
nbt.4096.

35

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://kb.10xgenomics.com/hc/en-us/articles/115002022743-What-is-the-recommended-sequencing-depth-for-Single-Cell-3-and-5-Gene-Expression-libraries#:~:text=For%20Single%20Cell%203'%20v2,The%20experimental%20question%20being%20addressed.
https://kb.10xgenomics.com/hc/en-us/articles/115002022743-What-is-the-recommended-sequencing-depth-for-Single-Cell-3-and-5-Gene-Expression-libraries#:~:text=For%20Single%20Cell%203'%20v2,The%20experimental%20question%20being%20addressed.
https://kb.10xgenomics.com/hc/en-us/articles/115002022743-What-is-the-recommended-sequencing-depth-for-Single-Cell-3-and-5-Gene-Expression-libraries#:~:text=For%20Single%20Cell%203'%20v2,The%20experimental%20question%20being%20addressed.
https://kb.10xgenomics.com/hc/en-us/articles/115002022743-What-is-the-recommended-sequencing-depth-for-Single-Cell-3-and-5-Gene-Expression-libraries#:~:text=For%20Single%20Cell%203'%20v2,The%20experimental%20question%20being%20addressed.
https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

[22] Tim Stuart, Andrew Butler, Paul Hoffman, Christoph Hafemeister, Efthymia Papalexi,
William M. Mauck, Yuhan Hao, Marlon Stoeckius, Peter Smibert, and Rahul Satija.
Comprehensive Integration of Single-Cell Data. Cell, 177(7):1888–1902.e21, June 2019.
ISSN 1097-4172. doi: 10.1016/j.cell.2019.05.031.

[23] Yuhan Hao, Stephanie Hao, Erica Andersen-Nissen, William M. Mauck, Shiwei Zheng,
Andrew Butler, Maddie J. Lee, Aaron J. Wilk, Charlotte Darby, Michael Zager, Paul
Hoffman, Marlon Stoeckius, Efthymia Papalexi, Eleni P. Mimitou, Jaison Jain, Avi
Srivastava, Tim Stuart, Lamar M. Fleming, Bertrand Yeung, Angela J. Rogers, Ju-
liana M. McElrath, Catherine A. Blish, Raphael Gottardo, Peter Smibert, and Rahul
Satija. Integrated analysis of multimodal single-cell data. Cell, 184(13):3573–3587.e29,
June 2021. ISSN 1097-4172. doi: 10.1016/j.cell.2021.04.048.

[24] Yuhan Hao, Tim Stuart, Madeline H. Kowalski, Saket Choudhary, Paul Hoffman, Austin
Hartman, Avi Srivastava, Gesmira Molla, Shaista Madad, Carlos Fernandez-Granda,
and Rahul Satija. Dictionary learning for integrative, multimodal and scalable single-
cell analysis. Nature Biotechnology, pages 1–12, May 2023. ISSN 1546-1696. doi:
10.1038/s41587-023-01767-y.

[25] Release notes for cell ranger, 2024. https://www.10xgenomics.com/support/
software/cell-ranger/latest/release-notes/cr-release-notes [Accessed:
2024-03-29].

[26] Dirk Eddelbuettel. RcppAnnoy: ’Rcpp’ Bindings for ’Annoy’, a Library for
Approximate Nearest Neighbors, 2023. https://github.com/eddelbuettel/rcppannoy,
https://dirk.eddelbuettel.com/code/rcpp.annoy.html.

[27] Sunil Arya. An Optimal Algorithm for Approximate Nearest Neighbor Searching in
Fixed Dimensions. Journal of the ACM, 45(6).

[28] Seurat shared nearest neighbor code line 16, 2024. https://github.com/satijalab/
seurat/blob/656fc8b562d53e5d0cedda9e09d9dda81e8c00e9/src/snn.cpp#L16 [Ac-
cessed: 2024-03-29].

[29] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Grossberger. Umap: Uniform
manifold approximation and projection. The Journal of Open Source Software, 3(29):
861, 2018.

[30] Umap-learn shared nearest neighbor code line 419, 2024. https://github.com/
lmcinnes/umap/blob/868e55cb614f361a0d31540c1f4a4b175136025c/umap/

umap .py#L419 [Accessed: 2024-03-29].

[31] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.
Fast unfolding of communities in large networks. Journal of Statistical Mechanics:
Theory and Experiment, 2008(10):P10008, October 2008. ISSN 1742-5468. doi: 10.1088/
1742-5468/2008/10/P10008.

36

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://www.10xgenomics.com/support/software/cell-ranger/latest/release-notes/cr-release-notes
https://www.10xgenomics.com/support/software/cell-ranger/latest/release-notes/cr-release-notes
https://github.com/satijalab/seurat/blob/656fc8b562d53e5d0cedda9e09d9dda81e8c00e9/src/snn.cpp#L16
https://github.com/satijalab/seurat/blob/656fc8b562d53e5d0cedda9e09d9dda81e8c00e9/src/snn.cpp#L16
https://github.com/lmcinnes/umap/blob/868e55cb614f361a0d31540c1f4a4b175136025c/umap/umap_.py#L419
https://github.com/lmcinnes/umap/blob/868e55cb614f361a0d31540c1f4a4b175136025c/umap/umap_.py#L419
https://github.com/lmcinnes/umap/blob/868e55cb614f361a0d31540c1f4a4b175136025c/umap/umap_.py#L419
https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

[32] Python comparison and some nearest neighbor comparisons, 2020. https://

jlmelville.github.io/uwot/articles/pycompare.html [Accessed: 2024-03-29].

[33] Jeffrey M. Pullin and Davis J. McCarthy. A comparison of marker gene selection meth-
ods for single-cell RNA sequencing data, May 2022.

[34] Seurat version 5 logfc code line 1148, 2024. https://github.com/
satijalab/seurat/blob/656fc8b562d53e5d0cedda9e09d9dda81e8c00e9/R/

differential expression.R#L1148 [Accessed: 2024-03-29].

[35] Scanpy logfc code line 452, 2024. https://github.com/scverse/
scanpy/blob/9fe98587895c1457fb1bc024e607e7c9332d2a3a/scanpy/tools/

rank genes groups.py#L452 [Accessed: 2024-03-29].

[36] Seurat version 4 logfc code line 1093, 2023. https://github.com/
satijalab/seurat/blob/763259d05991d40721dee99c9919ec6d4491d15e/R/

differential expression.R#L1093C68-L1093C68 [Accessed: 2024-03-29].

[37] Valentine Svensson. Droplet scRNA-seq is not zero-inflated. Nature Biotechnology, 38:
147–150, February 2020. doi: 10.1038/s41587-019-0379-5.

[38] Isaac Schneider, Jason Cepela, Mihir Shetty, Jinhua Wang, Andrew C. Nelson, Boris
Winterhoff, and Timothy K. Starr. Use of “default” parameter settings when analyzing
single cell RNA sequencing data using Seurat: A biologist’s perspective. Journal of
Translational Genetics and Genomics, 2020. doi: 10.20517/jtgg.2020.48.

[39] Hadley Wickham, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino
McGowan, Romain François, Garrett Grolemund, Alex Hayes, Lionel Henry, Jim Hester,
Max Kuhn, Thomas Lin Pedersen, Evan Miller, Stephan Milton Bache, Kirill Müller,
Jeroen Ooms, David Robinson, Dana Paige Seidel, Vitalie Spinu, Kohske Takahashi,
Davis Vaughan, Claus Wilke, Kara Woo, and Hiroaki Yutani. Welcome to the tidyverse.
Journal of Open Source Software, 4(43):1686, 2019. doi: 10.21105/joss.01686.

[40] Laura Luebbert and Lior Pachter. Efficient querying of genomic reference databases
with gget. Bioinformatics, 39(1):btac836, January 2023. ISSN 1367-4811. doi: 10.1093/
bioinformatics/btac836.

[41] Kevin Ushey, JJ Allaire, and Yuan Tang. reticulate: Interface to ’Python’,
2024. URL https://rstudio.github.io/reticulate/. R package version 1.35.0,
https://github.com/rstudio/reticulate.

[42] Seurat - guided clustering tutorial, 2023. https://satijalab.org/seurat/articles/
pbmc3k tutorial [Accessed: 2024-03-29].

[43] Preprocessing and clustering 3k pbmcs (legacy workflow), 2024. https://scanpy-

tutorials.readthedocs.io/en/latest/pbmc3k.html [Accessed: 2024-03-29].

37

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://jlmelville.github.io/uwot/articles/pycompare.html
https://jlmelville.github.io/uwot/articles/pycompare.html
https://github.com/satijalab/seurat/blob/656fc8b562d53e5d0cedda9e09d9dda81e8c00e9/R/differential_expression.R#L1148
https://github.com/satijalab/seurat/blob/656fc8b562d53e5d0cedda9e09d9dda81e8c00e9/R/differential_expression.R#L1148
https://github.com/satijalab/seurat/blob/656fc8b562d53e5d0cedda9e09d9dda81e8c00e9/R/differential_expression.R#L1148
https://github.com/scverse/scanpy/blob/9fe98587895c1457fb1bc024e607e7c9332d2a3a/scanpy/tools/_rank_genes_groups.py#L452
https://github.com/scverse/scanpy/blob/9fe98587895c1457fb1bc024e607e7c9332d2a3a/scanpy/tools/_rank_genes_groups.py#L452
https://github.com/scverse/scanpy/blob/9fe98587895c1457fb1bc024e607e7c9332d2a3a/scanpy/tools/_rank_genes_groups.py#L452
https://github.com/satijalab/seurat/blob/763259d05991d40721dee99c9919ec6d4491d15e/R/differential_expression.R#L1093C68-L1093C68
https://github.com/satijalab/seurat/blob/763259d05991d40721dee99c9919ec6d4491d15e/R/differential_expression.R#L1093C68-L1093C68
https://github.com/satijalab/seurat/blob/763259d05991d40721dee99c9919ec6d4491d15e/R/differential_expression.R#L1093C68-L1093C68
https://rstudio.github.io/reticulate/
https://satijalab.org/seurat/articles/pbmc3k_tutorial
https://satijalab.org/seurat/articles/pbmc3k_tutorial
https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html
https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html
https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

[44] Douglas Bates, Martin Maechler, and Mikael Jagan. Matrix: Sparse and Dense Matrix
Classes and Methods, 2023. URL https://Matrix.R-forge.R-project.org. R package
version 1.6-4.

[45] Steffen Durinck, Yves Moreau, Arek Kasprzyk, Sean Davis, Bart De Moor, Alvis
Brazma, and Wolfgang Huber. Biomart and bioconductor: a powerful link between
biological databases and microarray data analysis. Bioinformatics, 21:3439–3440, 2005.

[46] Nils Gehlenborg. UpSetR: A More Scalable Alternative to Venn and Euler Diagrams
for Visualizing Intersecting Sets, 2019. URL http://github.com/hms-dbmi/UpSetR. R
package version 1.4.0.

[47] V. A. Traag, L. Waltman, and N. J. Van Eck. From Louvain to Leiden: Guaranteeing
well-connected communities. Scientific Reports, 9(1):5233, March 2019. ISSN 2045-2322.
doi: 10.1038/s41598-019-41695-z.

[48] Jason Cory Brunson and Quentin D. Read. ggalluvial: Alluvial plots in ’ggplot2’, 2023.
URL http://corybrunson.github.io/ggalluvial/. R package version 0.12.5.

[49] Luca Scrucca, Chris Fraley, T. Brendan Murphy, and Adrian E. Raftery. Model-Based
Clustering, Classification, and Density Estimation Using mclust in R. Chapman and
Hall/CRC, 2023. ISBN 978-1032234953. doi: 10.1201/9781003277965. URL https:

//mclust-org.github.io/book/.

[50] Custom alluvial plot cluster sorting function, 2024. https://github.com/pachterlab/
RMEJLBASBMP 2024/blob/c8e22798d7a79c6aa6f256a99f507e9c72416757/analysis/

scripts/data analysis helper.R#L384 [Accessed: 2024-03-29].

[51] James Melville. uwot: The Uniform Manifold Approximation and Projection (UMAP)
Method for Dimensionality Reduction, 2023. URL https://github.com/jlmelville/
uwot. R package version 0.1.16.

[52] Alina Beygelzimer, Sham Kakadet, John Langford, Sunil Arya, David Mount, and
Shengqiao Li. FNN: Fast Nearest Neighbor Search Algorithms and Applications, 2023.
R package version 1.1.3.2.

[53] Aaron Lun. bluster: Clustering Algorithms for Bioconductor, 2023. URL https://

bioconductor.org/packages/bluster. R package version 1.12.0.

[54] Xueyi Wang. A Fast Exact k-Nearest Neighbors Algorithm for High Dimensional Search
Using k-Means Clustering and Triangle Inequality. Proceedings of ... International Joint
Conference on Neural Networks / co-sponsored by Japanese Neural Network Society
(JNNS) ... [et al.]. International Joint Conference on Neural Networks, 43(6):2351–
2358, February 2012. ISSN 2161-4393. doi: 10.1016/j.patcog.2010.01.003.

38

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.04.588111doi: bioRxiv preprint

https://Matrix.R-forge.R-project.org
http://github.com/hms-dbmi/UpSetR
http://corybrunson.github.io/ggalluvial/
https://mclust-org.github.io/book/
https://mclust-org.github.io/book/
https://github.com/pachterlab/RMEJLBASBMP_2024/blob/c8e22798d7a79c6aa6f256a99f507e9c72416757/analysis/scripts/data_analysis_helper.R#L384
https://github.com/pachterlab/RMEJLBASBMP_2024/blob/c8e22798d7a79c6aa6f256a99f507e9c72416757/analysis/scripts/data_analysis_helper.R#L384
https://github.com/pachterlab/RMEJLBASBMP_2024/blob/c8e22798d7a79c6aa6f256a99f507e9c72416757/analysis/scripts/data_analysis_helper.R#L384
https://github.com/jlmelville/uwot
https://github.com/jlmelville/uwot
https://bioconductor.org/packages/bluster
https://bioconductor.org/packages/bluster
https://doi.org/10.1101/2024.04.04.588111
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Results
	Seurat and Scanpy Show Considerable Differences in ScRNA-seq Workflow with Defaults
	Read and Cell Downsampling Retain Most Information Compared to Seurat vs. Scanpy Down to Small Fractions of Dataset Size
	Package Versioning has Significant Implications with DE Analysis
	Random seeds

	Discussion
	Matrix generation
	A walk through version histories
	Challenges with Seurat and Scanpy
	HVG selection
	PCA
	KNN/SNN
	Clustering
	UMAP
	Marker selection
	logFC
	Adjusted p-value
	Downsampling

	Conclusion

