Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 22, 1994 | metadata_only
Journal Article

The Role of Metal Ion Dopants in Quantum-Sized TiO_2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics


A systematic study of metal ion doping in quantum (Q)-sized (2-4 nm) TiO_2 colloids is performed by measuring their photoreactivities and the transient charge carrier recombination dynamics. The presence of metal ion dopants in the TiO_2 crystalline matrix significantly influences photoreactivity, charge carrier recombination rates, and interfacial electron-transfer rates. The photoreactivities of 21 metal ion-doped colloids are quantified in terms of both the conduction band electron reduction of an electron acceptor (CCl_4 dechlorination) and the valence band hole oxidation of an electron donor (CHCl_3 degradation). Doping with Fe^(3+), Mo^(5+), Ru^(3+), Os^(3+), Re^(5+), V^(4+), and Rh^(3+) at 0.1-0.5 at.% significantly increases the photoreactivity for both oxidation and reduction while Co^(3+) and Al^(3+) doping decreases the photoreactivity. The transient absorption signals upon laser flash photolysis (λ_(ex) = 355 nm) at λ = 600 nm are extended up to 50 ms for Fe^(3+)-, V^(4+)-, Mo^(5+)-, and Ru^(3+)-doped TiO_2 while the undoped Q-sized TiO_2 shows a complete "blue electron" signal decay within 200 μs. Co^(3+)- and Al^(3+)-doped TiO_2 are characterized by rapid signal decays with a complete loss of absorption signals within 5 μs. The quantum yields obtained during CW photolyses are quantitatively correlated with the measured transient absorption signals of the charge carriers. Photoreactivities are shown to increase with the relative concentration of trapped charge carriers. The photoreactivity of doped TiO_2 appears to be a complex function of the dopant concentration, the energy level of dopants within the TiO_2 lattice, their d electronic configuration, the distribution of dopants, the electron donor concentration, and the light intensity.

Additional Information

© 1994 American Chemical Society. Received: July 15, 1994; In Final Form: October 12, 1994. We are grateful to ARPA and ONR {N0014-92-J-1901} for financial support. We thank the Beckman Institute of Caltech for allowing us to use its laser resource center. Dean Willberg, Jay Winkler, Scot Martin, and Nicole Peill were critical to the success of this project.

Additional details

August 20, 2023
August 20, 2023