Published March 1, 1999 | Version public
Journal Article Open

Identification of low order manifolds: Validating the algorithm of Maas and Pope

Abstract

The algorithm of Maas and Pope (1992) is presented as a method for identification of invariant reduced-order manifolds for stable systems which exhibit dynamics with a time-scale separation. While this method has been published previously in the literature, theoretical justification for the algorithm was not presented in the original work. Here, it will be shown rigorously that the algorithm correctly identifies the slow manifold. Before the theoretical results are presented, a brief background on the behavior of singularly perturbed systems is presented. The algorithm of Maas and Pope (1992) is then introduced. This method will be applied to two different examples, a distillation column and a two-phase chemical reactor. For each of these examples, the resulting reduced-order description will be compared to other standard methods of producing reduced-order models. In addition, some preliminary thoughts on how this method can be used to form reduced-order models are presented.

Additional Information

Copyright © 1999 American Institute of Physics. Received 28 July 1998; accepted 30 December 1998.

Files

RHOchaos99.pdf

Files (335.7 kB)

Name Size Download all
md5:b4061e28f0cbb83628f9026456e7f152
335.7 kB Preview Download

Additional details

Identifiers

Eprint ID
1930
Resolver ID
CaltechAUTHORS:RHOchaos99

Dates

Created
2006-02-23
Created from EPrint's datestamp field
Updated
2021-11-08
Created from EPrint's last_modified field