of 7
Observation of
̄
B
D
ðÞ
π
þ
π
l
̄
ν
Decays in
e
þ
e
Collisions at the
Υ
ð
4
S
Þ
Resonance
J. P. Lees,
1
V. Poireau,
1
V. Tisserand,
1
E. Grauges,
2
A. Palano,
3a,3b
G. Eigen,
4
B. Stugu,
4
D. N. Brown,
5
L. T. Kerth,
5
Yu. G. Kolomensky,
5
M. J. Lee,
5
G. Lynch,
5
H. Koch,
6
T. Schroeder,
6
C. Hearty,
7
T. S. Mattison,
7
J. A. McKenna,
7
R. Y. So,
7
A. Khan,
8
V. E. Blinov,
9a,9b,9c
A. R. Buzykaev,
9a
V. P. Druzhinin,
9a,9b
V. B. Golubev,
9a,9b
E. A. Kravchenko,
9a,9b
A. P. Onuchin,
9a,9b,9c
S. I. Serednyakov,
9a,9b
Yu. I. Skovpen,
9a,9b
E. P. Solodov,
9a,9b
K. Yu. Todyshev,
9a,9b
A. J. Lankford,
10
J. W. Gary,
11
O. Long,
11
M. Franco Sevilla,
12
T. M. Hong,
12
D. Kovalskyi,
12
J. D. Richman,
12
C. A. West,
12
A. M. Eisner,
13
W. S. Lockman,
13
W. Panduro Vazquez,
13
B. A. Schumm,
13
A. Seiden,
13
D. S. Chao,
14
C. H. Cheng,
14
B. Echenard,
14
K. T. Flood,
14
D. G. Hitlin,
14
J. Kim,
14
T. S. Miyashita,
14
P. Ongmongkolkul,
14
F. C. Porter,
14
M. Röhrken,
14
R. Andreassen,
15
Z. Huard,
15
B. T. Meadows,
15
B. G. Pushpawela,
15
M. D. Sokoloff,
15
L. Sun,
15
W. T. Ford,
16
J. G. Smith,
16
S. R. Wagner,
16
R. Ayad,
17
,
W. H. Toki,
17
B. Spaan,
18
D. Bernard,
19
M. Verderi,
19
S. Playfer,
20
D. Bettoni,
21a
C. Bozzi,
21a
R. Calabrese,
21a,21b
G. Cibinetto,
21a,21b
E. Fioravanti,
21a,21b
I. Garzia,
21a,21b
E. Luppi,
21a,21b
V. Santoro,
21a
A. Calcaterra,
22
R. de Sangro,
22
G. Finocchiaro,
22
S. Martellotti,
22
P. Patteri,
22
I. M. Peruzzi,
22
M. Piccolo,
22
A. Zallo,
22
R. Contri,
23a,23b
M. R. Monge,
23a,23b
S. Passaggio,
23a
C. Patrignani,
23a,23b
B. Bhuyan,
24
V. Prasad,
24
A. Adametz,
25
U. Uwer,
25
H. M. Lacker,
26
U. Mallik,
27
C. Chen,
28
J. Cochran,
28
S. Prell,
28
H. Ahmed,
29
A. V. Gritsan,
30
N. Arnaud,
31
M. Davier,
31
D. Derkach,
31
G. Grosdidier,
31
F. Le Diberder,
31
A. M. Lutz,
31
B. Malaescu,
31
,
P. Roudeau,
31
A. Stocchi,
31
G. Wormser,
31
D. J. Lange,
32
D. M. Wright,
32
J. P. Coleman,
33
J. R. Fry,
33
E. Gabathuler,
33
D. E. Hutchcroft,
33
D. J. Payne,
33
C. Touramanis,
33
A. J. Bevan,
34
F. Di Lodovico,
34
R. Sacco,
34
G. Cowan,
35
D. N. Brown,
36
C. L. Davis,
36
A. G. Denig,
37
M. Fritsch,
37
W. Gradl,
37
K. Griessinger,
37
A. Hafner,
37
K. R. Schubert,
37
R. J. Barlow,
38
G. D. Lafferty,
38
R. Cenci,
39
B. Hamilton,
39
A. Jawahery,
39
D. A. Roberts,
39
R. Cowan,
40
R. Cheaib,
41
P. M. Patel,
41
,*
S. H. Robertson,
41
B. Dey,
42a
N. Neri,
42a
F. Palombo,
42a,42b
L. Cremaldi,
43
R. Godang,
43
,
D. J. Summers,
43
M. Simard,
44
P. Taras,
44
G. De Nardo,
45a,45b
G. Onorato,
45a,45b
C. Sciacca,
45a,45b
G. Raven,
46
C. P. Jessop,
47
J. M. LoSecco,
47
K. Honscheid,
48
R. Kass,
48
M. Margoni,
49a,49b
M. Morandin,
49a
M. Posocco,
49a
M. Rotondo,
49a
G. Simi,
49a,49b
F. Simonetto,
49a,49b
R. Stroili,
49a,49b
S. Akar,
50
E. Ben-Haim,
50
M. Bomben,
50
G. R. Bonneaud,
50
H. Briand,
50
G. Calderini,
50
J. Chauveau,
50
Ph. Leruste,
50
G. Marchiori,
50
J. Ocariz,
50
M. Biasini,
51a,51b
E. Manoni,
51a
A. Rossi,
51a
C. Angelini,
52a,52b
G. Batignani,
52a,52b
S. Bettarini,
52a,52b
M. Carpinelli,
52a,52b
G. Casarosa,
52a,52b
M. Chrzaszcz,
52a
F. Forti,
52a,52b
M. A. Giorgi,
52a,52b
A. Lusiani,
52a,52c
B. Oberhof,
52a,52b
E. Paoloni,
52a,52b
M. Rama,
52a
G. Rizzo,
52a,52b
J. J. Walsh,
52a
D. Lopes Pegna,
53
J. Olsen,
53
A. J. S. Smith,
53
F. Anulli,
54a
R. Faccini,
54a,54b
F. Ferrarotto,
54a
F. Ferroni,
54a,54b
M. Gaspero,
54a,54b
A. Pilloni,
54a,54b
G. Piredda,
54a
C. Bünger,
55
S. Dittrich,
55
O. Grünberg,
55
M. Hess,
55
T. Leddig,
55
C. Voß,
55
R. Waldi,
55
T. Adye,
56
E. O. Olaiya,
56
F. F. Wilson,
56
S. Emery,
57
G. Vasseur,
57
D. Aston,
58
D. J. Bard,
58
C. Cartaro,
58
M. R. Convery,
58
J. Dorfan,
58
G. P. Dubois-Felsmann,
58
W. Dunwoodie,
58
M. Ebert,
58
R. C. Field,
58
B. G. Fulsom,
58
M. T. Graham,
58
C. Hast,
58
W. R. Innes,
58
P. Kim,
58
D. W. G. S. Leith,
58
S. Luitz,
58
V. Luth,
58
D. B. MacFarlane,
58
D. R. Muller,
58
H. Neal,
58
T. Pulliam,
58
B. N. Ratcliff,
58
A. Roodman,
58
R. H. Schindler,
58
A. Snyder,
58
D. Su,
58
M. K. Sullivan,
58
J. Va
vra,
58
W. J. Wisniewski,
58
H. W. Wulsin,
58
M. V. Purohit,
59
J. R. Wilson,
59
A. Randle-Conde,
60
S. J. Sekula,
60
M. Bellis,
61
P. R. Burchat,
61
E. M. T. Puccio,
61
M. S. Alam,
62
J. A. Ernst,
62
R. Gorodeisky,
63
N. Guttman,
63
D. R. Peimer,
63
A. Soffer,
63
S. M. Spanier,
64
J. L. Ritchie,
65
R. F. Schwitters,
65
J. M. Izen,
66
X. C. Lou,
66
F. Bianchi,
67a,67b
F. De Mori,
67a,67b
A. Filippi,
67a
D. Gamba,
67a,67b
L. Lanceri,
68a,68b
L. Vitale,
68a,68b
F. Martinez-Vidal,
69
A. Oyanguren,
69
J. Albert,
70
Sw. Banerjee,
70
A. Beaulieu,
70
F. U. Bernlochner,
70
H. H. F. Choi,
70
G. J. King,
70
R. Kowalewski,
70
M. J. Lewczuk,
70
T. Lueck,
70
I. M. Nugent,
70
J. M. Roney,
70
R. J. Sobie,
70
N. Tasneem,
70
T. J. Gershon,
71
P. F. Harrison,
71
T. E. Latham,
71
H. R. Band,
72
S. Dasu,
72
Y. Pan,
72
R. Prepost,
72
and S. L. Wu
72
(
B
A
B
AR
Collaboration)
1
Laboratoire d
Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3,
F-74941 Annecy-Le-Vieux, France
2
Facultat de Fisica, Departament ECM, Universitat de Barcelona, E-08028 Barcelona, Spain
3a
INFN Sezione di Bari, I-70126 Bari, Italy
3b
Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
4
Institute of Physics, University of Bergen, N-5007 Bergen, Norway
5
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6
Institut für Experimentalphysik 1, Ruhr Universität Bochum, D-44780 Bochum, Germany
PRL
116,
041801 (2016)
PHYSICAL REVIEW LETTERS
week ending
29 JANUARY 2016
0031-9007
=
16
=
116(4)
=
041801(7)
041801-1
© 2016 American Physical Society
7
University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
8
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
9a
Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Russia
9b
Novosibirsk State University, Novosibirsk 630090, Russia
9c
Novosibirsk State Technical University, Novosibirsk 630092, Russia
10
University of California at Irvine, Irvine, California 92697, USA
11
University of California at Riverside, Riverside, California 92521, USA
12
University of California at Santa Barbara, Santa Barbara, California 93106, USA
13
Institute for Particle Physics, University of California at Santa Cruz, Santa Cruz, California 95064, USA
14
California Institute of Technology, Pasadena, California 91125, USA
15
University of Cincinnati, Cincinnati, Ohio 45221, USA
16
University of Colorado, Boulder, Colorado 80309, USA
17
Colorado State University, Fort Collins, Colorado 80523, USA
18
Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
19
Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
20
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
21a
INFN Sezione di Ferrara, I-44122 Ferrara, Italy
21b
Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, I-44122 Ferrara, Italy
22
INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
23a
INFN Sezione di Genova, I-16146 Genova, Italy
23b
Dipartimento di Fisica, Università di Genova, I-16146 Genova, Italy
24
Indian Institute of Technology Guwahati, Guwahati, Assam 781 039, India
25
Physikalisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany
26
Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
27
University of Iowa, Iowa City, Iowa 52242, USA
28
Iowa State University, Ames, Iowa 50011-3160, USA
29
Physics Department, Jazan University, Jazan 22822, Saudi Arabia
30
Johns Hopkins University, Baltimore, Maryland 21218, USA
31
Laboratoire de l
Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d
Orsay,
F-91898 Orsay Cedex, France
32
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
33
University of Liverpool, Liverpool L69 7ZE, United Kingdom
34
Queen Mary, University of London, London E1 4NS, United Kingdom
35
Royal Holloway and Bedford New College, University of London, Egham, Surrey TW20 0EX, United Kingdom
36
University of Louisville, Louisville, Kentucky 40292, USA
37
Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
38
University of Manchester, Manchester M13 9PL, United Kingdom
39
University of Maryland, College Park, Maryland 20742, USA
40
Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
41
McGill University, Montréal, Québec H3A 2T8, Canada
42a
INFN Sezione di Milano, I-20133 Milano, Italy
42b
Dipartimento di Fisica, Università di Milano, I-20133 Milano, Italy
43
University of Mississippi, University, Mississippi 38677, USA
44
Université de Montréal, Physique des Particules, Montréal, Québec H3C 3J7, Canada
45a
INFN Sezione di Napoli, I-80126 Napoli, Italy
45b
Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
46
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, Netherlands
47
University of Notre Dame, Notre Dame, Indiana 46556, USA
48
Ohio State University, Columbus, Ohio 43210, USA
49a
INFN Sezione di Padova, I-35131 Padova, Italy
49b
Dipartimento di Fisica, Università di Padova, I-35131 Padova, Italy
50
Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris 6,
Université Denis Diderot-Paris 7, F-75252 Paris, France
51a
INFN Sezione di Perugia, I-06123 Perugia, Italy
51b
Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
52a
INFN Sezione di Pisa, I-56127 Pisa, Italy
52b
Dipartimento di Fisica, Università di Pisa, I-56127 Pisa, Italy
52c
Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
53
Princeton University, Princeton, New Jersey 08544, USA
54a
INFN Sezione di Roma, I-00185 Roma, Italy
PRL
116,
041801 (2016)
PHYSICAL REVIEW LETTERS
week ending
29 JANUARY 2016
041801-2
54b
Dipartimento di Fisica, Università di Roma La Sapienza, I-00185 Roma, Italy
55
Universität Rostock, D-18051 Rostock, Germany
56
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
57
CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
58
SLAC National Accelerator Laboratory, Stanford, California 94309, USA
59
University of South Carolina, Columbia, South Carolina 29208, USA
60
Southern Methodist University, Dallas, Texas 75275, USA
61
Stanford University, Stanford, California 94305-4060, USA
62
State University of New York, Albany, New York 12222, USA
63
School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
64
University of Tennessee, Knoxville, Tennessee 37996, USA
65
University of Texas at Austin, Austin, Texas 78712, USA
66
University of Texas at Dallas, Richardson, Texas 75083, USA
67a
INFN Sezione di Torino, I-10125 Torino, Italy
67b
Dipartimento di Fisica, Università di Torino, I-10125 Torino, Italy
68a
INFN Sezione di Trieste, I-34127 Trieste, Italy
68b
Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
69
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
70
University of Victoria, Victoria, British Columbia V8W 3P6, Canada
71
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
72
University of Wisconsin, Madison, Wisconsin 53706, USA
(Received 31 July 2015; published 26 January 2016)
We report on measurements of the decays of
̄
B
mesons into the semileptonic final states
̄
B
D
ðÞ
π
þ
π
l
̄
ν
, where
D
ðÞ
represents a
D
or
D

meson and
l
is an electron or a muon. These
measurements are based on
471
×
10
6
B
̄
B
pairs recorded with the
BABAR
detector at the SLAC asymmetric
B
factory PEP-II. We determine the branching fraction ratios
R
ðÞ
π
þ
π
¼
B
ð
̄
B
D
ðÞ
π
þ
π
l
̄
ν
Þ
=
B
ð
̄
B
D
ðÞ
l
̄
ν
Þ
using events in which the second
B
meson is fully reconstructed. We find
R
π
þ
π
¼
0
.
067

0
.
010

0
.
008
and
R

π
þ
π
¼
0
.
019

0
.
005

0
.
004
, where the first uncertainty is statistical and the second
is systematic. Based on these results and assuming isospin invariance, we estimate that
̄
B
D
ðÞ
ππ
l
̄
ν
decays, where
π
denotes either a
π

and
π
0
meson, account for up to half the difference between the
measured inclusive semileptonic branching fraction to charm hadrons and the corresponding sum of
previously measured exclusive branching fractions.
DOI:
10.1103/PhysRevLett.116.041801
The semileptonic decays of
B
mesons to final states
containing a charm quark allow a measurement of the
magnitude of the Cabibbo-Kobayashi-Maskawa matrix
element
[1,2]
j
V
cb
j
, a fundamental parameter in the
standard model (SM) of particle physics that plays an
important role in unitarity tests sensitive to physics beyond
the SM
[3]
. Determinations of
j
V
cb
j
from inclusive semi-
leptonic decays
̄
B
ð
X
c
Þ
l
̄
ν
, where the hadronic state
X
c
is not reconstructed, and those from the exclusive semi-
leptonic decays
̄
B
D

l
̄
ν
and
̄
B
D
l
̄
ν
, differ by
nearly three standard deviations (
3
σ
), as discussed on p.
1208 of Ref.
[4]
. (Throughout this Letter, whenever a decay
mode is given, the charge conjugate is also implied.) The
measured exclusive
̄
B
X
c
l
̄
ν
decays,
̄
B
D
ðÞ
l
̄
ν
,
̄
B
D
ðÞ
π
l
̄
ν
, and
̄
B
D
ðÞþ
s
K
l
̄
ν
[4]
, account
for only
85

2%
[5]
of the inclusive rate for semileptonic
̄
B
decays to charm final states. (The notation
D
ðÞ
denotes
D
0
,
D
þ
,
D

0
, and
D
mesons.) The decay modes
measured in this Letter account for part of this difference.
They also provide experimental information needed to
quantify background-related systematic uncertainties in
measurements of
̄
B
D
ðÞ
τ
̄
ν
decays, which are sensitive
to new physics contributions. A measurement
[6]
of these
decays shows a
3
.
4
σ
deviation from the SM, and inde-
pendent measurements
[7,8]
also exceed SM expectations.
We search for semileptonic decays of a
B
meson to a
D
or
D

meson and two additional charged pions, and
we measure branching fraction ratios
R
ðÞ
π
þ
π
¼
B
ð
̄
B
D
ðÞ
π
þ
π
l
̄
ν
Þ
=
B
ð
̄
B
D
ðÞ
l
̄
ν
Þ
relative to the topologi-
cally similar decays
̄
B
D
ðÞ
l
̄
ν
. The results are based on
the complete sample of
e
þ
e
collision data collected at the
Υ
ð
4
S
Þ
resonance with the
BABAR
detector at the SLAC
PEP-II storage ring, corresponding to
471
×
10
6
B
̄
B
decays
(
454
fb
1
[9]
). An additional
40
fb
1
sample, collected at
center-of-mass (c.m.) energies just below the
B
̄
B
threshold,
is used to verify the modeling of background from
e
þ
e
f
̄
f
ð
γ
Þ
continuum processes with
f
¼
u;d;s;c;
τ
.
The
BABAR
detector, as well as the reconstruction and
particle identification algorithms, are described in detail
elsewhere
[10]
. The analysis uses Monte Carlo (MC)
simulated event samples to determine efficiencies and to
model backgrounds. Simulated
B
̄
B
decays are produced
PRL
116,
041801 (2016)
PHYSICAL REVIEW LETTERS
week ending
29 JANUARY 2016
041801-3
with the
EVTGEN
[11]
generator, with final-state radiation
described using the
PHOTOS
[12]
program. Continuum
e
þ
e
q
̄
q
events are generated with the
JETSET
[13]
program, and
e
þ
e
τ
þ
τ
events with the
KK
2
F
[14]
program. The world averages quoted in Ref.
[4]
are used for
branching fractions and form factor parameters. The
GEANT
4
[15]
package is used to model the detector and
detector response.
The intermediate process through which
D
ðÞ
π
þ
π
states
arise in semileptonic
B
decays is unknown. We consider
production via (1) three-body phase-space decays,
X
c
D
ðÞ
ππ
, (2)
X
c
D
ðÞ
f
0
ð
500
Þ
decays with
f
0
ð
500
Þ
ππ
, (3) sequential decays
X
c
Y
c
π
, followed
by
Y
c
D
ðÞ
π
, and (4)
X
c
D
ðÞ
ρ
decays with
ρ
ππ
,
where
X
c
is one of
D
1
ð
2420
Þ
,
D
ð
2
S
Þ
,or
D

ð
2
S
Þ
, and
Y
c
is
one of
D
1
ð
2430
Þ
,
D

0
,or
D

2
. The
D
ðÞ
ð
2
S
Þ
states are the
first radial excitations of the ground state
D
ðÞ
mesons and
are modeled as in Ref.
[5]
. Our nominal signal model
consists of three-body phase-space
X
c
D
ðÞ
ππ
decays
with an equal mix of
X
c
mesons.
We reconstruct events of the type
e
þ
e
Υ
ð
4
S
Þ
B
̄
B
.
One of the
B
mesons (
B
tag
) is fully reconstructed in
a hadronic final state. To reconstruct a
B
tag
candidate,
aseed(oneof
D
ðÞ
,
D
ðÞþ
s
,or
J=
ψ
) is combined with
up to five additional particles (pions and/or kaons), as
described in Ref.
[6]
.The
B
tag
candidates are required
to have an energy-substituted mass
m
ES
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=
4
c
4
j
~
p
tag
=c
j
2
q
>
5
.
27
GeV
=c
2
, and a difference
between the beam energy and the reconstructed energy of
the
B
tag
candidate
j
Δ
E
j
j
E
tag
ffiffiffi
s
p
=
2
j
0
.
09
GeV,
where
ffiffiffi
s
p
is the total
e
þ
e
energy and
~
p
tag
and
E
tag
are
the measured
B
tag
momentum and energy in the
e
þ
e
c
:
m
:
frame.
For each
B
tag
candidate, we use the remaining particles in
the event to search for signal
̄
B
meson candidates involving
a
D
or
D

meson, a charged lepton, and up to two charged
pions. The
D
0
and
D
þ
candidates are reconstructed in final
states involving up to four charged pions or kaons, up to
one
K
0
S
π
þ
π
decay, and up to one
π
0
γγ
decay. We
require
1
.
845
<m
ð
D
þ
Þ
<
1
.
895
GeV
=c
2
and
1
.
840
<
m
ð
D
0
Þ
<
1
.
890
GeV
=c
2
. The
D

mesons are reconstructed
in
D

0
D
0
π
0
,
D

0
D
0
γ
,
D
D
0
π
þ
, and
D
D
þ
π
0
decays. Electrons and muons are identified using
multivariate techniques based on information from the
tracking detectors, calorimeter, and muon system, and they
are required to have a momentum larger than
0
.
6
GeV
=c
in
the c.m. frame. We reject electrons consistent with photon
conversions and Dalitz decays of
π
0
mesons. In cases where
the flavor of the
D
ðÞ
meson is determined by its decay
products, only combinations with the correct
D
ðÞ
l
charge-flavor correlation are retained. For each
B
tag
D
ðÞ
l
candidate we allow up to two additional
charged tracks in the event, resulting in a sample consisting
of
B
tag
D
ðÞ
ð
n
π
Þ
l
candidates, with
signal pion
multiplicity
n
¼
0
, 1, or 2. Our measurement is based on
the
n
¼
0
and
n
¼
2
samples, while the
n
¼
1
sample is
used to reject backgrounds in the
n
¼
2
sample.
Only candidates for which all charged tracks are
assigned to one or the other
B
meson, and where the net
charge of the event is zero, are considered further. Charged
B
tag
candidates are required to have charge opposite that of
the lepton candidate. We calculate
E
extra
, the energy sum of
all calorimeter energy clusters with energy greater than
80 MeV that are not used in the reconstruction of the
B
candidates, and require
E
extra
0
.
4
GeV. After these
criteria are applied, the remaining events have, on average,
about two
Υ
ð
4
S
Þ
B
tag
̄
B
candidates per signal channel.
The candidate in each
D
ðÞ
ð
n
π
Þ
l
channel with the
smallest
j
Δ
E
j
is retained.
Each
Υ
ð
4
S
Þ
B
tag
̄
B
candidate is fit to the hypothesized
decay topology, imposing vertex and mass constraints on
intermediate states in order to improve the resolution. The
four-momentum of the
B
tag
D
ðÞ
ð
n
π
Þ
l
candidate is sub-
tracted from that of the initial
e
þ
e
state to determine the
four-momentum
p
miss
¼ð
E
miss
;
~
p
miss
Þ
. For events in which
a single neutrino is the only missing particle, the difference
U
E
miss
j
~
p
miss
j
c
peaks at zero with a resolution of
0
.
1
GeV;
U
is used to discriminate against events with
additional missing particles. In contrast to the commonly
used missing mass squared, which contains a factor
E
miss
þj
~
p
miss
j
c
2
E
miss
,
U
does not depend strongly on
the modeling of
E
miss
or, thus, on the decay dynamics.
Hadronic
B
decays for which all final-state particles are
reconstructed, and in which a hadron is misidentified as an
electron or a muon, have
E
miss
j
~
p
miss
j
0
: we require
j
~
p
miss
j
>
0
.
2
GeV
=c
to suppress these events. We impose
m
ð
D
0
π

Þ
m
ð
D
0
Þ
>
0
.
16
GeV
=c
2
for the
D
0
π
þ
π
l
̄
ν
channel to remove correctly reconstructed
B
D
π
l
̄
ν
events with a subsequent
D
D
0
π
þ
decay.
We use a separate Fisher discriminant
[16]
in each signal
channel to further reduce the background from continuum
and
B
̄
B
events. The variables used are
E
extra
,
m
ES
, the
number of unused neutral clusters with energy greater than
80 MeV, the numbers of charged tracks and neutral clusters
in the
B
tag
candidate, the second normalized Fox-Wolfram
moment
R
2
[17]
, and the c.m.-frame cosine of the angle
between the thrust axes of the
B
tag
candidate and of the
remaining particles in the event. The discriminants are
constructed using simulated events, with the distribution of
each variable reweighted to match the distribution in
data. The selection requirement on the output variables
is optimized assuming a branching fraction
B
ð
̄
B
D
ðÞ
π
þ
π
l
̄
ν
Þ¼
0
.
12%
in each channel.
At this stage of the analysis an event may be recon-
structed in more than one channel. To obtain statistically
independent samples and to maximize the sensitivity to
D
ðÞ
π
þ
π
l
̄
ν
decays, we select a unique candidate as
follows. Any event found in a
D
ðÞ
l
̄
ν
sample is removed
from all samples with one or two signal pions. If an event
PRL
116,
041801 (2016)
PHYSICAL REVIEW LETTERS
week ending
29 JANUARY 2016
041801-4
enters two or more samples with the same number of signal
pions, candidates are removed from the sample with a lower
signal-to-background level. In addition, we remove from
the
D
ðÞ
π
þ
π
l
̄
ν
samples any event found in a
D
ðÞ
π
l
̄
ν
sample with
j
U
j
<
0
.
1
GeV.
The analysis procedure was developed using simulated
event samples; the data for the two-pion signal modes were
not examined until the selection and fit procedures were
finalized. Event yields are obtained from an unbinned
maximum likelihood fit to the
U
distribution in the range
1
.
5
<U<
3
.
0
GeV for each signal channel. One-
dimensional probability density functions (PDFs) for the
signal and background components of each sample are
obtained from MC simulations using parametric kernel
estimators with adaptive widths
[18]
. Figure
1
shows the
results for the
D
ðÞ
0
l
̄
ν
channels; the results for the
D
ðÞþ
l
̄
ν
channels are similar. Corresponding yields are
presented in Table
I
.
The PDFs used in the fit to the
D
ðÞ
l
̄
ν
channels include
the following components, whose magnitudes are param-
eters of the fit:
̄
B
D
l
̄
ν
,
̄
B
D

l
̄
ν
,
̄
B
D
ðÞ
π
l
̄
ν
,
other
B
̄
B
events, and continuum events. Potential contri-
butions from
D
ðÞ
ππ
l
̄
ν
decays have a similar shape
to
D
ðÞ
π
l
̄
ν
decays in these channels and are included
in the
̄
B
D
ðÞ
π
l
̄
ν
component. The PDFs used in the fit
to the
D
ðÞ
π
þ
π
l
̄
ν
channels include the following com-
ponents:
̄
B
D
ðÞ
l
̄
ν
,
̄
B
D
ðÞ
π
l
̄
ν
,
̄
B
D
π
þ
π
l
̄
ν
,
̄
B
D

π
þ
π
l
̄
ν
, other
B
̄
B
events, and continuum events.
Contributions to the
̄
B
D
ðÞ
π
þ
π
l
̄
ν
channels from
̄
B
D
ðÞ
π

π
0
l
̄
ν
and
̄
B
D
ðÞ
π
0
π
0
l
̄
ν
decays (cross
feed) are treated as signal.
A fraction of signal decays are reconstructed with a
B
meson charge differing by

1
from the true
B
meson charge
and contribute to the wrong signal channel. We determine
this fraction for each signal channel in simulation and fix the
corresponding yield ratio in the fit. Hadronic
B
meson
decays in which a hadron is misidentified as a lepton can
peak near
U
¼
0
. We estimate these small contributions
usingsimulationandholdthemfixedinthefittothe
D
ðÞ
l
̄
ν
channels. Simulation indicates that these peaking back-
grounds are negligible for the
D
ðÞ
π
þ
π
l
̄
ν
channels.
Fits to ensembles of parametrized MC pseudoexperi-
ments are used to validate the fit. All fitted parameters
exhibit unbiased means and variances.
The results for the
D
ðÞ
π
þ
π
l
̄
ν
channels are shown in
Fig.
2
, with the corresponding signal yields in Table
I
. The
fitted yields for all background components are consistent
FIG. 1. Measured
U
distributions and results of the fit for the
(a)
B
D
0
l
̄
ν
and (b)
B
D

0
l
̄
ν
samples.
TABLE I. Event yields and estimated efficiencies (
ε
) for the
signal channels. The quoted uncertainties are statistical only. The
fourth column gives the statistical significance,
S
¼
ffiffiffiffiffiffiffiffiffiffi
2
Δ
L
p
,
where
Δ
L
is the difference between the log-likelihood value
of the default fit and a fit with the signal yield fixed to zero. The
last column gives the total significance,
S
tot
, where systematic
uncertainties are included.
Channel
Yield
ε
×
10
4
SS
tot
D
0
l
̄
ν
l
5567

102 2
.
73

0
.
01
>
40
>
40
D
þ
l
̄
ν
l
3236

74
1
.
69

0
.
01
>
40
>
40
D

0
l
̄
ν
l
9987

126 2
.
03

0
.
01
>
40
>
40
D
l
̄
ν
l
5404

83
1
.
14

0
.
01
>
40
>
40
D
0
ππ
l
̄
ν
171

30
1
.
18

0
.
03
5.4
5.0
D
þ
ππ
l
̄
ν
56

17
0
.
51

0
.
02
3.5
3.0
D

0
ππ
l
̄
ν
74

36
1
.
11

0
.
02
1.8
1.6
D
ππ
l
̄
ν
65

18
0
.
49

0
.
02
3.3
3.0
FIG. 2. Measured
U
distributions and results of the fit for the
(a)
D
0
ππ
l
̄
ν
, (b)
D
þ
ππ
l
̄
ν
, (c)
D

0
ππ
l
̄
ν
, and (d)
D
ππ
l
̄
ν
samples.
PRL
116,
041801 (2016)
PHYSICAL REVIEW LETTERS
week ending
29 JANUARY 2016
041801-5
with the values expected from MC simulations. The only
known source of
̄
B
D
π
þ
π
l
̄
ν
decays is
̄
B
D
1
ð
2420
Þ
l
̄
ν
, with
D
1
ð
2420
Þ
D
π
þ
π
.Ifwe
remove these
D
1
ð
2420
Þ
decays by vetoing events with
0
.
5
<m
ð
D
π
þ
π
Þ
m
ð
D
Þ
<
0
.
6
GeV
=c
2
, the signal
yields are reduced to
84
.
3

27
.
7
events in
D
0
π
þ
π
,
and
37
.
3

15
.
9
in
D
þ
π
þ
π
, which indicates that
D
1
ð
2420
Þ
D
π
þ
π
is not the only source for the
observed signals.
Systematic uncertainties arising from limited knowledge
of branching fractions, form factors, and detector response
are evaluated. These impact the determination of the PDF
shapes, fixed backgrounds, cross-feed contributions, and
signal efficiencies. The leading uncertainties arise from
ignorance of the potential resonance structure in the
D
ðÞ
π
þ
π
final state, the limited size of the MC samples
used to derive PDFs, and the modeling of distributions of
variables used in the Fisher discriminants. The dependence
on the
D
ðÞ
ππ
production process is investigated by using,
in turn, each of the individual mechanisms listed previously
to model the signal. We assign the maximum deviation
between the branching fraction ratios
R
ðÞ
π
þ
π
obtained from
the nominal and alternative decay models as an uncertainty,
giving 7.8% for
D
0
π
þ
π
l
̄
ν
, 10.5% for
D
þ
π
þ
π
l
̄
ν
,
19.2% for
D

0
π
þ
π
l
̄
ν
, and 13.4% for
D
π
þ
π
l
̄
ν
.
The impact of the statistical uncertainties of the PDFs
are estimated from fits to 1300 simulated data sets, obtained
from the primary MC samples using the bootstrapping
method
[19]
, resulting in uncertainties ranging from 6.5%
(
D
0
π
þ
π
l
̄
ν
) to 21.1% (
D

0
π
þ
π
l
̄
ν
). We estimate the
uncertainty associated with modeling the Fisher discrim-
inants by using the uncorrected shape of each simulated
input distribution, one at a time, before imposing the
selection requirement. The systematic uncertainty, given
by the sum in quadrature of the differences with respect to
the nominal analysis, varies from 3.7% (
D
0
π
þ
π
l
̄
ν
)to
5.2% (
D
þ
π
þ
π
l
̄
ν
).
The ratios of branching fractions are calculated from the
fitted yields as
R
ðÞ
π
þ
π
¼
N
ðÞ
π
þ
π
N
ðÞ
norm
ε
ðÞ
norm
ε
ðÞ
π
þ
π
;
ð
1
Þ
where
ε
refers to the corresponding efficiency, which is
calculated from MC simulations for the same type of
B
meson (
B
or
̄
B
0
) used in the two-pion signal (
N
ðÞ
π
þ
π
) and
zero-pion normalization (
N
ðÞ
norm
) yields. The results are
given in Table
II
. The dependence of the efficiencies on the
details of the hadronic
B
reconstruction largely cancels in
the ratio, as do some other associated systematic uncer-
tainties and possible biases. Since semileptonic
B
decays
proceed via a spectator diagram, the semileptonic decay
widths of neutral and charged
B
mesons are expected to be
equal. We therefore determine combined values for the
B
and
̄
B
0
channels: these are given in Table
II
. Also shown are
the corresponding
B
branching fractions obtained by
using Ref.
[4]
for the branching fractions of the normali-
zation modes.
In conclusion, the decays
̄
B
D
ðÞ
ð
n
π
Þ
l
̄
ν
with
n
¼
0
or 2 are studied in events with a fully reconstructed second
B
meson. We obtain the first observation of
̄
B
D
0
π
þ
π
l
̄
ν
decays and first evidence for
̄
B
D
ðÞþ
π
þ
π
l
̄
ν
decays. The branching ratios of
̄
B
D
ðÞ
π
þ
π
l
̄
ν
decays relative to the corresponding
̄
B
D
ðÞ
l
̄
ν
decays are measured. To estimate the total
̄
B
D
ðÞ
ππ
l
̄
ν
branching fraction, we use isospin sym-
metry and consider, in turn, each of the
̄
B
X
c
l
̄
ν
decay models discussed above. This yields
B
ð
̄
B
D
ðÞ
π
þ
π
l
̄
ν
Þ
=
B
ð
̄
B
D
ðÞ
ππ
l
̄
ν
Þ¼
0
.
50

0
.
17
, where
the uncertainty is one-half of the observed spread in the
values of this ratio for the different models. Applying this to
the results listed in Table
II
gives
B
ð
̄
B
D
ππ
l
̄
ν
Þþ
B
ð
̄
B
D

ππ
l
̄
ν
Þ¼ð
0
.
52
þ
0
.
14
þ
0
.
27
0
.
07
0
.
13
Þ
%
, where the first
uncertainty is the total experimental uncertainty and the
second is due to the unknown fraction of
̄
B
D
ðÞ
π
þ
π
l
̄
ν
in
̄
B
D
ðÞ
ππ
l
̄
ν
decays. These decays
correspond to between one-quarter and one-half of the
difference,
Δ
B
¼ð
1
.
45

0
.
29
Þ
%
[5]
, between the sum of
the previously measured exclusive
B
meson semileptonic
decays to charm final states and the corresponding inclu-
sive semileptonic branching fraction.
We are grateful for the excellent luminosity and machine
conditions provided by our PEP-II colleagues, and for the
substantial dedicated effort from the computing organiza-
tions that support
BABAR
. The collaborating institutions
wish to thank SLAC for its support and kind hospitality.
This work is supported by the DOE and the NSF
(U.S.), NSERC (Canada), CEA and CNRS-IN2P3
(France), BMBF and DFG (Germany), INFN (Italy),
FOM (Netherlands), NFR (Norway), MES (Russia),
MINECO (Spain), STFC (United Kingdom), and BSF
(U.S.-Israel). Individuals have received support from the
Marie Curie EIF (European Union) and the A. P. Sloan
Foundation (U.S.).
TABLE II. Branching fraction ratios
R
ðÞ
π
þ
π
for the
D
ðÞ
π
þ
π
l
̄
ν
channels and corresponding isospin-averaged val-
ues. The first uncertainty is statistical and the second is system-
atic. The rightmost column gives the corresponding branching
fractions, where the third uncertainty comes from the branching
fraction of the normalization mode. The isospin-averaged results
are quoted as
B
branching fractions.
Channel
R
ðÞ
π
þ
π
×
10
3
B
×
10
5
D
0
π
þ
π
l
̄
ν
71

13

8
161

30

18

8
D
þ
π
þ
π
l
̄
ν
58

18

12
127

39

26

7
D

0
π
þ
π
l
̄
ν
14

7

480

40

23

3
D
π
þ
π
l
̄
ν
28

8

6
138

39

30

3
D
π
þ
π
l
̄
ν
67

10

8
152

23

18

7
D

π
þ
π
l
̄
ν
19

5

4
108

28

23

4
PRL
116,
041801 (2016)
PHYSICAL REVIEW LETTERS
week ending
29 JANUARY 2016
041801-6
*
Deceased.
Present address: University of Tabuk, Tabuk 71491, Saudi
Arabia.
Present address: Laboratoire de Physique Nucléaire et de
Hautes Energies, IN2P3/CNRS, F-75252 Paris, France.
§
Present address: University of Huddersfield, Huddersfield
HD1 3DH, United Kingdom.
Present address: University of South Alabama, Mobile,
Alabama 36688, USA.
Also at Università di Sassari, I-07100 Sassari, Italy.
[1] N. Cabibbo,
Phys. Rev. Lett.
10
, 531 (1963)
.
[2] M. Kobayashi and T. Maskawa,
Prog. Theor. Phys.
49
, 652
(1973)
.
[3] J. Charles
et al.
,
Phys. Rev. D
91
, 073007 (2015)
.
[4] K. A. Olive
et al.
(Particle Data Group),
Chin. Phys. C
38
,
090001 (2014)
.
[5] F. U. Bernlochner, Z. Ligeti, and S. Turczyk,
Phys. Rev. D
85
, 094033 (2012)
.
[6] J. P. Lees
et al.
(
BABAR
Collaboration),
Phys. Rev.
Lett.
109
, 101802 (2012)
;
Phys. Rev. D
88
, 072012
(2013)
.
[7] A. Bozek
et al.
(Belle Collaboration),
Phys. Rev. D
82
,
072005 (2010)
; A. Matyja
et al.
(Belle Collaboration),
Phys. Rev. Lett.
99
, 191807 (2007)
; M. Huschle
et al.
(Belle
Collaboration),
Phys. Rev. D
92
, 072014 (2015)
.
[8] R. Aaij
et al.
(LHCb Collaboration),
Phys. Rev. Lett.
115
,
111803 (2015)
.
[9] J. P. Lees
et al.
(
BABAR
Collaboration),
Nucl. Instrum.
Methods Phys. Res., Sect. A
726
, 203 (2013)
.
[10] B. Aubert
et al.
(
BABAR
Collaboration),
Nucl. Instrum.
Methods Phys. Res., Sect. A
479
, 1 (2002)
;
729
, 615 (2013)
.
[11] D. J. Lange,
Nucl. Instrum. Methods Phys. Res., Sect. A
462
, 152 (2001)
.
[12] E. Barberio, B. van Eijk, and Z. Was,
Comput. Phys.
Commun.
79
, 291 (1994)
.
[13] T. Sjöstrand,
Comput. Phys. Commun.
82
, 74 (1994)
.
[14] B. F. Ward, S. Jadach, and Z. Was,
Comput. Phys. Commun.
130
, 260 (2000)
.
[15] S. Agostinelli
et al.
,
Nucl. Instrum. Methods Phys. Res.,
Sect. A
506
, 250 (2003)
.
[16] R. A. Fisher,
Ann. Eugen.
7
, 179 (1936)
.
[17] G. C. Fox and S. Wolfram,
Nucl. Phys.
B149
, 413 (1979)
;
B157
, 543(E) (1979)
.
[18] K. S. Cranmer,
Comput. Phys. Commun.
136
, 198 (2001)
.
[19] I. Narsky and F. C. Porter,
Statistical Analysis Techniques in
Particle Physics
(Wiley, Weinheim, 2013), Chap. 5.7.
PRL
116,
041801 (2016)
PHYSICAL REVIEW LETTERS
week ending
29 JANUARY 2016
041801-7