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The structure of the Supplemental Material is as follows:

1. In Section I, we discuss the details of the eEDM coupling in a single molecule. When the molecule is prepared in
a superposition of the opposite parity doublet states it has an electric dipole moment oscillating at the splitting
frequency, and an associated oscillating effective electric field. When the electron spin is polarized along a
transverse direction, the interaction of the eEDM with the effective electric field will result in a spin precession
which oscillates back and forth because the direction of Eeff oscillates back and forth. It time-averages to zero.
If a transverse static magnetic field is added and its magnitude tuned to match the parity splitting, the spin
will stay in phase with the oscillation of Eeff and there will be a net precession due to the eEDM. This requires
an extremely stable magnetic field which is probably not feasible unless the doublet splitting is very small.
Instead, an rf magnetic field can be applied along the quantization axis whose frequency matches the oscillation
frequency of Eeff . If the amplitude is strong enough, the spin follow the rf field adiabatically and there will be a
net precession in the rotating frame. This method suffers from noise on the amplitude of the rf magnetic field
which will wash out the eEDM signal unless the noise can be made extremely small.

2. In Section II, we show that the method using an rf magnetic field can be extended to a two-molecule system,
in which the unwanted shifts from the magnetic field cancel out but the eEDM spin precession adds up linearly
to molecule number (Heisenberg scaling). We also present a detailed example of an experimental sequence and
show what the observables are in the lab frame.

3. In Section III, we discuss possible experimental imperfections and show that their impacts can be mitigated.

4. In Section IV, we present an example of entangling two molecules using an existing entanglement protocol.

5. In Section V, we briefly discuss the Heisenberg scaling of the eEDM sensitivity in larger entangled systems, as
well as the possible ways to prepare a large entangled system.

6. In Section VI, we illustrate the optimal measurement scheme for systems with finite entangling gate errors.

7. In Section VII, we summarize the requirements for choice of molecule species for our scheme, and list some
suitable molecule species.

I. DETAILS OF THE EEDM COUPLING

In this section we present a more general and detailed description about the eEDM coupling in one molecule.
Fig. S1 shows the total angular momentum excluding spins labeled as N , and its projection on the molecule axis
K = N · n̂, which can receive contributions from orbital angular momentum and rotation about the molecule axis. For
molecules with nonzero K, the good parity states are superpositions of equal and opposite K states, i.e., |N,K,±⟩ =
1√
2

(
|N,K⟩ ± (−1)N−K |N,−K⟩

)
. The degeneracy between opposite parity states (i.e., a parity doublet) is lifted

by high-order interactions such as the interaction with the end-to-end rotation of the molecule. For molecules with
K = 0, the good parity states are rotational states |N⟩ and are split by the rotational energy. Next, S is aligned, or
partially aligned, to N by spin-orbit or spin-rotation interactions with the sub-components of N . The total angular
momentum formed by S and N is labeled as J . Molecule eigenstates have well-defined J and are superpositions of
states of the same parity. S precess about J and the averaged S projection on n̂ is Σ0 [1]. Molecule eigenstates are
superpositions of ±Σ0. In addition, nuclear spins (I) may interact with J to form F . Here we consider the extreme
M (magnetic quantum number) states with M = ±F , where the nuclear spins are separable.
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FIG. S1. (a) A more general and detailed coupling diagram of angular momenta in a molecule, similar to Fig. 1 in the main
text. The arrows represent angular momenta or their projections (see text for details), the dashed circles stand for precession,
i.e., the angular momentum or molecule axis is in a superposition around another axis or angular momentum and has zero
expectation value perpendicular to that axis. (b) In a superposition of two opposite parity states, the molecule axis is rotating
(purple arrow) while all the angular momenta are stationary. Note that the rotational axis is in a superposition (precessing)
about the total angular momentum J and J precess about the lab z axis, as a result, the dipole moment vanishes in the x, y
plane and is oscillating along z direction. (c) In a superposition of the opposite parity states, the eEDM spin precession only
happens between the spin states that rotate in phase with the molecule axis. (d) In the rotating frame, the molecule rotation

couples ˜|↑⟩ and ˜|↓⟩ and suppresses eEDM spin precession. (e) The non-adiabatic method. A dc magnetic field can be used to

cancel the coupling of the rotation. (f) The adiabatic method. An rf magnetic field can be used to split ˜|↑⟩ and ˜|↓⟩ and thus
suppress the coupling of the rotation. The problems of (e) and (f) are explained in the text.

As in the main text, we label the positive and negative parity states as |0⟩ and |1⟩, and the superposition |⇑⟩ =
1√
2
(|0⟩+ |1⟩) = |N,K⟩ and |⇓⟩ = 1√

2
(|0⟩−|1⟩) = |N,−K⟩. We label the spin states in the lab frame as |↑⟩ and |↓⟩. The

eEDM oppositely shifts the energies of the spins aligned and anti-aligned with the dipole. In the {|⇑⟩ , |⇓⟩}⊗{|↑⟩ , |↓⟩}
basis (the quantization axis is along z), the molecular Hamiltonian including the eEDM coupling is:

Hpol =

 εCPV 0 −ωP/2 0
0 −εCPV 0 −ωP/2

−ωP/2 0 −εCPV 0
0 −ωP/2 0 εCPV

 , (1)

ωP is from the higher order coupling between |⇑⟩ ↔ |⇓⟩. The eEDM interaction causes opposite spin precession in
the subspaces of {|⇑↑⟩ , |⇑↓⟩} and {|⇓↑⟩ , |⇓↓⟩}. However, a molecule initially prepared in ⇑ oscillates between ⇑↔⇓ at
the frequency of the parity doubling ωP . As a result, the eEDM spin precession oscillates and averages to zero.



3

Hpol can be transformed to the molecule eigenbasis ({|0⟩ , |1⟩} ⊗ {|↑⟩ , |↓⟩}) as

Hmol =

 0 0 εCPV 0
0 0 0 −εCPV

εCPV 0 ωP 0
0 −εCPV 0 ωP

 . (2)

This is the coupling shown in Fig. S1, where the eEDM only has a vanishing second order effect. In the frame rotating
at ωP frequency about the x-axis, the Hamiltonian is transformed by |0⟩ ⟨0|+ eiωP t |1⟩ ⟨1| and |+⟩ ⟨+|+ eiωP t |−⟩ ⟨−|,
with |±⟩ = 1√

2
(|↑⟩ ± |↓⟩). After neglecting the small and fast-oscillating terms proportional to εCPVe

±iωP t, the

Hamiltonian is:

H̃mol =
1

2

 0 ωP εCPV εCPV

ωP 0 −εCPV −εCPV

εCPV −εCPV 0 ωP
εCPV −εCPV ωP 0

 . (3)

We define the rotating frame basis |̃⇑⟩ = 1
2 (|0⟩+ e

−iωP t |1⟩), |̃⇓⟩ = 1
2 (|0⟩− e

−iωP t |1⟩), |̃↑⟩ = 1
2 (|+⟩+ e−iωP t |−⟩) and

|̃↓⟩ = 1
2 (|+⟩ − e−iωP t |−⟩). Note that this basis consists of states which are oscillating in the lab frame. |̃⇑⟩ and |̃⇓⟩

are eigenstates of H̃mol while |̃↑⟩ and |̃↓⟩ are not. In the rotating frame basis {|̃⇑⟩, |̃⇓⟩} ⊗ {|̃↑⟩, |̃↓⟩}, the Hamiltonian
is simply

H̃ ′
pol =

1

2

 εCPV ωP 0 −εCPV

ωP −εCPV εCPV 0
0 εCPV −εCPV ωP

−εCPV 0 ωP εCPV

 . (4)

In this two-by-two block matrix (in the basis of {|̃⇑⟩, |̃⇓⟩}), the diagonal parts are the eEDM shifts on the spin states
(±εCPVσz) and the coupling between the spin states by the rotation (ωPσx). So far we have simplified the molecule

orientation as a two-level systems for which there are some coupling terms between |̃⇑⟩ and |̃⇓⟩ subspaces. For two
interacting spin-1/2 degrees of freedom (if molecule orientation was spin-1/2), these couplings indicate transverse
interactions (XY interaction). However, because the real molecule orientation is not a two-level system, and it does

not have a transverse dipole moment in superpositions of |̃⇑⟩ and |̃⇓⟩, these couplings are not physical and need to

be removed. As a result, the Hamiltonian in the basis of {|̃⇑⟩, |̃⇓⟩} ⊗ {|̃↑⟩, |̃↓⟩} is

H̃pol =
1

2

εCPV ωP 0 0
ωP −εCPV 0 0
0 0 −εCPV ωP
0 0 ωP εCPV

 . (5)

Now we have two decoupled subspaces, which correspond to |̃⇑⟩ and |̃⇓⟩, where the spin can precess oppositely.
However, the spin precession is still suppressed by the coupling caused by the rotation of the frame. As shown in
Fig. S1, in a magnetic field, we find two types of schemes: a non-adiabatic one and an adiabatic one, of spin-precession
between the rotating spin states. Here we explain the schemes, and discuss why they won’t work for the case of a
single molecule.

The non-adiabatic method is to apply a static magnetic field along the x direction that cancels the coupling of ωP
exactly, as shown in Fig. S1(e). More specifically, the Hamiltonian of the magnetic field is H̃B,dc = I2 ⊗ ΩB

2 σ̃x, where
I2 is the two-dimensional identity matrix for the molecule alignment. The total Hamiltonian is therefore

H̃pol,dcB =
1

2

 εCPV ωP +ΩB 0 0
ωP +ΩB −εCPV 0 0

0 0 −εCPV ωP +ΩB

0 0 ωP +ΩB εCPV

 . (6)

This requires fine tuning and stabilization of the magnetic field strength ΩB to ωP (≳ 100 kHz) within a fluctuation
less than the decoherence rate (typically ≲ Hz). This is challenging, although magnetic field stabilization to ppm
level has been achieved [2] and this scheme may work for molecules with very small parity doubling [3].
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The adiabatic method is to apply an oscillating or rotating magnetic field in phase with the oscillating dipole. The
spin states follow the magnetic field adiabatically and rotate in phase with the molecule axis. Note that this only
requires tuning the magnetic field frequency to the parity doubling frequency, which is achievable. Equivalently, in

the rotating frame, as Fig. S1(f) shows, the Hamiltonian is H̃B,rf = I2 ⊗ ΩB

2 σ̃z, and the total Hamiltonian is

H̃pol,rfB =
1

2

ΩB + εCPV ωP 0 0
ωP −ΩB − εCPV 0 0
0 0 ΩB − εCPV ωP
0 0 ωP −ΩB + εCPV

 . (7)

For ΩB ≳ ωP , a total spin precession caused by the magnetic field and the eEDM may be observed. This can also

be understood equivalently as that the dressed eigenstates |±⟩ are superpositions with non-equal populations in ˜|↑⟩
and ˜|↓⟩, |+⟩ = sin θ ˜|↑⟩+ cos θ ˜|↓⟩ and |−⟩ = cos θ ˜|↑⟩ − sin θ ˜|↓⟩, with the mixing angle θ given by tan θ = ΩB/ωP . Here

ΩB does not need to match ωP . The eEDM interaction, which splits ˜|↑⟩ and ˜|↓⟩, causes spin precession in the dressed

eigenstates |±⟩ since they have non-equal ˜|↑⟩ and ˜|↓⟩ components. The problem with this scheme is that the magnetic
field contributes to the same spin precession as the eEDM interaction. As a consequence, magnetic field fluctuations
need to be reduced to below the eEDM shift, otherwise the eEDM spin precession phase will be washed out in the
magnetic field noise. Note that this is conceptually similar to the approach proposed in [4], where this problem is
avoided by using magnetically-insensitive M = 0 states.

However, the adiabatic method can be extended to two entangled molecules. For two non-interacting molecules,

the total Hamiltonian is H = H1⊗ I+ I⊗H2, where Hi (i = 1, 2) is the single molecule Hamiltonian H̃pol,rfB in Eq. 7
and I is the identity operator. The eEDM coupling, as well as the detailed experimental sequence, for two molecules
is discussed in the next section.

II. DETAILS ON THE EXPERIMENTAL SEQUENCE AND DETECTION SCHEME

In this section we explain the experimental sequence by an example of an ideal experiment. The molecules are
initialized in |0↓0↓⟩ via optical pumping and then entangled to 1√

2
(|0↑0↓⟩ − |0↓0↑⟩). An example protocol for entan-

glement generation is discussed in the next section. Next the molecule orientation is prepared in |̃⇑⇓⟩ by a global
π/2-pulse and a scalar light shift on one of the molecules, as described in the main text.

Since the total Hamiltonian for one molecule H̃pol,rfB (Eq. 7) can be separated into two decoupled subspaces, we

can reduce it to a 2× 2 matrix for each molecule orientation. For two molecules in |̃⇑⇓⟩, the total Hamiltonian in the

basis of {|̃↑↑⟩, |̃↑↓⟩, |̃↓↑⟩, |̃↓↓⟩} is

H⇑⇓ =
1

2

2ΩB ωP ωP 0
ωP 2εCPV 0 ωP
ωP 0 −2εCPV ωP
0 ωP ωP −2ΩB

 . (8)

The initial spin state in this basis is

∣∣Ψ−〉 =
1√
2

 0
+1
−1
0

 . (9)

Before turning on the magnetic field (ΩB = 0), the eEDM spin precession is suppressed by the ωP coupling in the
triplet subspace. After turning on the magnetic field, as described in the main text, |Ψ−⟩ is coupled by the eEDM
interaction resonantly to the unshifted state

|u⟩ = sin θ
∣∣Ψ+

〉
+ cos θ

∣∣Φ+
〉
=

1√
2

cos θ
sin θ
sin θ
cos θ

 , (10)
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with the mixing angle θ given by tan θ = ΩB/ωP , and

∣∣Ψ+
〉
=

1√
2

0
1
1
0

 ,
∣∣Φ±〉 =

1√
2

 1
0
0
±1

 . (11)

The coupling strength is reduced to εu = 4εCPV sin θ.
After spin precession time T , the spin state is

|ψ⟩ =cos εuT
∣∣Ψ−〉+ i sin εuT |u⟩

=cos εuT
∣∣Ψ−〉+ i sin εuT (sin θ

∣∣Ψ+
〉
+ cos θ

∣∣Φ+
〉
) =

1√
2

 i cos θ sin εuT
cos εuT + i sin θ sin εuT
− cos εuT + i sin θ sin εuT

i cos θ sin εuT

 .
(12)

The magnetic field is turned off after an integer cycles of oscillations, when the lab basis coincides with the rotating
frame basis, the spin state freezes in the lab frame (but starts to oscillate between |Ψ+⟩ ↔ |Φ−⟩ in the rotating frame).
After rotating the molecule orientation back to |00⟩, the spin state remains the same. As a result, |ψ⟩ is the final spin
state in the lab frame. |ψ⟩ is mostly |Ψ−⟩, because the eEDM spin precession phase is small, with a small admixture
of |u⟩ (Eq. 10). The small difference between the initial (|Ψ−⟩) and final (|ψ⟩) spin states in the lab frame indicates
the eEDM spin precession phase.
To maximize the sensitivity, we need to measure in the 1√

2
(|↑↓⟩± i |↓↑⟩) basis, because |Ψ−⟩ has equal projection on

this set of basis states and the spin precession is in the same plane as the basis states. This is conceptually similar to
rotating the phase of the spin or rotating the measurement basis by ±π/4 between spin initialization and measurement
in conventional eEDM measurements to maximize the sensitivity to the spin precession [5]. Here, it can be achieved
by two similar methods.

The first method works as follows. To start, we add an extra ±π/2 phase between |↑⟩ and |↓⟩ by a vector Stark
shift [6] from an addressing beam on one of the molecules. The addressing beam on the second molecule shifting |↓⟩
by δ, as an example, is described by I ⊗ δ |↓⟩ ⟨↓|. After a pulse time t with δt = π/2, the state |ψ⟩ becomes

|ψ′⟩ =cos
(π
4
+ εuT

) ∣∣Ψ−〉+ i sin
(π
4
+ εuT

)
sin θ

∣∣Ψ+
〉
+ i

1√
2
sin εuT cos θ

(∣∣Φ+
〉
+ i

∣∣Φ−〉)

=
1√
2

 i cos θ sin εuT
i cos εuT − sin θ sin εuT
− cos εuT + i sin θ sin εuT

− cos θ sin εuT

 .

(13)

|ψ′⟩ now is roughly an equal superposition of |Ψ−⟩ and a state in the triplet subspace. Next, we apply a global
π rotation between |↑⟩ ↔ |↓⟩. The singlet |Ψ−⟩ is not coupled by global rotations. The |Ψ+⟩ state is coupled
to a superposition cosϕ |Φ+⟩ + i sinϕ |Φ−⟩), where ϕ is the phase of the global π-pulse, and the other superposition
cosϕ |Φ+⟩−i sinϕ |Φ−⟩) is a dark state. We choose a phase of −π/2 (i.e., −σy rotation), as a result, for the components
in |ψ′⟩ (Eq. 13), 1√

2
(|Φ+⟩+ i |Φ−⟩) is a dark state, |Φ+⟩ is mapped to 1√

2
(|Φ+⟩− i |Φ−⟩), and |Ψ−⟩ is uncoupled. The

state after rotation for a small εuT (sin εuT ≈ εuT and cos εuT ≈ 1) is

|ψ′′⟩ = 1√
2
(1− εuT )

∣∣Ψ−〉+ i
1

2
√
2
(1 + (sin θ + cos θ)εuT )

∣∣Φ+
〉
+ i

1

2
√
2
(1 + (sin θ − cos θ)εuT )

∣∣Φ−〉

=


i 1√

2
(1 + εuT sin θ)
1
2 (1− εuT )

− 1
2 (1− εuT )

i 1√
2
εuT cos θ

 .

(14)

Finally, the populations are measured by fluorescence in |↑⟩ and |↓⟩. The eEDM phase information is mapped to
the parity of the population and we do not need single molecule resolved imaging. The population in the even and
odd parity states are

P↑↑,↓↓ =
1

2
(1 + εuT )

P↑↓,↓↑ =
1

2
(1− εuT )

(15)
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FIG. S2. Level diagram of a bending mode in a linear 2Σ molecule, for example YbOH [7–9]. We
choose

∣∣X(0110), J = 1/2−, F = 1,M = ±1
〉

= |0↑,↓⟩,
∣∣X(0110), J = 1/2+, F = 1,M = ±1

〉
= |1↑,↓⟩, and∣∣X(0110), J = 1/2+, F = 0,M = 0

〉
= |2⟩. |0↑⟩ and |2⟩ are connected by an electric dipole transition and the pair

states 1√
2
(|0↓2⟩ ± |20↓⟩) and they are split by 2Vdd. Rf pulse 1 (blue arrows) couples |0↓⟩ ↔ |2⟩ and pulse 2 (purple arrows)

couples |2⟩ ↔ |0↑⟩ with the same detuning ∆ = Vdd. A magnetic field is applied to split the Zeeman sublevels during
entanglement generation.

An alternative detection method, similar to the one described above, is to apply a π pulse on two molecules with
different phases on the state |ψ⟩ (Eq. 12) and measure the parity. For instance, if we apply −σy ⊗ I + I ⊗ σx, the
1√
2
(|↑↓⟩+ i |↓↑⟩) state is mapped to the even parity states (|↑↑⟩ , |↓↓⟩) while the 1√

2
(|↑↓⟩+ i |↓↑⟩) remains in the odd

parity states (|↑↓⟩ , |↓↑⟩), which can be distinguished by fluorescence detection. This method requires the ability to
perform single molecule-resolved rotation, which can be achieved by a two-photon transition with focused lasers. An
advantage compared to the first method is that the phase of the measurement basis is set by the phase of the laser
field, but not the intensity of the addressing beam. Both methods together may be used for checking systematic
effects, and even in parallel in systems with multiple pairs of molecules.

III. ROBUSTNESS TO EXPERIMENTAL IMPERFECTIONS

Our scheme is robust to various experimental imperfections. For example, the fidelity of entanglement generation
does not have a lower threshold; the population that is not initialized in |Ψ−⟩ is not coupled by the eEDM and
only contributes a constant background. The optimal scheme with imperfect entanglement generation is discussed
in Sec. VI. Many possible sources may cause imperfect initialization of the molecule orientation; they include, for
instance, fluctuations in the π/2-pulse power, Stark shifts, imperfect single molecule addressing light shift, or small
difference in the g-factors of |0⟩ and |1⟩ states (resulting from perturbations of other electronic states), etc. If a
molecule is not in equal superposition of |0⟩ and |1⟩ the eEDM interaction (Σ0) is slightly reduced. If two molecules

are not in exact opposite phases of |0⟩ and |1⟩ superpositions, the splitting between |̃↑↓⟩ and |̃↓↑⟩ is reduced (this
can be used as a switch to tune the spin precession rate). If two molecules have different |0⟩ and |1⟩ populations,
their eEDM interactions (Σ0) are different and thus |Ψ−⟩ is also coupled to the |Φ±⟩ states. However, this additional
coupling does not cause spin precession since the |Φ±⟩ states are strongly coupled by the magnetic field (see Fig. 2[c]
in the main text). Importantly, all the fields are applied independently and they do not have correlation with the
eEDM switch (AC Stark shift from the addressing beam). As a consequence, these imperfections do not lead to
systematic effects directly, but instead to contrast reduction and increased statistical noise.

Magnetic field correlated rf electric fields, stray electric fields, and black-body radiation (BBR) have detrimental
effects on the state of molecule orientation and need to be shielded. Our scheme does not require a DC electric field,
and shielding electric fields is straightforward, especially without the need for electric field plates nearby. The effects
of the residual fields include near-resonant couplings between |0⟩ ↔ |1⟩ and off-resonant effects, such as energy shifts
on |0⟩ and |1⟩. The coupling effect is suppressed by the dipole-dipole interaction between two molecules when the
residual-field coupling strength is weaker than the dipole-dipole interaction (typically ∼ kHz at ∼ µm separation),
and it can also be mitigated by applying a stronger electric field in phase with the molecule oscillation.

Stray electric fields or off-resonance BBR can cause an energy shift between |0⟩ and |1⟩. This alters the oscillating
frequency of the rotating molecules, which may affect coherent control of the molecule orientation and may interfere
with the eEDM spin precession by shifting the oscillation out of phase with the magnetic rf field. Nevertheless, stray
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electric fields can be actively measured and cancelled, especially since the molecules needed for this protocol will be
trapped in a small volume ∼mm3; for example, in trapped ions a residual electric field lower than 0.1 mV/cm has
been achieved [10, 11]. A 0.1 mV/cm fluctuation corresponds to a maximum ∼ 50 mHz dephasing rate for a molecule
of d0 ≈ 2 D dipole moment and ωP ≈ 100 kHz parity splitting. This leads to a coherence time of ∼ 10 s, and the
coherence time is inversely proportional to parity splitting. On the other hand, we need ΩB ≈ µBgB ≳ 2ωP , where g
is the electron magnetic g-factor. To avoid using high magnetic field (a few Gauss, using a similar magnetic field coil
setup in ref. [12]), our scheme is most suitable for molecules with ωP ≲ 10 MHz, which is a typical range for parity
doubling. In addition, for trapped ions, ωP needs to be much lower than the trap rf frequency (∼ 20 MHz). Some
examples of suitable neutral and ion species are listed in the Supplemental Material.

IV. AN EXAMPLE OF ENTANGLEMENT GENERATION

As mentioned in the main text, the spin entangled initial state 1√
2
(|0↑0↓⟩ − |0↓0↑⟩) can be prepared by existing

entanglement protocols together with single molecule rotations. Here we present an example for the YbOH molecule,
which is the only molecule for which the parity-doubled bending mode has been completely mapped out [8]. Note
that the level structures for other metal hydroxide molecules (SrOH, CaOH, RaOH, etc) are similar and therefore the
same experimental sequence can be applied. More generally, a similar entanglement sequence can be found for any
polar molecules using the dipole-dipole interaction or other types of interactions.

The level diagram of the YbOH molecule is shown in Fig. S2. We propose to use the X(0110), J = 1/2−, F =
1,M = ±1 states as |0↑⟩ and |0↓⟩ states, and use X(0110), J = 1/2+, F = 1,M = ±1 states as |1↑⟩ and |1↓⟩ states.
The |0⟩ and |1⟩ states are separated by ∼ 35 MHz for YbOH [8], and similarly for other metal hydroxide molecules.
We list the parity splitting of other types of molecules in Sec. VII. Note that tensor light shifts have negligible effect
on the coherence between spin states (i.e., ↑ and ↓ are shifted by the same frequency), and have negligible effect on
coherence between the opposite parity states. This is because the opposite parity states have similar transition dipole
moments to the excited states and the transition frequencies are different by the parity splitting order of magnitude
(typically between 100 kHz and 100 MHz), which is suppressed by the large detuning (typically ∼ 100 THz) of the
trapping light. A magnetic field is applied to split the Zeeman sublevels during entanglement generation. We choose
another state X(0110), J = 1/2+, F = 0,M = 0, labeled as |2⟩, as an ancillary state for the entanglement generation.
|2⟩ can be any state that is connected with |0↓⟩ by an electric dipole transition. The dipole-dipole interaction between
|0↓2⟩ ↔ |20↓⟩ is Vdd, which depends on the transition dipole moment and the distance between two molecules. For
molecules with ∼ 2 Debye molecule frame dipole moment and ∼ µm separation, Vdd is around 100 kHz. The eigenstates
of the dipole-dipole interaction are 1√

2
(|0↓2⟩ ± |20↓⟩) and they are split by 2Vdd.

Two molecules are initialized in |0↓0↓⟩ by optical pumping. An rf pulse coupling |0↓⟩ ↔ |2⟩ with a detuning
∆ = Vdd is applied. This pulse resonantly couples the pair states |0↓0↓⟩ ↔ 1√

2
(|0↓2⟩ + |20↓⟩), and off-resonantly

couples 1√
2
(|0↓2⟩ + |20↓⟩) ↔ |22⟩. If the coupling Rabi frequency is much less than Vdd, only the entangled state

1√
2
(|0↓2⟩ + |20↓⟩) is populated after a π pulse (the pulse area is π/

√
2 for a single molecule). Next, another pulse

coupling |2⟩ ↔ |0↑⟩ with a detuning ∆ = Vdd is applied. Note that the first and second pulses can be different
in polarization or frequency, so the first pulse does not drive the |2⟩ ↔ |0↑⟩ transition. After a π pulse (the pulse
area is π for a single molecule), the population in |2⟩ is mapped to |0↑⟩ for each molecule and the pair state is
1√
2
(|0↑0↓⟩ + |0↓0↑⟩). Subsequently, a π phase can be added on the |0↓0↑⟩ component by the vector Stark shift of an

addressing beam focusing on one of the molecules. The entangled state 1√
2
(|0↑0↓⟩ − |0↓0↑⟩) is prepared.

Next, the DC magnetic field is switched off, and as described in the main text, a π/2 pulse |0⟩ ↔ |1⟩ is applied
to both molecules. They are prepared in ⇑⇑, and an AC Stark shift by an addressing beam focusing on one of the
molecules is applied to shift the phase of |1↑,↓⟩ by π. The state is prepared in ⇑⇓. Then an rf magnetic field is turned
on and spin precession starts. After spin precession, the eEDM phase shift is measured by the sequence described in
the previous section.

After spin precession, we use the methods described in the previous section to measure the phase shift from the
eEDM interaction.

V. SCALING UP TO 2N MOLECULES

For 2N molecules, the eEDM sensitivity increases linearly as the molecule number (Heisenberg scaling). We explain

the scaling in Fig. S3. Since the eEDM interaction is diagonal in the ⊗2N{|̃↑⟩, |̃↓⟩} basis (see Eq. 5), it does not flip

spins and it shifts the two states ˜|↑↓↑ ...⟩ and ˜|↓↑↓ ...⟩ oppositely. As a result, the eEDM causes spin precession
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within the two dimensional subspace of { ˜|↑↓↑ ...⟩, ˜|↓↑↓ ...⟩}. Since these two states form a two-dimensional subspace
spanned by |S = N,Sz = 0⟩ and |S = 0, Sz = 0⟩, the eEDM interaction will not couple them to any other states. The
entangled state of 2N molecules may be generated by adiabatic sweeping to the many-body ground state, which has
been demonstrated in Rydberg atom systems [13], or using universal gate operations. These methods requires longer
time for entangling larger systems. In addition, the entangled state may be generated by measurement and feedback
on a cluster state [14–17], which can be generated by parallel operations. This method has a constant circuit depth
for arbitrary numbers of entangled molecules. Once the molecules are entangled, the qubit states can be mapped to
the spin states.

S=0

S=1

S=N

Sz=0 Sz=1Sz=−1 Sz=NSz=−N

......

...... ......

|     ....      |     ....

|     ....      |     ....+|     ....    

|     ....     

2NεCPV

BCS,Sz
Sz

FIG. S3. For 2N molecules with oppositely aligned molecule orientations, the spin states can be described by the Dicke
ladder. The vertical dimension is ordered by total spin and the horizontal dimension is ordered by the spin projection on the
quantization axis. In the rotating frame, the eEDM interaction couples the |S = 0, Sz = 0⟩ ↔ |S = N,Sz = 0⟩ (blue arrow).
Similar to the two molecule case, the S = N subspace is coupled by the rotation of the reference frame (purple arrows), the
parameter CS,Sz is given by the Clebsch-Gordan coefficients. We apply an rf magnetic field, which shifts the energies of states
with nonzero Sz. Similar to the two molecule case, the magnetic field and the rotation together gives an unshifted state with
most population in |S = N,Sz = 0⟩.

VI. OPTIMAL MEASUREMENT SCHEMES FOR SYSTEMS WITH FINITE ERROR PROBABILITIES

In earlier sections, we have explained the measurement scheme in the maximal limit, where all M = 2N molecules
are prepared with perfect fidelity into the entangled spin states. In this idealized limit, the spin states that have the
maximum eEDM coupling (sensitivity) are the antiferromagnetic (AFM)-GHZ states |AFM±⟩ = |↑↓↑ ... ↓⟩±|↓↑↓ ... ↑⟩,
which reduce to |AFM±⟩ = Ψ± in the two-molecule case. In a real implementation, however, finite error probabilities
will reduce the size of the AFM state that provides optimal metrological gain to 2N < M .
In this section, we show how to optimize the eEDM sensitivity gain for systems with finite gate errors. We assume

that the initial state is prepared in |AFM−⟩ with a multipartite entanglement fidelity of Ftotal. The definition of
Ftotal is given by the average of the population in the |↑↓↑ ... ↓⟩ and |↓↑↓ ... ↑⟩ components and the coherence between
them [18]. The eEDM interaction couples |AFM−⟩ ↔ |AFM+⟩ and is measured in the end by mapping the |AFM+⟩
state to the normal GHZ states by a global rotation on all spins (see previous sections). As Eq. (13-14) indicates,
the population that can be rotated and subsequently measured is limited by the population and the coherence of
|↑↓↑ ... ↓⟩ and |↓↑↓ ... ↑⟩ components, which coincides with the multipartite entanglement fidelity Ftotal. As a result,
the metrological sensitivity in an imperfect experiment using 2N molecules is 2NFtotal. The relative gain compared to
the non-entangled metrology (standard quantum limit [SQL]) is 2NFtotal/

√
2N =

√
2NFtotal. When

√
2NFtotal > 1,

the eEDM measurement benefits from quantum-enhanced metrology.
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FIG. S4. (a). The enhancement of the metrological sensitivity using the entangled scheme over non-entangled scheme (SQL).
The blue dashed line shows the optimal number of entangled molecule as a function of two-molecule gate fidelity (b). For a given
total number of molecule, the optimal enhancement of the metrological gain over the SQL as a function of the two-molecule
gate fidelity. (c) and (d). Comparison of the metrological sensitivities of the imperfect entangled scheme (F in the legend is
the two-molecule entangling gate fidelity) and the SQL. (d) is a zoom-in of (c). Note that F = 0.86 and F = 0.87 have already
been achieved in initial demonstrations of two-molecule entanglement [20, 21].

The multipartite entanglement fidelity Ftotal depends on both the molecule number (2N) and the two-particle
entangling gate fidelity (F ). In the simplest case, we can perform two-molecule gate ([19–21]) operations 2N − 1
times to generate the 2N molecule entanglement with linear time overhead, which for small N is negligible compared
to molecule coherence times presently demonstrated [22, 23]. For large N (where the linear time-cost approaches the
coherence time), constant time methods that involve 2(2N − 1) parallel gate operations can be used with a constant
F 2 reduction to the overall state fidelity [14–17]. Since the single-molecule rotation error is negligible compared to
the two-particle gates, we have Ftotal ≈ F (2N−1) for the linear time-overhead approach. Thus, for a system of M
molecules divided into M/2N partitions, where in each partition 2N molecules are entangled, the total metrological

gain over the SQL is
√
2NF (2N−1). (We mention in passing that in experiments limited by technical noise rather

than the SQL, the suppression of susceptibility to external field noise, which we do not discuss in this section, further
enhances the measurement sensitivity beyond the improvements given by the SQL gain factor.)

Fig. S4(a) and (b) show the enhancement of metrological gain over the SQL as a function of the size of the
entanglement (number of molecules entangled) and the fidelity of two-molecule entangling gate error. Fig. S4(c) and
(d) directly compare the metrological sensitivities of the entangled scheme (thick lines) with the standard quantum
limit (dashed line) for several different choices of two-molecule entangling gate fidelity. At the entanglement fidelities
achieved in Ref. [20] (F = 0.86) and [21] (F = 0.87), the scaling indicates an optimal advantage at 4 entangled
molecules, or 2N ≈ −1/(2 log(F )) for general cases of F . As depicted by Fig. S4(c) and (d), the maximum metrological

gain over the SQL, F (−1/(2 logF )−1)
√
−1/(2 logF ), scales quasi-polynomially with future improvements [24] to two-

molecule gate fidelities.

Intuitively, the emergence of an optimal entangled system size can be interpreted as the competition between the
linear gain and the exponential decay of the “correlation length” of the AFM order. Experimental imperfections
reduces the quantum correlation between distant spins, and thus the two uncorrelated spins may counteract each
other’s contribution to the eEDM coupling. In analogy to an uncorrelated, sequential measurement, the optimal
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interrogation time for a single measurement is around the coherence time of the system, within which the sensitivity
increases linearly with respect to the interrogation time prior to exponential decay in the signal contrast.

VII. MOLECULAR DESIGN REQUIREMENTS

As discussed in the main text, the entangled-basis eEDM couplings are maximal when the molecular dipole oscilla-
tions – set by the opposite-parity splitting ωP – are adiabatic relative to the RF magnetic field drive ΩB . Limiting RF
B-fields to achievable amplitudes therefore imposes upper bounds on the size of the parity splitting ωP relative to the
magnetic tuning of the molecule. Conversely, stray-field considerations also impose a lower bound on the minimum
parity doubling to avoid excess decoherence and accidental polarization. RF drives on trapped ions must additionally
be well-separated from trap frequencies (∼ 20 MHz).
In rigid-rotor molecules, the most generic parity splitting scale is set by the end-to-end rotation, which is inversely

proportional to the largest rotational moment of inertia. For small molecules, typical end-to-end rotational scales are
several GHz. While far-detuned from typical ion trapping frequencies, these splittings impose demanding requirements
on RF B-field intensities (e.g. > 500 G for a paramagnetic 2Σ molecule). Achieving sub-GHz end-to-end rotation is
possible, but requires molecules with both heavy metal and ligand partners [25–27].

Technical requirements on B-field amplitudes can be significantly relaxed, however, by using molecules with near-
degenerate parity doubling, for which typical ωP splittings are < 100 MHz. A standard approach is to utilize states
with non-zero orbital angular momentum (Λ > 0), which form near-degenerate Ω-doublets of combined electronic and
rotational angular momenta. These states can be found in the electronic configurations of linear diatomic molecules,
where the relevant quantum numbers include orbital angular momentum projection onto the molecular axis (Λ),
electron spin angular momentum projection on the molecular axis (Σ), and the sum of these projection quantum
numbers (Ω). To facilitate the RF magnetic drive, it is furthermore desirable to utilize the stretched states with
maximal |Ω|, where there are no cancellations to magnetic sensitivity from mixed orientations of orbital and electron
spin angular momenta.

Note that this is opposite to the design considerations in some contemporary eEDM experiments, where the non-
stretched 3∆1 configuration is utilized for measurements due to its suppressed g-factor [28, 29]. In our scheme, the
antiferromagnetic ordering of the entangled states already confers insensitivity to global magnetic field noise, which
in combination with immunity to slow noise from the rotating frame, significantly reduces the technical need for a
magnetically insensitive state. If local magnetic insensitivity (or a diamagnetic molecule) were desired, however, one
could alternatively perform the effective RF B-field via two-photon E1 drives to a magnetic, excited electronic state
or amplitude-modulated AC light shifts. However, this merely shifts the experimental susceptibility to magnetic noise
onto laser power and polarization noise; whether this approach is indeed advantageous depends on details of the
technical implementation.

Operating under the assumption that a magnetic state is desired, we note that states with larger values of |Ω|
are coupled at progressively higher orders and therefore exhibit smaller Ω-doubling and ωp. As discussed earlier, an
excessively small or unresolved ωp decreases the protection conferred by the rotating frame (because it is slow) and
risks accidental polarization from stray electric fields. Table S1 lists the leading Ω-doubling mechanisms and matrix
element scales with respect to electronic (∆E), spin-orbit (A), and rotational (B) splittings for a variety of open-shell,
non-zero Λ and Ω electronic configurations, which can be utilized for order-of-magnitude estimates of ωp for molecules
with Ω-doubled electronic configurations. Imposing the additional constraint that eEDM-sensitive states must have
non-zero spin projection on the molecular axis (Σ ̸= 0), we find that 2Π3/2 and 4∆1/2 states are most likely to meet
the requirements for ∼ µB magnetic tuning and kHz to MHz-scale parity-splitting ωp. These electronic configurations
can be found in a range of EDM-sensitive molecular ions, several of which are listed in table S3.

An even more flexible approach to engineering parity doublets is to rely on near-degeneracies that originate from ro-
vibrational, rather than orbital electronic degrees of freedom, which are present universally in polyatomic (more than
two atom) molecules. This provides the added advantage of decoupling polarization from the choice of metal center –
a feature which is particularly useful for neutral molecules, where the metal center can be designed to be compatible
with optical cycling and laser cooling, as well as for integrating exotic rare isotopes (with arbitrary electronic structure)
into parity-doubled neutral and ionic molecules. Common structural motifs [7, 30, 31] for engineering rovibrational
doublets include linear molecules with bending-induced ℓ-doubling (e.g. linear MOH) as well as non-linear symmetric
(e.g. MCH3) and asymmetric tops (e.g. planar MNH2, bent MSH) with rotationally induced K-doubling. Control and
trapping of eEDM-sensitive polyatomics is being actively pursued across several experiments and molecular species.
In table S2, we list several common rovibrational doubling mechanisms and scales in polyatomic molecules. Specific
polyatomic typologies are listed in Table S3.
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State Interactions Effective form Scaling Prefactors ωp (approx.)
2Π1/2 HL+ ×Hso J+S+ + J−S−

B(A)
∆E

2 × (J + 1
2
) ∼ 1 − 10 GHz

2Π3/2 (HL+)2 ×HS+ J3
+ + J3

−
B3

A(∆E)
6 ×

∏3/2

i=−1/2(J + i) ∼ 10 − 100 Hz
3Π1 (HL+)2 J2

+ + J2
−

B2

∆E
2 × J(J + 1) ∼ 0.1 − 1 MHz

3Π2 (HL+)2 × (HS+)2 J4
+ + J4

−
B4

A2(∆E)
24 ×

∏2
i=−1(J + i) ∼ 10 − 100 mHz

2∆3/2 (HL+)3 ×Hso J3
+S+ + J3

−S−
B3A
∆E3 6 ×

∏3/2

i=−1/2(J + i) ∼ 1 − 10 Hz
2∆5/2 (HL+)4 ×HS+ J5

+ + J5
−

B5

A(∆E)3
120 ×

∏5/2

i=−3/2(J + i) < 10 mHz
3∆1 (HL+)2 × (Hso)2 J2

+S
2
+ + J2

−S
2
−

B2A2

∆E3 24 × J(J + 1) ∼ 0.1 − 1 MHz
3∆2 (HL+)4 J4

+ + J4
−

B4

∆E3 24 ×
∏2

i=−1(J + i) ∼ 1 − 10 mHz
3∆3 (HL+)4 × (HS+)2 J6

+ + J6
−

B6

A2(∆E)3
720 ×

∏3
i=−2(J + i) < 10 mHz

4∆1/2 HL+ × (Hso)3 J+S
3
+ + J−S

3
−

A3B
∆E3 24 × (J + 1

2
) ∼ 0.1 − 1 GHz

2Φ5/2 (HL+)5 ×Hso J5
+S+ + J5

−S−
B5A
∆E5 720 ×

∏5/2

i=−3/2(J + i) < 10 mHz
2Φ7/2 (HL+)6 ×HS+ J7

+ + J7
−

B6

A(∆E)4
720 ×

∏7/2

i=−5/2(J + i) < 10 mHz
4Φ3/2 (HL+)3 × (Hso)3 J3

+S
3
+ + J3

−S
3
−

B3A3

∆E5 720 ×
∏3/2

i=−1/2(J + i) ∼ 1 − 100 Hz

TABLE S1. Orbital parity-doubling mechanisms and approximate ωp scales for heavy, spin-orbit-coupled molecules. Listed are
Ω-doubling matrix elements (at the single-configuration level) of selected C∞v electronic terms (2S+1ΛΩ). The HL+ , HS+ , and
Hso interactions refer to L-uncoupling (J · L), S-uncoupling (J · S), and microscopic spin-orbit (

∑
i li · si) terms, respectively.

In the “scaling” column, the terms B, A, and ∆E refer to the rotational constant, spin-orbit constant, and electronic bandgaps
to the perturbing level. Numerical prefactors are given by the product of n! coupling paths for an n-th order perturbation and
factors of

√
J(J + 1) from evaluating Ĵ+/− terms in the effective Hamiltonians. The size of ωp for lowest-J states are estimated

assuming A ∼ 4 × 103 cm−1, ∆E ∼ 2 × 104 cm−1, and B ∼ 0.2 cm−1, which provides rough values for the scale of typical
single-configuration, single-perturber contributions to the Ω-doubling. Full computation of the Ω-doubling splittings is highly
species-dependent and usually involves complicated sums over multiple perturbing channels and electronic state configurations,
which can exhibit cancellations and contributions that are not accounted for in these simplified estimates.

Type Mechanism(s) Doublet Quanta ωp (typ.)

rotation-vibration
centrifugal distortion
inertial asymmetry

l, K
Ka

< 10 MHz

anisotropic
electron hyperfine

spin-dipolar (S · I)
spin-rotation (S ·N)

l, K, Ka

l, K, Ka
1 - 10 MHz

anisotropic
nuclear hyperfine

spin-dipolar (Ii · Ij)
spin-rotation (I ·N)

l, K, Ka

l, K, Ka
1 - 10 kHz

TABLE S2. Common rovibrational parity-doubling mechanisms and splitting scales in polyatomic molecules.

Class Species Science State ωp

rigid-rotor
alkaline-earth monofluorides (e.g. YbF [32, 33], BaF [34, 35], RaF [36–38]) 2Σ+ ∼ 5 GHz

assembled alkaline-earth coinage (e.g. RaAg, RaAu [25–27]) ∼ 500 MHz

Ω-doubled
Λ = 1 diatomics (e.g. PbF [39–41], BiF+) 2Π3/2 ∼ 10 - 100 Hz

Λ = 2 diatomics (e.g. IrF+, PtO+) 4∆1/2 ∼ 100 MHz

polyatomics

C∞v linear (e.g. MOH [8]) 2Σ+(vbend, ℓ > 0) ∼ 20 MHz
C(n≥3)v symmetric (e.g. MOCH3 [31]) 2A1 (K > 0) ∼ 100 kHz

C2v planar asymmetric (e.g. MNH2 [30]) 2A1 (Ka > 0) ∼ 1 MHz
Cs, C1 bent asymmetric/chiral (e.g. MSH [30]) 2A′ (Ka > 0) ∼ 5 MHz

TABLE S3. Examples of paramagnetic EDM-sensitive molecules, science state configurations, and approximate parity splitting
scales ωp, based on the scaling relations described in the text and figs. S1 and S2. Molecules listed without references have
not, to our knowledge, been previously considered in the literature. Electronic configurations are inferred from periodic trends
and comparison to iso-electronic systems.
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