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S1: Methods.

Fabrication of the samples starts on silicon dies with ∼285 nm of silicon dioxide. Dumbbell-shaped cavities are
etched in the silicon dioxide layer, with a total depth of approximately 300 nm. Single layer graphene grown by
chemical vapor deposition was transferred on top of this substrate using a supporting polymer. This polymer is
dissolved, and the sample is subsequently dried using CO2 critical point drying. Besides removing the polymer, this
process is used to break the weakest part of the dumbbell, leaving a suspended circular membrane with a venting
channel to the environment on the other side (Figs. 1 a, c-e in the main text). The venting channel prevents that
pressure di�erences across the membrane can alter the tension and resonance frequency of the membrane, and thus
it ensures that any observed frequency shifts can be attributed to the squeeze-�lm e�ect.
Figure 1b in the main text shows the experimental setup to actuate and detect graphene's motion in a controlled

gaseous environment. The sample is mounted in a vacuum chamber, which is carefully tested for leaks to ensure the
gas composition inside the chamber. A voltage-controlled dual-valve pressure controller is used to control the pressure
in this chamber. Eight di�erent gases can be connected to the input of the controller to select the type of gas. A
red helium-neon laser is used to read-out the membrane motion by Fabry-Perot interferometry [1, 2]. The silicon
substrate acts as a �xed mirror, while the suspended graphene membrane acts as the moving mirror. A blue diode
laser is used to actuate the motion of the membrane by opto-thermally heating the membrane, which will experience
a force due to thermal expansion [3, 4]. A red laser power of 2 mW and a blue laser power of 0.3 mW was used, both
powers are measured before the objective.
The squeeze-�lm e�ect is measured by characterizing the membrane's amplitude of motion as a function of the

frequency of the opto-thermal actuation, which is repeated at di�erent pressures set by the pressure controller. To
correct for any frequency dependence arising from the electronic components in the setup, the response of the setup is
measured when the blue laser is directly illuminating the photodetector. This measurement is then used to deconvolve
the measured response, two examples of such corrected responses are shown in Figs. 1e and f in the main text. To
�t a harmonic oscillator response to the data, we must consider the thermal delay, which causes the actuation force
to become frequency dependent [3, 5, 6]. A further frequency dependence can emerge from gas leakage, which has
an identical frequency dependence [7]. This frequency dependence is corrected by �tting the response with a single
thermal time constant model:

x =
A

ω2τ2 + 1
− iAωτ

ω2τ2 + 1
, (S1)

where A is used as a �tting variable. We �t to the imaginary part of the data to extract A and τ ; and use those
parameters to again deconvolve the data with Eq. S1. In these measurements, usually either thermal or gas leakage
e�ects dominate the response, and a single relaxation time model provided a good �t. However, at some pressures
both thermal and gas delay e�ects occur at the same time, and a single relaxation time does not provide a good �t.
In those cases, no frequency and quality factor are �t, and those data points are omitted. After the correction for
the frequency dependence of the actuation force, the data is �t using a simple harmonic oscillator model without an
additional background. In the example traces in Figs. 1e and f in the main text, the �ts to the harmonic oscillator
are again multiplied with the �t to frequency-dependence of the actuation force at low frequencies. This shows that
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the �tting procedure can accurately represent the resonance peak and the background. If the frequency dependence of
the actuation force is not considered, the background will cause the �tting to underestimate the resonance frequency
when the quality factor of the resonance is low.

S2: Additional measurements
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FIG. S1. Remainder of the dataset in Fig. 2 in the main text.
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FIG. S2. Resonance frequency and Q-factor of 6 more samples not shown in the main text.
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FIG. S3. Dimensionless sti�ness deviation as a function of dimensionless parameters for 6 more samples not shown in the main
text.
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FIG. S4. Schematic of domain used for numerical simulations.

S3: Simulations

Figure S4 shows a schematic of the domain used in both numerical simulations. For both the continuum and
Boltzmann Transport Equation (BTE) simulations the domain was taken to be axisymmetric around the center of
the device. For each of the pressures shown in Fig. 6 in the main text, the bounds on the exterior domain, R and G,
were increased until a consistent frequency and quality factor was achieved; bounds of at least R = 3r0 and G = 40g0
were used. While for the continuum simulation the drum was taken to be fully enclosed, for the BTE simulation the
drum walls were taken to be slightly porous to simulate the presence of the venting channel, with the porosity set to
match the proportion of the drum wall occupied by the channel; in the results shown here, this was set at 5%. As
expected, varying this parameter had a negligible e�ect on the measured frequency.
As discussed in the main text, the continuum simulations applied the eigenfrequency solver of COMSOL [8, 9] to

the compressible Stokes equation for the gas (with no-slip boundary conditions), and Navier's equation for the solid.
The BTE simulations employed a custom code solving the frequency domain Boltzmann-BGK equation [10�12] for the
gas, with di�use boundary conditions [13]; this boundary condition naturally includes slip as the gas becomes rare�ed.
They were coupled with an axisymmetric membrane equation to represent the graphene. For both the continuum and
BTE simulations the physical parameters of the graphene were inferred by matching to the frequency measured in a
vacuum.
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FIG. S5. Simulations of resonance frequency and quality factor for a representative squeeze-�lm pressure sensor. The simulations
shown here are used to perform the analysis shown in the main text. a Dimensionless frequency shift, showing a clear deviation
for sulphur hexa�uoride. b Quality factor of resonance, showing the increase at high pressures discussed in the main text.

Figure S5 shows the dimensionless frequency shift and the quality factor from simulations of the previously published
31-layer device. In agreement with the experiments performed here, we �nd that the continuum simulations predict
deviations from the linear sti�ness increase as a function of pressure (Fig. S5a ). Sulphur hexa�uoride shows a clear
deviation from the other gases. The simulated quality factor as a function of pressure in Fig. S5 shows a similar
weak gas dependence as a function of molecular weight. At high pressures, however, the simulations suggest that the
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FIG. S6. a Continuum and Boltzmann simulations of the resonance frequency of a 4-micron diameter single-layer graphene
drum in a helium environment as a function of pressure in the case of single-layer graphene, compared to Eq. 1 in the main text
and experimental data. The simulations assume the theoretical mass of a clean single-layer graphene membrane. b Quality
factor of resonance corresponding to �gure b. c Resonance frequency in the case of a 5-micron diameter 31�layer graphene
drum in a nitrogen environment and d quality factor of resonance.

quality factor could increase as a function of pressure. This behaviour has not been observed in experiments, possibly
due to the limited pressure range that could be achieved, but is predicted by the single relaxation time model as
discussed in the main text. The BTE simulations show a signi�cantly larger quality factor since slip �ow is included
in this model. The model captures the pressure and gas-dependent trends of the quality factor that are observed in
the experimental data but produces an upshift as function of pressure in the case of SF6 that is not observed in the
experiments.
Figure S6(a-b) shows additional simulation results for a 4-micron diameter single-layer graphene membrane in a

helium environment, compared to experimental data. In these simulations we assume the single layer graphene has its
theoretical mass of 7.7× 10−7 kg/m2. In the experiments with single-layer graphene devices a much lower frequency
shift is observed compared to the simulations, which may be attributed to additional mass on the single-layer graphene
resonator which lowers the resonance frequency and squeeze-number (Fig. S6a). Even though the simulations suggest
that the quality factor of the resonator will be much lower if the mass is reduced (Fig. S6b), the deviations in
the resonance frequency are predicted to be small. This is possible because such a clean resonator will operate in
the regime where pa/g0ρh is very large, which corresponds to the high-pressure lines in Fig. 5 in the main text.
Figure S6(c-d) simulate the previously published 31-layer device [14] in a nitrogen environment. This serves as a
benchmark for the simulations, but also shows that the deviations from Eq. 1 in the main text can be reproduced in
the simulations if the mass of the membrane is increased.

S4: Relation between Q-factor and dimensionless number σ

To describe the graphene squeeze-�lm pressure sensor, we make a model with a single degree of freedom for the
displacement x of the fundamental mode of the graphene membrane:

−ω2x+ iω
2

τ0
x+ ω2

0x = β∆p, (S2)

where ω is the radial frequency, τ0 the exponential decay time of the membrane in vacuum, ω0 is the resonance
frequency, ∆p the pressure di�erence over the membrane due to the squeeze-�lm e�ect, β is a proportionality constant.
For the pressure in the cavity, we take a one-dimensional approximation by assuming the cavity has using a single
relaxation time τg (which is the leak time):

iω∆p+
1

τg
∆p = γiωx, (S3)

where γ is another proportionality constant.
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To �nd the free equation of motion we solve Eq. S3 for ∆p:

(iω +
1

τg
)∆p = γiωx,

∆p =
iωγ

iω + 1
τg

= γ
iωτg

iωτg + 1
,

∆p = γ
ω2τ2g

ω2τ2g + 1
+ γ

iωτg
ω2τ2g + 1

,

(S4)

This can be substituted into Eq. S2:

−ω2x+ iω
2

τ0
x+ ω2

0x = βγ
ω2τ2g

ω2τ2g + 1
+ βγ

iωτg
ω2τ2g + 1

, (S5)

−ω2x+ iω

(
2

τ0
− βγ τg

ω2τ2g + 1

)
x+

(
ω2
0 − βγ

ω2τ2g
ω2τ2g + 1

)
x = 0, (S6)

By comparing the case ωτg � 1, we note that βγ = − pa
g0ρh

where pa is the atmospheric pressure, g0 the gap size and
ρh the membrane's mass per unit square. The sti�ness of the system becomes:

ω2
f = ω2

0 +
pa
g0ρh

ω2τ2g
ω2τ2g + 1

. (S7)

The damping becomes:

Γf =
2

τ0
+

pa
g0ρh

τg
ω2τ2g + 1

. (S8)

In the case where τ0 � τg and close to the resonance frequency:

Γf ≈
pa
g0ρh

τg
ω2
fτ

2
g + 1

, (S9)

giving the equation of motion:

−ω2x+
pa
g0ρh

ωfτg
ω2
fτ

2
g + 1

x+

(
ω2
0 +

pa
g0ρh

ω2
fτ

2
g

ω2
fτ

2
g + 1

)
x = 0. (S10)

The dimensionless number σ σ compares the timescale of the compression to the timescale of the leakage:

σ = τgωf , (S11)

resulting in:

−ω2x+ i
pa
g0ρh

σ

σ2 + 1
x+

(
ω2
0 +

pa
g0ρh

σ2

σ2 + 1

)
x = 0, (S12)

The complex eigenvalues of this equation are given by:

ω2 = ω2
0 +

pa
g0ρh

σ2

σ2 + 1
+ i

pa
g0ρh

σ

σ2 + 1
, (S13)

ω =
4

√(
pa
g0ρh

σ(σ + 1)

σ2 + 1

)2

+

(
pa
g0ρh

σ

σ2 + 1

)2

×

cos

(
1

2
arg

(
ω2
0 +

pa
g0ρh

σ2

σ2 + 1
+ i

pa
g0ρh

σ

σ2 + 1

))
+

i
4

√(
pa
g0ρh

σ(σ + 1)

σ2 + 1

)2

+

(
pa
g0ρh

σ

σ2 + 1

)2

×

sin

(
1

2
arg

(
ω2
0 +

pa
g0ρh

σ2

σ2 + 1
+ i

pa
g0ρh

σ

σ2 + 1

))
.

(S14)
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Using Qf = R(ω)/2I(ω):

Q2
f =

cos2
(

1
2 arg

(
ω2
0 + pa

g0ρh
σ2

σ2+1 + i pa
g0ρh

σ
σ2+1

))
4 sin2

(
1
2 arg

(
ω2
0 + pa

g0ρh
σ2

σ2+1 + i pa
g0ρh

σ
σ2+1

))
Qf =

1

2
cot

(
1

2
arctan

(
pa
g0ρh

σ
σ2+1

ω2
0 + pa

g0ρh
σ2

σ2+1

))

Qf =
1

2
cot

1

2
arctan

 σ
σ2+1

ω2
0

ω2
sqz

+ σ2

σ2+1

 ,

(S15)

Qf =

√
ξ2 + 1 + 1

2ξ
, (S16)

where:

ξ =
σ

ω2
0

ω2
sqz

(σ2 + 1) + σ2
. (S17)

S5: RELATION BETWEEN RELATIVE STIFFNESS DEVIATION AND Q FACTOR

In the main text, we de�ne the relative sti�ness deviation as:

∆rel =
∆−∆lin

∆lin
(S18)

To calculate this, we need the resonance frequency, which is given by the absolute value of ω in Eq. 7 in the main
text:

|ω| = 4

√
ω4
0 + σ2(ω2

0 + pa
g0ρh

)2

σ2 + 1
(S19)

If we assume ∆lin is perfectly described by Eq. 1 from the main text, and that ∆ is given by the real part of Eq. 7,
we obtain:

∆rel =
g0ρh

pa

√
ω4
0 + σ2(ω2

0 + pa
g0ρh

)2

σ2 + 1
− ω2

0g0ρh

pa
− 1 (S20)

Note, that by using ∆rel, instead of ∆ −∆lin, the theoretical value of ρh and pref used for the normalization in Eq.
2 in the main text have dropped out. ∆rel now only depends on the real pressure and mass of the device. Next, we
invert this equation to obtain an expression for σ, keeping only the positive solution:

σ =
i
√

∆rel + 1
√

2ω2
0 + pa

g0ρh
∆rel + pa

g0ρh

√
∆rel

√
2ω2

0 + pa
g0ρh

∆rel + 2 pa
g0ρh

(S21)

This can then be evaluated at di�erent values of ∆rel and substituted into Eqs. S16�S17 to produce the red lines in
Fig. 5 in the main text.
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S6: COMPARISON BETWEEN LINEAR SLOPES
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FIG. S7. Comparison of the slope of the linear sti�ness (∆lin) as a function of density of the di�erent gases for 5-micron diameter
drum nr. 1. This shows that the compression of the gas is well-approximated as isothermal, since a strong gas dependence is
expected for adiabatic compression [15]. Furthermore, this shows that the change in resonance frequency can be attributed to
the squeeze-�lm e�ect, and that e�ects from mass loading on the top of the membrane are small.
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