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Hardness of the maximum-independent-set problem on unit-disk graphs
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Rydberg atom arrays are among the leading contenders for the demonstration of quantum speedups. Motivated
by recent experiments with up to 289 qubits [Ebadi et al., Science 376, 1209 (2022)], we study the maximum-
independent-set problem on unit-disk graphs with a broader range of classical solvers beyond the scope of
the original paper. We carry out extensive numerical studies and assess problem hardness, using both exact
and heuristic algorithms. We find that quasiplanar instances with Union-Jack-like connectivity can be solved to
optimality for up to thousands of nodes within minutes, with both custom and generic commercial solvers on
commodity hardware, without any instance-specific fine-tuning. We also perform a scaling analysis, showing
that by relaxing the constraints on the classical simulated annealing algorithms considered in Ebadi et al., our
implementation is competitive with the quantum algorithms. Conversely, instances with larger connectivity or
less structure are shown to display a time-to-solution potentially orders of magnitudes larger. Based on these
results, we propose protocols to systematically tune problem hardness, motivating experiments with Rydberg
atom arrays on instances orders of magnitude harder (for established classical solvers) than previously studied.
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I. INTRODUCTION

Combinatorial optimization problems are pervasive across
science and industry, with prominent applications in ar-
eas such as transportation and logistics, telecommunications,
manufacturing, and finance. Given its potentially far-reaching
impact, the demonstration of quantum speedups for prac-
tically relevant, computationally hard problems (such as
combinatorial optimization problems) has emerged as one of
the greatest milestones in quantum information science.

Over the past few years, programmable Rydberg atom
arrays have emerged as a promising platform for the imple-
mentation of quantum information protocols [1–7] and (in
particular) quantum optimization algorithms [8–14]. Some of
the exquisite and experimentally demonstrated capabilities of
these devices include the deterministic positioning of indi-
vidual neutral atoms in highly scalable arrays with arbitrary
arrangements [15,16], the coherent manipulation of the inter-
nal states of these atoms (including excitation into strongly
excited Rydberg states) [17–19], the ability to coherently
shuttle around individual atoms [20], and strong interactions
mediated by the Rydberg blockade mechanism [12,21–23].

The physics of the Rydberg blockade mechanism has been
shown to be intimately related to the canonical (NP-hard)
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maximum-independent-set (MIS) problem [8], in particular
for unit-disk graphs. The MIS problem involves finding the
largest independent set of vertices in a graph, i.e., the largest
subset of vertices such that no edges connect any pair in the
set; compare Fig. 1 for a schematic illustration. As shown
in Ref. [8], MIS problems can be encoded with (effectively
two-level) Rydberg atoms placed at the vertices of the target
(problem) graph. Strong Rydberg interactions between atoms
then prevent two neighboring atoms from being simultane-
ously in the excited Rydberg state, provided they are within
the Rydberg blockade radius, thereby effectively implement-
ing the independence constraint underlying the MIS problem.
By virtue of this Rydberg blockade mechanism, Rydberg atom
arrays allow for a hardware-efficient encoding of the MIS
problem on unit-disk graphs, with the (tunable) disk radius
Rb ∼ 1–10 µm setting the relevant length-scale [6].

Overview of the main results

Recently, a potential (superlinear) quantum speedup over
classical simulated annealing was reported for the MIS prob-
lem [12], based on variational quantum algorithms run on
Rydberg atom arrays with up to 289 qubits arranged in
two spatial dimensions. This work focused on benchmarking
quantum variational algorithms against simulated annealing
by viewing it as a classical analog of the adiabatic algorithm,
yet left open the question of benchmarking against other
state-of-the-art classical solvers. Motivated by this experi-
ment, we perform a detailed analysis of the MIS problem
on unit-disk graphs and assess problem hardness using both
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exact and heuristic methods. We provide a comprehensive
algorithmic and numerical analysis, and we demonstrate the
following: (i) Typical quasiplanar instances with Union-Jack-
like connectivity (as studied in Ref. [12]) can be solved to
optimality for up to thousands of nodes within minutes, with
both custom and generic commercial solvers on commodity
hardware, without any instance-specific fine-tuning. (ii) Sys-
tematic scaling results are provided for all solvers, displaying
qualitatively better runtime scaling for solvers exploiting the
quasiplanar problem structure than generic ones. In particu-
lar, we find that by relaxing the detailed balance constraint,
and considering the low depth regime (both of which are
required for analytic runtime lower bounds on SA described in
Ref. [13]), our implementation of classical simulated anneal-
ing is competitive with the quantum algorithm’s performance
in Ref. [12]. (iii) Conversely, while the definition of problem
hardness may be specific to the method used, instances with
larger connectivity or less structure display a time-to-solution
typically orders of magnitudes larger. (iv) Based on these
results, we propose protocols to systematically tune problem
hardness (as measured by classical time-to-solution), motivat-
ing experiments with Rydberg atom arrays on instances orders
of magnitude harder (for established classical solvers) than
previously studied.

This paper is organized as follows. In Sec. II we first for-
malize the problem we consider. Next, in Sec. III we describe
the algorithmic tool suite with which we address this problem.
In Sec. IV we then describe our numerical experiments in
detail. Finally, in Sec. V, we draw conclusions and give an
outlook on future directions of research.

II. PROBLEM SPECIFICATION

The MIS problem is a prominent combinatorial opti-
mization problem with practical applications in network
design [24], vehicle routing [25], and finance [26,27], among
others, and it is closely related to the maximum clique, mini-
mum vertex cover, and set packing problems [28].

A. Definition

Formally, the MIS problem reads as follows. Given an
undirected graph G = (V, E ), an independent set S ⊆ V is a
subset of vertices of G such that no two vertices in S share
an edge in E . The maximum-independent-set problem is then
the task of finding the largest independent set in V . The
cardinality of this largest independent set is referred to as
the independence number |MIS|. One way to formulate the
MIS problem mathematically is to first associate a binary
variable xi ∈ {0, 1} to every vertex i ∈ V , such that xi = 1
if vertex i = 1, . . . , N belongs to the independent set, and
xi = 0 otherwise. The MIS problem can then be expressed as
a compact integer linear program of the form

max
∑

i

xi

s.t. xi + x j � 1 ∀(i, j) ∈ E,

xi ∈ {0, 1}, i = 1, . . . , N, (1)

with the objective to maximize the marked vertices while
adhering to the independence constraint. Generalizations to
the maximum-weight independent set problem are straight-
forward [25].

A formulation of the MIS problem that is commonly used
in the physics literature expresses the integer linear program in
Eq. (1) in terms of a Hamiltonian that includes a (soft) penalty
to nonindependent configurations (i.e., when two vertices in
the set are connected by an edge) [8]. This Hamiltonian is
given by

H = −
∑

i

xi + V
∑

(i, j)∈E
xix j, (2)

with a negative sign in front of the first term because the
largest independent set is searched for within a minimiza-
tion problem, and where the penalty parameter V enforces
the constraints. Energetically, this Hamiltonian favors having
each variable in the state xi = 1 unless a pair of vertices
are connected by an edge. For V > 1, the ground state is
guaranteed to be a MIS, because it is strictly more favor-
able to have at most one vertex per edge in the set as
opposed to both vertices being marked [12]. Still, within this
framework, the independence constraint typically needs to be
enforced via postprocessing routines (as is done, for example,
in Ref. [12]). Mapping the binary variables xi to two-level Ry-
dberg atoms subject to a coherent drive with Rabi frequency
� and detuning �, one can then search for the ground state
of the Hamiltonian H (encoding the MIS) via, for example,
quantum-annealing-type approaches using quantum tunneling
between different spin configurations [8,12].

B. Problem hardness

The MIS problem is known to be strongly NP-hard, making
the existence of an efficient algorithm for finding the maxi-
mum independent set on generic graphs unlikely. As such, the
MIS problem is even hard to approximate [29], and in general
it cannot be approximated to a constant factor in polynomial
time (unless P = NP).

Here, however, we focus primarily on the MIS problem on
unit-disk graphs (dubbed MIS-UD hereafter), given their inti-
mate relation to Rydberg physics [8,12]. Our main goal is to
empirically assess the hardness of MIS-UD. As schematically
depicted in Fig. 1, unit-disk graphs are defined by vertices
on a two-dimensional plane with edges connecting all pairs
of vertices within a unit distance. The MIS-UD problem ap-
pears in practical situations with geometric constraints such
as map labeling [30] and wireless network design [24]. While
approximate solutions to MIS-UD can be found in polynomial
time [31], solving the problem exactly is still known to be
NP-hard for worst-case instances [12,32].

C. Problem instances and figures of merit

The unit disk (UD) problem instances of interest can be
characterized by the number of nodes N , the side length
of the underlying square lattice L, and the filling fraction
�, with N ≈ �L2, as schematically depicted in Fig. 1. Fol-
lowing Ref. [12], we focus on single-component (nonplanar,
but quasiplanar) UD instances with nearest and next-nearest
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FIG. 1. Schematic illustration of the problem. (a) We consider
unit-disk graphs with nodes arranged on a two-dimensional square
lattice with lattice spacing a and filling fraction � ∼ 80%, and edges
connecting all pairs of nodes within a unit distance (illustrated by
the circle). For

√
2a � Rb < 2a (as considered here), nodes are

connected to nearest and next-nearest neighbors resulting in a (quasi-
planar) Union-Jack pattern with maximum degree dmax = 8. (b) Our
goal is to solve the MIS problem on this family of instances (as
depicted here with nodes colored in red in the right panel) and assess
the hardness thereof using both exact and heuristic algorithms.

(diagonal) couplings only, resulting in Union-Jack-type
graphs with maximum degree dmax = 8. Accordingly, these
instances consist of (at maximum) ncorner � 4 corner,
nboundary � 4(L − 2) boundary, and nbulk � (L − 2)2 bulk
nodes, with (at maximum) three, five, and eight neighbors,
respectively, and a total of at most |E |max edges, with |E |max =
4L2 − 6L + 2. Because |E |max ∼ N , the graph density Dgraph

scales as Dgraph = 2|E |max/N (N − 1) ∼ 1/N , showing that
these instances become sparser as the system size N grows.
If not otherwise specified, we take � = 80%, as was done
in Ref. [12]. For comparison, we also run experiments on
(unstructured) random Erdős-Rényi (ER) graphs denoted as
G(n, m), chosen uniformly at random from the collection of
all graphs with n nodes and m edges, or similarly G(n, p)
for graphs constructed by connecting nodes randomly with
probability p.

To assess and compare the performance of various al-
gorithms (as specified below), we consider the following
figures of merit. We use |MIS| to denote the independence
number, while PMIS refers to the probability of observing
an (exact) MIS within a fixed number of steps [12]. For a
given instance, many MIS solutions may be available, with
the corresponding number of MIS solutions (i.e., the MIS
degeneracy) denoted as DMIS. Similarly, the quantity DMIS−1

refers to the number of first excited states (i.e., independent
sets of size |MIS| − 1). As shown in Ref. [12], in the con-
text of simulated annealing, problem hardness may further be
specified in terms of the conductance-like hardness parameter

H = DMIS−1

|MIS| · DMIS
, (3)

with the factor |MIS|DMIS denoting the number of possible
transitions from a first excited state into a MIS ground state.
Finally, we are interested in the time-to-solution (TTS). For
exact methods, TTS refers to the time needed to find the
optimal solution (i.e., ground state). While the optimum may
be found after time TTS, additional time may be required
to provide an optimality certificate, resulting in the time-to-
optimality (TTO) timescale, with TTO � TTS. By definition,

FIG. 2. Schematic illustration of the (exact) sweeping line algo-
rithm (SLA) as applied to the MIS-UD problem. (a) SLA proceeds by
sweeping a fictitious line across the graph and tracking all potentially
optimal MIS configurations on this boundary, efficiently exploiting
the quasiplanar structure of the UD graph. Processed nodes are
shown in gray, boundary nodes in blue, and unprocessed nodes in
yellow. (b) The light blue node from (a) is added to the boundary,
while the bottom left blue node is dropped (as a result of not having
any more connections to unprocessed nodes).

provable optimality is not available with heuristic methods.
Here, we define TTS99 as the time required to find the exact
solution (ground state) with 99% success probability. We can
then write TTS99 as

TTS99 = τR99, (4)

where τ refers to the time of a single run (shot), and

R99 = log(1 − 0.99)

log(1 − PMIS)
(5)

is the number of shots (repetitions) needed to reach the desired
success probability [33]. For small values of PMIS, we have
R99 ≈ 4.6/PMIS, showing that the success probability of a
single run PMIS determines the inverse of the time-to-solution
for heuristic algorithms.

III. ALGORITHMIC TOOL SUITE

In this section, we detail the algorithms used to solve
the MIS problem on UD graphs. We distinguish between
exact methods (which by design can deterministically find
the ground state, typically at the expense of an exponential
runtime) and heuristics (which cannot provide an optimality
certificate, but may require shorter runtimes).

A. Exact methods

1. Sweeping line algorithm

We first consider an exact sweeping line algorithm
(SLA) [34] that efficiently exploits the quasiplanar structure
of the UD instances considered here. The anatomy of the SLA
is schematically illustrated in Fig. 2. The SLA is based on full
enumeration and works by sweeping a fictitious line across the
two-dimensional plane (e.g., from left to right). Specifically,
the algorithm proceeds as follows. We define the boundary as
the set of all processed nodes that still share an edge with an
unprocessed node. At each step, we track the size of the largest
independent set (so far) for each valid boundary variant (set of
assigned nodes on the boundary). As the line is swept across
the graph, it stops at every node i = 0, . . . , N − 1. We then
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generate the new variants at step i from those at step i − 1 as
follows:

(i) If the variant has a neighboring node of i assigned, we
generate only a new variant with i not selected (that is, xi = 0).

(ii) Otherwise we also create a new variant with i assigned
as xi = 1 (which increases its independent set).

Note that forward-looking information is not required,
and only boundary nodes are relevant for this decision.
Once the new variants have been generated, node i be-
comes part of the boundary, and we proceed with the next
step. When moved across the graph, this recipe generates all
valid sets with runtime O(2N ). However, we can efficiently
summarize information that is not relevant to finding the
MIS:

(i) Adding new nodes typically removes older nodes from
the boundary (because they no longer have a connection to an
unprocessed node); cf. Fig. 2.

(ii) We only need to track the size of the largest indepen-
dent set for each boundary variant (i.e., for any boundary
configuration we can discard any option with an equal or
smaller number of assignments).

For the UD graphs considered here, the number of variants
tracked on any given boundary is limited by the num-
ber of valid assignments on the boundary, #MIS. When
processing the nodes in order, the boundaries form con-
tinuous (mostly) one-dimensional strips and #MIS(L) � Fib
(L + 1) (which can be shown by induction). As a result,
the memory requirement for SLA scales as Omem(Fib(L)) =
Omem(Fib(

√
N )) (to hold the variants at each step). SLA

finds the optimal solution after N steps (TTS = TTO),
processing all variants at each step with a runtime of
O(NFib(L)) = O(NFib(

√
N )) ≈ O(Nϕ

√
N ), where ϕ ≈ 1.62

is the golden ratio. This procedure can also be modified to
count the degeneracy of the ground and first excited state (i.e.,
DMIS and DMIS−1, respectively) by adjusting summarization
accordingly.

2. Branch & bound solvers

We complement our custom SLA solver with commercial
solvers based on the branch and bound (B&B) search method.
In particular, we use the solver offered by CPLEX [35];
similar results were observed with Gurobi [36]. In practice,
these solvers are among the de facto go-to tools for many
hard, mixed-integer optimization problems. By design, B&B
solvers provide upper and lower bounds on the solution,
with the difference between these yielding an optimality gap,
thereby giving information about the quality of the solution
(at any step throughout the algorithmic evolution). Assuming
a maximization problem, the lower bound corresponds to the
best known feasible solution, whereas the upper bound refers
to the optimal value for the corresponding relaxed problem in
the B&B procedure. In this work, we focus on the TTS and
TTO figures of merit, which are readily provided by our cho-
sen solvers. We evaluate TTO by enforcing a zero gap between
the upper and the lower bound, and TTS by setting the upper
bound to be the optimal solution found previously. Thus, the
solver terminates successfully as soon as it reaches the optimal
solution. Typically, we find TTO is strictly greater than TTS
because of additional time required to prove optimality. To

FIG. 3. Schematic illustration of the heuristic simulated anneal-
ing (SA) solver. The original configuration (a) is overlaid with
connectivity statistics in (b): nodes in the set (red), nodes without
marked neighbors (white), and nodes with a single neighbor (blue).
Potential moves are (i) removal of (red) nodes currently in the set, (ii)
addition of currently white nodes to the set, and (iii) swapping a blue
node with its red neighbor. Gray nodes have more than one adjacent
node in the set and no valid moves. From (b) to (c), one node is added
to the set and the statistics are updated accordingly. From (c) to (d),
one blue node is swapped with its adjacent red node.

draw a clear line between the B&B solvers and the heuris-
tic solvers described below, we deactivate the B&B solvers’
capability to find feasible solutions heuristically. As such,
in practice we expect smaller values for TTS when utilizing
these additional features of modern B&B solvers, effectively
making the TTS values we report here upper bounds for B&B
based performance. Finally, to account for the multithreading
capabilities of B&B solvers, we report the process time, i.e.,
the sum of system and user CPU seconds of each core used
during the calculation, rather than the wall-clock time. We
checked that the multithreading overhead does not impact the
O complexities inferred from the numerical experiments; see
Appendix A 2 for more details.

B. Heuristics

Apart from the exact methods outlined above, we utilize
two established (physics-inspired) heuristic algorithms [37],
namely simulated annealing (SA) and parallel tempering (PT).
For a schematic illustration, see Fig. 3. In these Markov chain
Monte Carlo (MCMC) samplers, a random modification to
the current solution is proposed at each step of the algorithm
and accepted depending on its effect on a specified figure of
merit. For the MIS-UD problem at hand, we use the size of the
independent set (IS) as the figure of merit to optimize. Any
proposed move (update) is then accepted with a probability
governed by a temperature parameter T > 0 according to the
Metropolis acceptance criterion [38]:

paccept =
{

1 if �IS � 0,

e�IS/T otherwise.
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That is, moves that increase the size of the IS (i.e., �IS >

0) are always accepted, while those reducing its size are
suppressed—at first only marginally at high temperatures
(during initial exploration), but then heavily at low temper-
atures T (during final exploitation). Our Markov dynamics
consist of individual additions/removals and swaps of neigh-
boring sites. We ensure the independence criterion is never
violated by continuously tracking the full list of valid moves.
The random selection from this set is then biased towards
adding nodes and performing swaps in order to increase the
acceptance rate (while accounting for the shift in energy scales
by adapting the cooling schedule).

Simulated annealing (SA) aims to find a high-quality so-
lution by starting from a random initial solution and initially
high temperature to then gradually lower T → 0 (according
to some annealing schedule) until no further improvement is
seen [39]. This allows the system to first explore the solution
space while the temperature is high, but eventually drives the
state into a nearby (local, potentially global) optimum. The
cooling schedule is optimized to quickly identify this local
optimum, and frequent restarts (as specified by the parameter
num_restarts) from different initial positions are used to
increase the chance of finding the global optimum. We note
that our implementation of SA differs from the one presented
in Ref. [12] in several ways: (i) Our implementation is not
based on a (soft) penalty model as described by Eq. (2),
but rather involves only moves compatible with the (hard)
independence criterion (such that only the feasible space is
searched). (ii) Proposal probabilities are biased towards ad-
ditions and exchanges to increase acceptance. (iii) We use
a geometric cooling schedule in combination with frequent
restarts, as opposed to a constant low temperature as used in
Ref. [12]. In particular, we note that our implementation of
SA breaks detailed balance, for the sake of improved perfor-
mance.

Parallel tempering (PT) attempts to efficiently explore the
solutions space by simulating several Markov chains con-
currently at different temperatures [40–42]. Exchange moves
allow for swapping of states between neighboring chains (in
temperature space) such that the best solutions are shuffled
to lower temperatures for further local optimization. At the
same time, less promising candidates are moved to higher
temperatures, where large-scale restructuring is possible.

In the following, we will focus on SA, since our imple-
mentation of PT did not provide any substantial performance
benefits over SA for the problem instances studied here. This
is likely because of the relatively fast identification of local
minima by SA (within tens to hundreds of sweeps) compared
to the mixing time needed to exploit the benefits of PT; as such
it is more efficient to restart at a random position than to invest
in overcoming local energy barriers.

IV. NUMERICAL EXPERIMENTS

We now turn to our numerical results. We report on the TTS
for all exact and heuristic algorithms described above, as a
function of system size N and hardness parameter H, with the
goal to provide a comprehensive assessment of the hardness
of random MIS-UD problem instances. For reference, we
also study the MIS problem on similar yet less structured

instances (with the same number of nodes and edges), and
we provide protocols to systematically tune problem hardness
(as measured by TTS) over several orders of magnitude. The
classical hardware on which our numerical experiments were
run is specified in Appendix A.

A. Scaling with the problem size

We first report on TTS for the MIS-UD problem as a func-
tion of system size, given by the number of nodes N ≈ �L2 at
fixed density � = 0.8. Note that we have run a few additional
experiments for different values of �, with � ≈ 0.8 provid-
ing one of the hardest problems for Union-Jack connectivity
(as evidenced by the largest TTS). Thus, we primarily focus
on � = 0.8, following Ref. [12]. As shown in Fig. 4, we
find that the MIS-UD problem can be solved to optimality
(with both the custom SLA and the generic B&B solvers)
for hundreds of nodes in subsecond timescales. Larger in-
stances with up to thousands of nodes can still be solved to
optimality within minutes on commodity hardware, without
any instance-specific fine-tuning. For the exact SLA solver
we infer a runtime scaling of TTSSLA = O(Nφ

√
N ), where

φ ≈ 1.62 is the golden ratio (expected for the scaling of the
Fibonacci sequence) and the notable

√
N dependence in the

exponent is attained at the expense of exponential memory
requirements (as discussed above). For the B&B solver, we
obtain TTSB&B = O(20.0045N ). Similarly, as shown in Fig. 5,
we find that UD instances with hundreds of nodes (i.e., L �
25) can typically be solved efficiently in subsecond timescales
with the SA heuristic. For the 2% most difficult instances, we
observe a scaling of TTS99 = O(20.0128N ) for SA. However we
also observe a relatively large spread spanning several orders
of magnitude in TTS99 (in particular when compared to the
results obtained with SLA), thus motivating a more detailed
analysis of problem hardness, as discussed next.

B. Scaling with the hardness parameter

Some of the results presented in the previous section dis-
play significant instance-to-instance variations in TTS99,
potentially spanning several orders of magnitude, even for a
fixed system size N . As argued in Ref. [12], these variations
may largely be due to (large) differences in the total number
of MIS solutions, given by the ground-state degeneracy DMIS,
a quantity that can be calculated either with tensor-network
methods [43] or within the exact SLA method outlined above
(at least for small to intermediate system sizes up to N ∼
1000). Intuitively, the less degenerate the ground state, the
harder it is to hit the global optimum. In particular, based
on experiments with up to N = 80 qubits in Ref. [12], a
quantum speedup over classical SA has been reported in the
dependence of the success probability PMIS on the hardness
parameter H that accounts for both the degeneracy of the
ground as well as first excited states (denoted by DMIS and
DMIS−1, respectively), as given in Eq. (3).

We now follow Ref. [12] and consider algorithmic perfor-
mance in terms of this hardness parameter H for values as
high as H ∼ 108, complementing existing results based on
classical SA [12] with results for the SLA, and B&B solvers.
Note that hyperparameter optimization has been performed
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FIG. 4. Time-to-solution (TTS) for the exact solvers. (a) TTS for the exact SLA solver as a function of system size N . For every system size
N , 1000 random UD instances with � = 0.8 have been considered. The data fit reasonably to TTS(N ) ≈ cNφ

√
N , where the basis of φ ≈ 1.62

is the theoretical expectation for the Fibonacci sequence. At larger system sizes (N > 500), high memory usage causes slower access times
(cache misses), resulting in a substantially larger prefactor c′. (b) TTS for the B&B solver as a function of system size N . For every system
size N , 1000 random UD instances have been considered; see Appendix A 3 for a box plot description. Problems with hundreds (thousands)
of nodes can be solved to optimality in subsecond (minute) timescales. The solid line is the linear regression over instances whose TTS are in
the top highest 2%. The linear regression minimizes the residual sum of squares of log(TTS).

for our heuristic solvers, although without any instance-to-
instance fine-tuning. For direct comparison, the results for
the exact SLA as well as the heuristic SA solvers are dis-
played in Fig. 6 showing a remarkably different behavior.
Qualitatively, we find that TTS99 for the SA solver displays
a strong dependence on the hardness parameter H, in line
with results reported in Ref. [12]. Conversely, virtually no
dependence between TTS and H is observed for the ex-
act SLA solver, as expected, thereby demonstrating that the
conductance-like hardness parameter H successfully captures
hardness for algorithms undergoing Markov-chain dynamics.
Alternative algorithmic paradigms such as sweeping line or

FIG. 5. Time required to reach 99% success probability (TTS99)
for the heuristic SA solver as a function of system size N (i.e., how
long the solver should run for a 99% chance of finding the optimal
solution). For every system size N , 1000 random UD instances at
� = 0.8 filling have been considered; see Appendix A 3 for a box
plot description. The solid line is the linear regression over instances
whose TTS are in the top highest 2%. The linear regression mini-
mizes the residual sum of squares of log(TTS).

branch and bound, however, may require a different notion of
hardness. Similarly, for the B&B solvers we find that TTS is
(weakly) correlated with the hardness parameter H, although
mostly because of their common correlation with the system
size N . Specifically, using linear regression, we have found
that the partial correlation of log10(H) and log10(TTS) (con-
trolling for system size) is smaller than 0.05; see Appendix B 2
for further details. This weak correlation suggests that (simi-
larly to our SLA results) the hardness parameter H does not
appear to be a reliable measure of hardness for B&B-type
solvers.

Finally, we complement the TTS results above with results
for the success probability PMIS as a function of the hardness
parameter H for the SA solver, as done in Ref. [12] for both
SA and quantum algorithms for instances with hardness of
up to H ∼ 103. Our results with hardness of up to H ∼ 108

are shown in Fig. 7. Following Ref. [12], for fixed depth
(i.e., number of SA sweeps), fits are provided assuming the
functional form PMIS = 1 − exp(−CH−α ), where C refers to
a positive fitted constant that (in general) could have a polyno-
mial dependence on the system size N , and smaller values of
α yield a larger success rate PMIS. While there are significant
variations in the data, on average we observe a scaling PMIS ≈
1 − exp(−CH−0.66) (solid black line), i.e., α = 0.66; addi-
tional results with size-dependent depth (not shown) suggest
an even higher success probability PMIS but preclude simple
fits because of additional size-dependent effects in the data.
In particular, a fixed depth of 32 is arguably too small for the
largest instances considered here, but was chosen nevertheless
for better comparison with results reported in Ref. [12]. For
comparison, a fit with the exponent α = 1.03 was reported
for SA in Ref. [12]. If one restricts the analysis to graphs
with minimum energy gaps sufficiently large to be resolved in
the duration of the (noisy) quantum evolution, the optimized
quantum algorithm demonstrated in Ref. [12] was shown to fit
best to α = 0.63, i.e., comparable to α = 0.66 as found with
our implementation of classical SA.
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FIG. 6. (a) Time-to-solution (TTS) for the exact SLA solver as a function of the hardness parameter H. Virtually no dependence on H
is observed, showing that TTS is fully determined by the system size N ∼ L2. (b) Conversely, for the Markov-chain based SA solver, TTS99

shows a strong correlation with the hardness parameter H, as expected.

C. Beyond Union-Jack connectivity

To provide further context for the results reported above,
we now study hardness as we gradually change the topology
of the problem instances. Specifically, going beyond Union-
Jack-type instances (with

√
2 � r < 2 fixed) as studied so

far, we analyze TTS following two protocols by either (i)
systematically tuning the blockade radius r = Rb/a, or (ii)
randomly rewiring edges of the graph. While protocol (i)
prepares UD graphs (with varying connectivity), protocol
(ii) explicitly breaks the UD structure via random (poten-
tially long-range) interactions, ultimately preparing random
(structure-less) ER graphs. The results of this analysis are
shown in Figs. 8 and 9, respectively. We find that problem
hardness (as measured here by TTS for the established B&B
solver) can be tuned systematically over several orders of
magnitude.

FIG. 7. Estimated success probability PMIS for the heuristic SA
solver as a function of the hardness parameter H. Here we plot
− log(1 − PMIS) for SA with a fixed depth of 32, for UD graphs
selected from the top two percentile of hardness parameter H for
each system size L = 13, . . . , 33. Hollow points represent our SA
implementation with bias moves in valid configuration space. Power-
law fits to the form ∼H−α are used to extract scaling performance
with graph hardness H.

As shown in Fig. 8, we find that the MIS-UD problem
is relatively easy for both small (r < 2) and large radii (as
expected because the MIS problem is trivial for both edgeless
and complete graphs), but significantly harder in between,
with a pronounced peak at r = 3. For example, for L = 21 and
� = 0.8 (giving N ≈ 350) we observe an increase in TTS over
two to three orders of magnitude for r = 3 instances compared
to instances with small or large radii. This behavior appears
to be generic, as we have observed similar behavior with the
SLA solver (cf. Fig. 12), again showing pronounced peaks in
TTS for r = 2, 3, 4; see Appendix B for more details. This
observation may be attributed to a density-of-states-like ef-
fect: While the boundary size grows monotonically with r, we
find that the number of boundary variants peaks at r = 2, 3, 4
before decreasing with r as the (feasible) state space becomes
smaller, thus correlating the observed TTS behavior with the
number of boundary variants. This spread in TTS is found to
increase with system size, as shown in Fig. 8(b) for instances
with Union-Jack topology (with r = √

2) as well as instances
with r = 3.

Alternatively, following protocol (ii) the MIS problem ap-
pears to become orders of magnitude harder when randomly
rewiring edges (thereby breaking the UD structure), as shown
in Fig. 9. In particular, we find that structureless ER graphs
can yield a TTS orders of magnitudes larger than more struc-
tured UD graphs (with the same average number of nodes
and edges), in agreement with similar results for random
UD graphs where vertices are placed randomly (and not on
a square lattice) in a two-dimensional box with some fixed
density [8].

D. Implementation with Rydberg arrays

The two protocols outlined above may be implemented
in future experiments with Rydberg atom arrays, either by
(i) tuning the Rydberg blockade radius Rb and/or the lattice
spacing a, or by (ii) implementing embedding schemes with
ancilla Rydberg chains, as proposed in Refs. [44,45], thus sug-
gesting a potential recipe to benchmark quantum algorithms
on instances orders of magnitude harder (for established
classical solvers) than previously studied. For example, for
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FIG. 8. (a) Hardness transition as a function of the disk radius
(in units of the lattice spacing) r = Rb/a, as given by the time-
to-solution (TTS) for the B&B solver, shown here for system size
L = 21 and density � = 0.8 (i.e., N ≈ 350), with 100 random seeds
per radius. (b) TTS as a function of system size N = �L2 for r = √

2
(blue) and r = 3 (green), the latter referring to the pronounced peak
observed in (a). The solid lines are a linear regression fit over 100
instances with TTS in the highest 10%, with corresponding R2 val-
ues of 0.87 and 0.98 for r = √

2 and r = 3, respectively. Instances
with r = 3 appear to be much harder than those with r = √

2. See
Appendix A 3 for a box plot description.

today’s Rydberg atom arrays (such as the QuEra Aquila
device available through Amazon Braket), we estimate that
Rb/a ∼ 3 (amounting to a maximum degree of dmax ∼ 28)
should be achievable already today, with potentially even
larger values enabled by future hardware improvements. Ex-
periments like these may also provide new insights into effects
stemming from the long-range interaction tails associated
with the Rydberg interactions.

E. Prospects for quantum speedups

With the goal to help identify regimes and system sizes
where quantum algorithms could be useful, we now briefly
revisit our results in light of ongoing efforts towards quantum
advantage. Adopting the taxonomy put forward in Ref. [46],
within a larger hierarchy of potential quantum speedups,
the quantum speedup demonstrated in Ref. [12] could be

FIG. 9. Hardness transition from unit-disk (UD) to random
Erdős-Rényi (ER) graphs. Time-to-solution (TTS) for MIS as a
function of the fraction ε of edges rewired, with 150 random seeds.
Starting from Union-Jack-type UD graphs (left), edges are randomly
selected and rewired, thereby gradually breaking the UD connectiv-
ity, and ultimately generating random ER graphs (right). While the
original UD graphs can be solved to optimality in ∼10−2 s, compa-
rable ER graphs (with the same number of nodes and edges) display
a TTS orders of magnitude larger. The red line and the two shaded
areas refer to the median TTS over 500 instances for MIS on random
ER graphs, the TTS among the 25% and 75% and the minimum and
maximum whiskers, respectively. Numerical parameters: L = 21 and
� = 80%.

classified as limited sequential quantum speedup, as it was
obtained by comparing a quantum annealing type algorithm
over a particular implementation of the classical (sequential)
simulated annealing algorithm (that was designed to fulfill
detailed balance). Here, we have tried to extend the classical
SA benchmarking results (by pushing the hardness parameter
up to H ∼ 108), with a different implementation of SA that
breaks detailed balance but shows better performance. While
our SA-based scaling results hint at performance similar to
the quantum algorithm’s performance in Ref. [12], we note
that the corresponding exponent shows a dependence on the
somewhat arbitrary cutoff in hardness and additional depen-
dence on system size N if the depth is not fixed; the details
thereof will be analyzed in future research. Still, within the
aforementioned hierarchy of quantum speedups, our analy-
sis points to a potential next milestone, in the form of the
experimental demonstration of a (more general) limited non-
tailored quantum speedup, by (for example) comparing the
performance of the quantum algorithm to the best-known
generic classical optimization algorithm. In particular, B&B
solvers (as studied here) could be good candidates to fill the
role for the latter, and the protocols outlined above motivate
potential quantum experiments for such studies. Again, for
reference for the MIS-UD problem on Union-Jack instances,
empirically for most instances (taken as 98th percentile) we
can upper-bound the TTS needed by classical B&B solvers
through a runtime scaling of TTS = O(1.0031N ) (cf. Fig. 4),
setting an interesting, putative bar for quantum algorithms to
beat.
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V. CONCLUSION AND OUTLOOK

In summary, we have studied the maximum-independent-
set problem on unit-disk graphs (as it can be encoded
efficiently with Rydberg atom arrays [8,12]) using a plethora
of exact and heuristic classical algorithms. We have assessed
problem hardness, showing that instances with thousands of
nodes can be solved to optimality within minutes using both
custom and generic commercial solvers on commodity hard-
ware, without any instance-specific fine-tuning. We have also
performed a detailed scaling analysis, showing that our imple-
mentation of classical simulated annealing is competitive with
the quantum algorithm’s performance in Ref. [12]. Finally,
we have devised protocols to systematically tune problem
hardness over several orders of magnitude. In future studies,
the problem hardness may be tuned even further by generaliz-
ing our work from unweighted to weighted graphs, thereby
potentially lifting the ground-state degeneracy, as could be
studied with local detuning control in Rydberg atom arrays.
We hope that these protocols may trigger interesting future
experiments further exploring the hardness of the MIS prob-
lem with Rydberg atom arrays as pioneered in Ref. [12].

An open source demo version of our code is publicly avail-
able in Ref. [47].
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APPENDIX A: ADDITIONAL INFORMATION

In this Appendix, we provide further details for selected
aspects discussed in the main text. In Appendix A 1 we derive
the maximum and expected number of edges for Union-Jack-
like graphs with density �. In Appendix A 2 we provide details
on the hardware on which our numerical experiments were

run. In Appendix A 3 we provide additional information on
our plots. In Appendix A 4 we derive the scaling of TTS with
the hardness parameter H for SA.

1. Expected number of edges in UD graphs

In this section, we show that for quasi-planar UD graphs
with Union-Jack-type connectivity and filling fraction � (as
considered here), the expected (or average) number of edges
amounts to |E | = �2(4L2 − 6L + 2); for full filling of the
square lattice at � = 100% we recover |E | → |E |max = 4L2 −
6L + 2. To this end, we represent nodes as independent ran-
dom variables Xk , following a Bernoulli distribution, with a
value Xk = 1 if the node is present with probability �, and
Xk = 0 otherwise (if the node is absent). The probability
that an edge (i, j) from Emax exists in E is then given by
E [XiXj] = �2. As such, the expected number of edges in E
follows as E [

∑
(i, j)∈Emax

XiXj] = �2(4L2 − 6L + 2). We have
used this relation to generate random ER graphs G(n, p) with
desired (average) edge probability p = |E |/[n(n − 1)/2]; we
note that the variance of |E | differs between the ER graphs and
the UD graphs.

2. Classical hardware

In this section, we specify the classical hardware on which
our numerical experiments were run. All B&B-based results
obtained with optimization by CPLEX 20.1 were collected
from executions of this software using the Python package
DOCPLEX with default parameters. The hardware employed
is an Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz
with 8 cores. For numerical experiments shown in Fig. 4(b),
the median overhead due to multithreading was found to be
nearly constant over the entire range of problem sizes. As
such, the O complexity is insensitive to the maximum number
of threads used by CPLEX. The results for the sweeping line
algorithm and simulated annealing, where time-to-solution
was considered, were performed on an AMD(R) Ryzen(R)
9 5950X @ 4.90 GHz. Various hardware was employed in
sampling instances for hardness and PMIS (where the runtime
is irrelevant).

3. Plots description

If not stated otherwise, boxes in box plots correspond to the
16% and 84% percentiles of the log10 variable plotted, and the
whiskers refer to the 2% and 98% percentiles. The horizontal
line within the box denotes the median value. Points outside
the whiskers are plotted individually. This was done to high-
light the top 2%, which are used when analyzing the scaling
behavior for hard instances.

4. Scaling of TTS with hardness

In this section, we derive the expected scaling of TTS99

with the hardness parameter H for SA. In the main text,
for a fixed depth we have provided fits assuming the func-
tional form PMIS = 1 − exp(−CH−α ); see Fig. 7. Here, we
now focus on hard instances where H is large and PMIS is
small. For sufficiently large values of H, we can approximate
PMIS ≈ CH−α , giving PMIS ∼ H−α . For small values of PMIS
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FIG. 10. Coefficient α extracted from time-to-solution (TTS)
scaling with system size as TTS = O(2αN ) for the B&B solver as a
function of the lattice filling �. In the main text, we have focused on
� = 0.8. All results have been taken from the top 2% TTS instances
over 1000 random instances. Error bars correspond to the 95% con-
fidence interval.

we have TTS99 ∼ 1/PMIS, yielding the scaling

TTS99 ∼ Hα. (A1)

Thus, for large hardness we expect TTS to scale with the same
exponent α as found from the fit shown in Fig. 7. We have
further verified this result numerically by excluding small
systems with small hardness.

APPENDIX B: ADDITIONAL NUMERICAL RESULTS

In this Appendix, we present additional numerical results,
complementing the results shown in the main text. In Ap-
pendix B 1 we provide additional results for problem hardness
as a function of the filling fraction �. In Appendix B 2 we an-
alyze a potential correlation between the hardness parameter
H and TTS for our B&B solvers. In Appendix B 3 we provide
additional results for problem hardness as a function of the
unit-disk radius r.

FIG. 11. Correlation analysis for B&B solver. Results are shown
for the hardest 2% according to the hardness parameter H on 1000
instances for each (odd) problem size from L = 7 to 35. (a) Scatter
plot of hardness H and TTS for B&B solver. The corresponding
Pearson correlation amounts to 0.81. (b) Scatter plot of the residuals
from the linear regression of H and TTS with system size N . Here
the Pearson correlation is found to be 0.01.

FIG. 12. Time-to-solution (TTS) for the SLA solver as a function
of the disk radius r for random UD instances, for system size L =
21 and density � = 0.8 (i.e., N ≈ 350), with 100 random seeds per
radius. Similar to our results for our B&B solver, we observe distinct
peaks at r = 2, 3, 4.

1. Filling fraction

In the main text we have focused on instances with Union-
Jack-like connectivity and filling fraction � = 80%, following
Ref. [12]. In Fig. 10 we provide additional results for problem
hardness as a function of the density � ∈ [0.7, 0.9], given in
terms of the coefficient α extracted from TTS scaling with
system size as TTS = O(2αN ) for the B&B solver. We find
that instances with � ≈ 80% are among the hardest instances,
with the hardness maximum around � ≈ 85%.

2. Correlation of hardness with TTS for B&B solvers

In this section, we analyze a potential correlation between
the hardness parameter H and TTS for our B&B solvers.

At first, we observe a correlation between the logarithms
of H and TTS with a Pearson correlation reaching 0.48. How-
ever, when removing a linear dependence with the system size
N to both of these quantities, the correlation is found to drop to

FIG. 13. Hardness parameter H as a function of the radius of the
unit-disk graph (UDG), for system size L = 21 and density � = 0.8
(i.e., N ≈ 350), with 1000 random seeds per radius.
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0.044. Selecting only the hardest instances (as given by the top
2% of hardness H) exacerbates this phenomenon, as shown
in Fig. 11. Note that the linear regression is done without a
minimum size threshold because the hardness parameter H
becomes rapidly prohibitively long to evaluate.

3. Additional results for large-radius instances

In this section, we provide additional results for problem
hardness as a function of unit-disk radius r for random UD
instances.

First we provide results for the exact SLA solver. Our
results for TTS as a function of the disk radius r for random
UD instances are shown in Fig. 12. Similar to our results
for our B&B solver, we observe distinct peaks at r = 2, 3, 4,

thus further motivating future experiments with Rydberg atom
arrays on these instances.

We also analyze the dependence of the hardness parameter
H [as defined in Eq. (3)] on the unit-disk radius r, knowing
that H largely determines problem hardness and thus algo-
rithmic performance for Markov-chain based algorithms such
as SA as well as the hybrid quantum algorithm in Ref. [12].
The results of this analysis are displayed in Fig. 13. While
we do observe some dependence, we do not observe very
pronounced peaks as seen for the B&B and SLA solvers in
Figs. 8 and 12, respectively. Again, this observation motivates
future experiments with Rydberg atom arrays, as the likeli-
hood for a potential quantum speedup may be larger on these
instances, thus potentially helping to identify new regimes
where quantum algorithms can be useful.
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