of 15
High-energy Neutrino follow-up search of Gravitational Wave Event
GW150914 with ANTARES and IceCube
ANTARES Collaboration, IceCube Collaboration, LIGO Scientific Collaboration, and Virgo Collaboration
We present the high-energy-neutrino follow-up observations of the first gravitational wave tran-
sient GW150914 observed by the Advanced LIGO detectors on Sept. 14
th
, 2015. We search for
coincident neutrino candidates within the data recorded by the IceCube and
Antares
neutrino de-
tectors. A possible joint detection could be used in targeted electromagnetic follow-up observations,
given the significantly better angular resolution of neutrino events compared to gravitational waves.
We find no neutrino candidates in both temporal and spatial coincidence with the gravitational wave
event. Within
±
500 s of the gravitational wave event, the number of neutrino candidates detected
by IceCube and
Antares
were three and zero, respectively. This is consistent with the expected
atmospheric background, and none of the neutrino candidates were directionally coincident with
GW150914. We use this non-detection to constrain neutrino emission from the gravitational-wave
event.
I. INTRODUCTION
Advanced LIGO’s first observation periods [1, 2] rep-
resent a major step in probing the dynamical origin of
high-energy emission from cosmic transients [3]. The sig-
nificant improvement in gravitational wave (GW) search
sensitivity enables a comprehensive multimessenger ob-
servational effort involving partner electromagnetic ob-
servatories from radio to gamma-rays, as well as neutrino
detectors. The goals of multimessenger observations are
to gain a more complete understanding of cosmic pro-
cesses through a combination of information from dif-
ferent probes, and to increase search sensitivity over an
analysis using a single messenger [4–6].
The merger of neutron stars and black holes, and po-
tentially massive stellar core collapse with rapidly rotat-
ing cores, are expected to be significant sources of GWs
[3]. These events can result in a black hole plus accre-
tion disk system that drives a relativistic outflow [7, 8].
Energy dissipation in the outflow produces non-thermal,
high-energy radiation that is observed as gamma-ray
bursts (GRBs), and may have a

GeV neutrino com-
ponent at comparable luminosities.
Multiple detectors have been built that can search for
this high-energy neutrino signature, including the Ice-
Cube Neutrino Observatory—a cubic-kilometer facility
at the South Pole [9–11], and
Antares
[12–14] in the
Mediterranean sea. The construction of the KM3NeT
cubic-kilometer scale neutrino detector in the Mediter-
ranean Sea has started in December 2015 with the suc-
cessful deployment of the first detection string [15]. Ice-
Cube is planning a substantial increase in sensitivity with
near-future upgrades [16, 17]. Another facility, the Baikal
Neutrino Telescope is also planning an upgrade to cubic-
kilometer volume [18]. An astrophysical high-energy neu-
trino flux has recently been discovered by IceCube [19–
22], demonstrating the production of non-thermal high-
energy neutrinos. The specific origin of this neutrino
Full author list given at the end of the article.
flux is currently unknown. Multimessenger analyses con-
straining the common sources of high-energy neutrinos
and GWs have been carried out in the past with both
Antares
and IceCube [23–25].
On Sept. 14
th
, 2015 at 09:50:45 UTC, a highly signifi-
cant GW signal was recorded by the LIGO Hanford, WA
and Livingston, LA detectors [26]. The event, labeled
GW150914, was produced by a stellar-mass binary black
hole merger at redshift
z
= 0
.
09
+0
.
03
0
.
04
. The reconstructed
mass of each black hole is
30 M
. Such a system may
produce electromagnetic emission and emit neutrinos if
the merger happens in a sufficiently baryon-dense envi-
ronment, and a black hole plus accretion disk system is
formed [27]. Current consensus is that such a scenario
is unlikely, nevertheless, there are no significant observa-
tional constraints.
Here we report the results of a neutrino follow-up
search of GW150914 using
Antares
and IceCube. Af-
ter brief descriptions of the GW search (Section II) and
the neutrino follow-up (Section III), we present the joint
analysis, results of the search and source constraints, and
conclusions (Section IV).
II. GRAVITATIONAL WAVE DATA ANALYSIS
AND DISCOVERY
GW150914 was initially identified by low-latency
searches for generic GW transients [28–30]. Subsequent
analysis with three independent matched-filter analyses
using models of compact binary coalescence waveforms
[31, 32] confirmed that the event was produced by the
merger of two black holes. The analyses established a
false alarm rate of less than 1 event per 203 000 years,
equivalent to a significance
>
5
.
1
σ
[26]. Source parame-
ters were reconstructed using the LALInference package
[32–34], finding black-hole masses 36
+5
4
M
and 29
+4
4
M
and luminosity distance
D
gw
= 410
+160
180
Mpc, where the
error ranges correspond to the range of the 90% credi-
ble interval. The duration of the signal within LIGO’s
sensitive band was 0
.
2 s.
arXiv:1602.05411v3 [astro-ph.HE] 22 Apr 2016
2
The directional point spread function (sky map) of the
GW event was computed through the full parameter es-
timation of the signal, carried out using the LALInfer-
ence package [33, 34]. The LALInference results pre-
sented here account for calibration uncertainty in the
GW strain signal. The sky map is shown in Fig. 1.
At 90% (50%) credible level (CL), the sky map covers
590 deg
2
(140 deg
2
).
III. HIGH-ENERGY NEUTRINO
COINCIDENCE SEARCH
High-energy neutrino observatories are primarily sen-
sitive to neutrinos with

GeV energies. IceCube and
Antares
are both sensitive to through-going muons
(called track events), produced by neutrinos near the
detector, above
100 GeV. In this analysis,
Antares
data include only up-going tracks for events originat-
ing from the Southern hemisphere, while IceCube data
include both up-going tracks (from the Northern hemi-
sphere) as well as down-going tracks (from the Southern
hemisphere). The energy threshold of neutrino candi-
dates increases in the Southern hemisphere for IceCube,
since downward-going atmospheric muons are not filtered
by the Earth, greatly increasing the background at lower
energies. Neutrino times of arrival are determined at
μ
s
precision.
Since neutrino telescopes continuously take data ob-
serving the whole sky, it is possible to look back and
search for neutrino counterparts to an interesting GW
signal at any time around the GW observation.
To search for neutrinos coincident with GW150914, we
used a time window of
±
500 s around the GW transient.
This search window, which was used in previous GW-
neutrino searches, is a conservative, observation-based
upper limit on the plausible emission of GWs and high-
energy neutrinos in the case of GRBs, which are thought
to be driven by a stellar-mass black hole—accretion disk
system [35]. While the relative time of arrival of GWs
and neutrinos can be informative [36–38], here we do
not use detailed temporal information beyond the
±
500 s
time window.
The search for high-energy neutrino candidates
recorded by IceCube within
±
500 s of GW150914 used
IceCube’s online event stream. The online event stream
implements an event selection similar to the event selec-
tion used for neutrino point source searches [39], but opti-
mized for real-time performance at the South Pole. This
event selection consists primarily of cosmic-ray-induced
background events, with an expectation per 1000 seconds
of 2.2 events in the Northern sky (atmospheric neutri-
nos), and 2.2 events in the Southern sky (high-energy
atmospheric muons). In the search window of
±
500 s
centered on the GW alert time (see below), one event
was found in the Southern sky and two in the Northern
sky, which is consistent with the background expectation.
The properties of these events are listed in Table I. The
#
T
[s]
RA [h]
Dec [
]
σ
rec
μ
[
]
E
rec
μ
[TeV]
fraction
1
+37
.
2
8.84
16
.
6
0
.
35
175
12.5%
2
+163
.
2
11.13
12.0
1
.
95
1.22
26.5%
3
+311
.
4
7
.
23
8.4
0
.
47
0.33
98.4%
TABLE I. Parameters of neutrino candidates identified by Ice-
Cube within the
±
500 s time window around GW150914. ∆
T
is the time of arrival of the neutrino candidates relative to that
of GW150914. E
rec
μ
is the reconstructed muon energy.
σ
rec
μ
is the angular uncertainty of the reconstructed track direc-
tion [43]. The last column shows the fraction of background
neutrino candidates with higher reconstructed energy at the
same declination (
±
5
).
neutrino candidates’ directions are shown in Fig. 1.
The muon energy in Table I is reconstructed assum-
ing a single muon is producing the event. While the
event from the Southern hemisphere has a significantly
greater reconstructed energy [40] than the other two
events, 12
.
5% of the background events in the same dec-
lination range in the Southern hemisphere have energies
in excess of the one observed. The intense flux of at-
mospheric muons and bundles of muons that constitute
the background for IceCube in the Southern hemisphere
gradually falls as the cosmic ray flux declines with en-
ergy [41]. The use of energy cuts to remove most of this
background is the reason that IceCube’s sensitivity in the
Southern sky is shifted to higher energies.
An additional search was performed using the high-
energy starting event selection described in [19]. No
events were found in coincidence with GW150914.
The IceCube detector also has sensitivity to outbursts
of MeV neutrinos (as occur for example in core-collapse
supernovae) via a sudden increase in the photomultiplier
rates [42]. The global photomultiplier noise rate is mon-
itored continuously, and deviations sufficient to trigger
the lowest-level of alert occur roughly once per hour. No
alert was triggered during the
±
500 second time-window
around the GW candidate event.
The search for coincident neutrinos for
Antares
within
±
500 s of GW150914 used
Antares
’s online re-
construction pipeline [44]. A fast and robust algorithm
[45] selected up-going neutrino candidates with
mHz
rate, with atmospheric muon contamination less than
10%.
In addition, to reduce the background of at-
mospheric neutrinos [46], a requirement of a minimum
reconstructed energy reduced the online event rate to
1.2 events/day. Consequently, for
Antares
the expected
number of neutrino candidates from the Southern sky in
a 1000 s window in the Southern sky is 0.014. We found
no neutrino events from
Antares
that were temporally
coincident with GW150914. This is consistent with the
expected background event rate.
3
FIG. 1.
GW skymap in equatorial coordinates, showing
the reconstructed probability density contours of the GW
event at 50%, 90% and 99% CL, and the reconstructed di-
rections of high-energy neutrino candidates detected by Ice-
Cube (crosses) during a
±
500 s time window around the GW
event. The neutrino directional uncertainties are
<
1
and are
not shown. GW shading indicates the reconstructed probabil-
ity density of the GW event, darker regions corresponding to
higher probability. Neutrino numbers refer to the first column
of Table I.
IV. RESULTS
A. Joint analysis
We carried out the joint GW and neutrino search fol-
lowing the analysis developed for previous GW and neu-
trino datasets using initial GW detectors [23, 25, 35, 47].
After identifying the GW event GW150914 with the cWB
pipeline, we used reconstructed neutrino candidates to
search for temporal and directional coincidences between
GW150914 and neutrinos. We assumed that the
a priori
source directional distribution is uniform. For temporal
coincidence, we searched within a
±
500 s time window
around GW150914.
The relative difference in propagation time for

GeV
neutrinos and GWs (which travel at the speed of light
in general relativity) traveling to Earth from the source
is expected to be

1 s. The relative propagation time
between neutrinos and GWs may change in alternative
gravity models [48, 49]. However, discrepancies from gen-
eral relativity could in principle be probed with a joint
GW-neutrino detection by comparing the arrival times
against the expected time frame of emission.
Directionally, we searched for overlap between the GW
sky map and the neutrino point spread functions, as-
sumed to be Gaussian with standard deviation
σ
rec
μ
(see
Table I).
The search identified no
Antares
neutrino candidates
that were temporally coincident with GW150914.
For IceCube, none of the three neutrino candidates
temporally coincident with GW150914 were compatible
with the GW direction at 90% CL. Additionally, the re-
constructed energy of the neutrino candidates with re-
spect to the expected background does not make them
significant. See Fig. 1 for the directional relation of
GW150914 and the IceCube neutrino candidates de-
tected within the
±
500 s window. This non-detection is
consistent with our expectation from a binary black hole
merger.
To better understand the probability that the de-
tected neutrino candidates are consistent with back-
ground, we briefly consider different aspects of the data
separately. First, the number of detected neutrino can-
didates, i.e. 3 and 0 for IceCube and
Antares
, re-
spectively, is fully consistent with the expected back-
ground rate of 4.4 and

1 for the two detectors, with
p-value 1
F
pois
(
N
observed
2
,N
expected
= 4
.
4) = 0
.
81,
where
F
pois
is the Poisson cumulative distribution func-
tion. Second, for the most significant reconstructed muon
energy (Table I), 12.5% of background events will have
greater muon energy. The probability that at least one
neutrino candidate, out of 3 detected events, has an en-
ergy high enough to make it appear even less background-
like, is 1
(1
0
.
125)
3
0
.
33. Third, with the GW sky
area 90% CL of Ω
gw
= 590 deg
2
, the probability of a
background neutrino candidate being directionally coin-
cident is Ω
gw
/
all
0
.
014. We expect 3Ω
gw
/
all
di-
rectionally coincident neutrinos, given 3 temporal coinci-
dences. Therefore, the probability that at least one of the
3 neutrino candidates is directionally coincident with the
90% CL skymap of GW150914 is 1
(1
0
.
014)
3
0
.
04.
B. Constraints on the source
We used the non-detection of coincident neutrino can-
didates by
Antares
and IceCube to derive a stan-
dard frequentist neutrino spectral fluence upper limit for
GW150914 at 90% CL. Considering no spatially and tem-
porally coincident neutrino candidates, we calculated the
source fluence that on average would produce 2.3 de-
tected neutrino candidates. We carried out this analysis
as a function of source direction, and independently for
Antares
and IceCube.
The obtained spectral fluence upper limits as a func-
tion of source direction are shown in Fig. 2. We con-
sidered a standard
dN/dE
E
2
source model, as
well as a model with a spectral cutoff at high energies:
dN/dE
E
2
exp[
(
E/
100TeV)]. The latter model
is expected for sources with exponential cutoff in the pri-
mary proton spectrum [50]. This is expected for some
galactic sources, and is also adopted here for compari-
son to previous analyses [51]. For each spectral model,
the upper limit shown in each direction of the sky is the
more stringent limit provided by one or the other de-
tector. We see in Fig. 2 that the constraint strongly
depends on the source direction, and is mostly within
E
2
dN/dE
10
1
10 GeV cm
2
. Furthermore, the up-
per limits by
Antares
and IceCube constrain different
energy ranges in the region of the sky close to the GW
candidate. For an
E
2
power-law source spectrum, 90%
of
Antares
signal neutrinos are in the energy range from
3 TeV to 1 PeV, whereas for IceCube at this southern
4
FIG. 2. Upper limit on the high-energy neutrino spectral
fluence (
ν
μ
+
ν
μ
) from GW150914 as a function of source
direction, assuming
dN/dE
E
2
(top) and
dN/dE
E
2
exp[
(
E/
100TeV)] (bottom) neutrino spectra. The re-
gion surrounded by a white line shows the part of the sky in
which
Antares
is more sensitive (close to nadir), while on
the rest of the sky, IceCube is more sensitive. For compari-
son, the 50% CL and 90% CL contours of the GW sky map
are also shown.
declination the corresponding energy range is 200 TeV to
100 PeV.
To characterize the dependence of neutrino spectral
fluence limits on source direction, we calculate these lim-
its separately for the two distinct areas in the 90% cred-
ible region of the GW skymap. For the larger region
farther South (hereafter
South region
), we find upper
limits
E
2
dN/dE
= 1
.
2
+0
.
25
0
.
36
GeV cm
2
and
E
2
dN/dE
=
7
.
0
+3
.
2
2
.
0
GeV cm
2
for our two spectral models without
and with a cutoff, respectively. The error bars define the
90% confidence interval of the upper limit, showing the
level of variation within each region. The average val-
ues were obtained as geometric averages, which better
represent the upper limit values as they are distributed
over a wide numerical range. For the smaller region far-
ther North (hereafter
North region
), we find upper lim-
its
E
2
dN/dE
= 0
.
10
+0
.
12
0
.
06
GeV cm
2
and
E
2
dN/dE
=
0
.
55
+1
.
79
0
.
44
GeV cm
2
. As expected, we see that the limits
Energy range
Limit [GeV cm
2
]
100 GeV –
1 TeV
150
1 TeV – 10 TeV
18
10 TeV – 100 TeV
5.1
100 TeV –
1 PeV
5.5
1 PeV – 10 PeV
2.8
10 PeV – 100 PeV
6.5
100 PeV –
1 EeV
28
TABLE II. Upper limits on neutrino spectral fluence (
ν
μ
+
ν
μ
)
from GW150914, separately for different spectral ranges, at
Dec =
70
. We assume
dN/dE
E
2
within each energy
band.
are much more constraining for the North region, given
the stronger limits at the Northern hemisphere due to Ice-
Cube’s greatly improved sensitivity there. Additionally,
we see that the 90% confidence intervals for the South re-
gion, which is much more likely to contain the real source
direction than the North region, are fairly small around
the average, with the lower and higher limits only differ-
ing by about a factor of 2. The upper limits within this
area can be considered essentially uniform. We observe
a much greater variation in the North region.
To provide a more detailed picture of our constraints
on neutrino emission, we additionally calculated neutrino
fluence upper limits for different energy bands. For these
limits, we assume
dN/dE
E
2
within each energy
band. We focus on Dec =
70
, which is consistent
with the most likely source direction, and also with most
of the GW sky area’s credible region. For each energy
range, we use the limit from the most sensitive detector
within that range. The obtained limits are given in Table
II.
We now convert our fluence upper limits into a con-
straint on the total energy emitted in neutrinos by the
source. To obtain this constraint, we integrate emission
within [100 GeV
,
100 PeV] for each source model. The
obtained constraint will vary with respect to source di-
rection as we saw above. It will also depend on the un-
certain source distance. To account for these uncertain-
ties, we provide the range of values from the lowest to the
highest possible within the 90% confidence intervals with
respect to source direction and the 90% credible interval
with respect to source distance. For simplicity, we treat
the estimated source distance and its uncertainty inde-
pendent of the source direction. We consider both of the
distinct sky regions to provide an inclusive range. For
our two spectral models, we obtain the following upper
limit on the total energy radiated in neutrinos:
E
ul
ν,
tot
= 5
.
4
×
10
51
– 1
.
3
×
10
54
erg
(1)
E
ul(cutoff)
ν,
tot
= 6
.
6
×
10
51
– 3
.
7
×
10
54
erg
(2)
with the first and second lines of the equation correspond-
ing to the spectral models without and with cutoff, re-
spectively. For comparison, the total energy radiated in
GWs from the source is
5
×
10
54
erg. This value can
also be compared to high-energy emission expected in
5
some scenarios for accreting stellar-mass black holes. For
example, typical GRB isotropic-equivalent energies are
10
51
erg for long and
10
49
erg for short GRBs [52].
The total energy radiated in high-energy neutrinos in the
case of GRBs can be comparable [53–57] or in some cases
much greater [58, 59] than the high-energy electromag-
netic emission. There is little reason, however, to expect
an associated GRB for a binary black hole merger (see,
nevertheless, [60]).
V. CONCLUSION
The results above represent the first concrete limit on
neutrino emission from this GW source type, and the first
neutrino follow-up of a significant GW event. With the
continued increase of Advanced LIGO-Virgo sensitivities
for the next observation periods, and the implied source
rate of 2–400 Gpc
3
yr
1
in the comoving frame based
on this first detection [61], we can expect to detect a
significant number of GW sources, allowing for stacked
neutrino analyses and significantly improved constraints.
Similar analyses for the upcoming observation periods
of Advanced LIGO-Virgo will be important to provide
constraints on or to detect other joint GW and neutrino
sources.
Joint GW and neutrino searches will also be used
to improve the efficiency of electromagnetic follow-up
observations over GW-only triggers. Given the signif-
icantly more accurate direction reconstruction of neu-
trinos (
1 deg
2
for track events in IceCube [40, 43]
and
0
.
2 deg
2
in
Antares
[62]) compared to GWs
(
&
100 deg
2
), a joint event candidate provides a greatly
reduced sky area for follow-up observatories [63]. The de-
lay induced by the event filtering and reconstruction after
the recorded trigger time is typically 3–5 s for
Antares
[44], 20–30 s for IceCube [64], and
O
(1 min) for LIGO-
Virgo, making data available for rapid analyses.
ACKNOWLEDGMENTS
The authors acknowledge the financial support of the
funding agencies: Centre National de la Recherche Sci-
entifique (CNRS), Commissariat `a l’ ́energie atomique
et aux ́energies alternatives (CEA), Commission Eu-
rop ́eenne (FEDER fund and Marie Curie Program),
Institut Universitaire de France (IUF), IdEx program
and UnivEarthS Labex program at Sorbonne Paris
Cit ́e (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02),
R ́egion
ˆ
Ile-de-France (DIM-ACAV), R ́egion Alsace (con-
trat CPER), R ́egion Provence-Alpes-Cˆote d’Azur, D ́e-
partement du Var and Ville de La Seyne-sur-Mer,
France; Bundesministerium f ̈ur Bildung und Forschung
(BMBF), Germany; Istituto Nazionale di Fisica Nucle-
are (INFN), Italy; Stichting voor Fundamenteel Onder-
zoek der Materie (FOM), Nederlandse organisatie voor
Wetenschappelijk Onderzoek (NWO), the Netherlands;
Council of the President of the Russian Federation for
young scientists and leading scientific schools supporting
grants, Russia; National Authority for Scientific Research
(ANCS), Romania; Ministerio de Econom ́ıa y Competi-
tividad (MINECO), Prometeo and Grisol ́ıa programs of
Generalitat Valenciana and MultiDark, Spain; Agence
de l’Oriental and CNRST, Morocco. We also acknowl-
edge the technical support of Ifremer, AIM and Foselev
Marine for the sea operation and the CC-IN2P3 for the
computing facilities.
We acknowledge the support from the following
agencies: U.S. National Science Foundation-Office of
Polar Programs, U.S. National Science Foundation-
Physics Division, University of Wisconsin Alumni Re-
search Foundation, the Grid Laboratory Of Wisconsin
(GLOW) grid infrastructure at the University of Wis-
consin - Madison, the Open Science Grid (OSG) grid
infrastructure; U.S. Department of Energy, and Na-
tional Energy Research Scientific Computing Center,
the Louisiana Optical Network Initiative (LONI) grid
computing resources; Natural Sciences and Engineer-
ing Research Council of Canada, WestGrid and Com-
pute/Calcul Canada; Swedish Research Council, Swedish
Polar Research Secretariat, Swedish National Infrastruc-
ture for Computing (SNIC), and Knut and Alice Wal-
lenberg Foundation, Sweden; German Ministry for Ed-
ucation and Research (BMBF), Deutsche Forschungsge-
meinschaft (DFG), Helmholtz Alliance for Astroparticle
Physics (HAP), Research Department of Plasmas with
Complex Interactions (Bochum), Germany; Fund for
Scientific Research (FNRS-FWO), FWO Odysseus pro-
gramme, Flanders Institute to encourage scientific and
technological research in industry (IWT), Belgian Fed-
eral Science Policy Office (Belspo); University of Oxford,
United Kingdom; Marsden Fund, New Zealand; Aus-
tralian Research Council; Japan Society for Promotion
of Science (JSPS); the Swiss National Science Founda-
tion (SNSF), Switzerland; National Research Foundation
of Korea (NRF); Danish National Research Foundation,
Denmark (DNRF)
The authors gratefully acknowledge the support of the
United States National Science Foundation (NSF) for
the construction and operation of the LIGO Laboratory
and Advanced LIGO as well as the Science and Tech-
nology Facilities Council (STFC) of the United King-
dom, the Max-Planck-Society (MPS), and the State of
Niedersachsen/Germany for support of the construction
of Advanced LIGO and construction and operation of
the GEO600 detector. Additional support for Advanced
LIGO was provided by the Australian Research Council.
The authors gratefully acknowledge the Italian Istituto
Nazionale di Fisica Nucleare (INFN), the French Centre
National de la Recherche Scientifique (CNRS) and the
Foundation for Fundamental Research on Matter sup-
ported by the Netherlands Organisation for Scientific Re-
search, for the construction and operation of the Virgo
detector and the creation and support of the EGO consor-
tium. The authors also gratefully acknowledge research
6
support from these agencies as well as by the Council of
Scientific and Industrial Research of India, Department
of Science and Technology, India, Science & Engineer-
ing Research Board (SERB), India, Ministry of Human
Resource Development, India, the Spanish Ministerio de
Econom ́ıa y Competitividad, the Conselleria d’Economia
i Competitivitat and Conselleria d’Educaci ́o, Cultura i
Universitats of the Govern de les Illes Balears, the Na-
tional Science Centre of Poland, the European Commis-
sion, the Royal Society, the Scottish Funding Council,
the Scottish Universities Physics Alliance, the Hungar-
ian Scientific Research Fund (OTKA), the Lyon Insti-
tute of Origins (LIO), the National Research Foundation
of Korea, Industry Canada and the Province of Ontario
through the Ministry of Economic Development and In-
novation, the Natural Science and Engineering Research
Council Canada, Canadian Institute for Advanced Re-
search, the Brazilian Ministry of Science, Technology,
and Innovation, Russian Foundation for Basic Research,
the Leverhulme Trust, the Research Corporation, Min-
istry of Science and Technology (MOST), Taiwan and
the Kavli Foundation. The authors gratefully acknowl-
edge the support of the NSF, STFC, MPS, INFN, CNRS
and the State of Niedersachsen/Germany for provision
of computational resources. This article has LIGO doc-
ument number LIGO-P1500271.
[1] J. Aasi
et al.
, CQG
32
, 074001 (2015), 1411.4547.
[2] B. P. Abbott
et al.
, (2013), arXiv:1304.0670.
[3] I. Bartos, P. Brady, and S. M ́arka, CQG
30
, 123001
(2013), arXiv:1212.2289.
[4] M. W. E. Smith
et al.
, Astropart. Phys.
45
, 56 (2013),
arXiv:1211.5602.
[5] S. Ando
et al.
,
Rev. Mod. Phys.
85
, 1401 (2013),
1203.5192.
[6] X. Fan, C. Messenger, and I. S. Heng, Astrophys. J.
795
,
43 (2014), 1406.1544.
[7] D. Eichler, M. Livio, T. Piran, and D. N. Schramm, Na-
ture
340
, 126 (1989).
[8] S. E. Woosley, Astrophys. J.
405
, 273 (1993).
[9] A. Achterberg
et al.
, Astropart. Phys.
26
, 155 (2006),
astro-ph/0604450.
[10] R. Abbasi
et al.
, Nucl. Instrum. Meth. A
601
, 294 (2009).
[11] R. Abbasi
et al.
, Nucl. Instrum. Meth. A
618
, 139 (2010),
arXiv:1002.2442.
[12] M. Ageron
et al.
, Nucl. Instrum. Meth. A
656
, 11 (2011),
arXiv:1104.1607.
[13] J. A. Aguilar
et al.
, Nuclear Instruments and Methods in
Physics Research A
570
, 107 (2007), astro-ph/0610029.
[14] J. A. Aguilar
et al.
, Nuclear Instruments and Methods in
Physics Research A
555
, 132 (2005), physics/0510031.
[15] S. Adri ́an-Mart ́ınez
et al.
, (2016), arXiv:1601.07459.
[16] M. G. Aartsen
et al.
, (2014), arXiv:1412.5106.
[17] M. G. Aartsen
et al.
, (2014), arXiv:1401.2046.
[18] A. Avrorin
et al.
, Nucl. Instrum. Meth. A
626-627
, S13
(2011).
[19] M. G. Aartsen
et al.
, Phys. Rev. Lett.
113
, 101101 (2014),
arXiv:1405.5303.
[20] M. G. Aartsen
et al.
, Phys. Rev. Lett.
115
, 081102 (2015),
arXiv:1507.04005.
[21] M. G. Aartsen
et al.
, Phys. Rev. D
91
, 022001 (2015),
arXiv:1410.1749.
[22] M. G. Aartsen
et al.
,
Astrophys. J.
809
, 98 (2015),
arXiv:1507.03991.
[23] I. Bartos, C. Finley, A. Corsi, and S. M ́arka, Phys. Rev.
Lett.
107
, 251101 (2011), arXiv:1108.3001.
[24] S. Adri ́an-Mart ́ınez
et al.
,
JCAP
6
, 008 (2013),
arXiv:1205.3018.
[25] M. G. Aartsen
et al.
, Phys. Rev. D
90
, 102002 (2014),
arXiv:1407.1042.
[26] LIGO Scientific Collaboration and Virgo Collaboration,
B. P. Abbott
et al.
, Phys. Rev. Lett.
116
, 061102 (2016).
[27] P. M ́esz ́aros, Ann. Rev. Astron. Astroph.
40
, 137 (2002),
astro-ph/0111170.
[28] S. Klimenko, I. Yakushin, A. Mercer, and G. Mitsel-
makher, CQG
25
, 114029 (2008), arXiv:0802.3232.
[29] S. Klimenko
et al.
, (2015), arXiv:1511.05999.
[30] B. Abbott
et al.
, (2016), arXiv:1602.03843.
[31] B. Abbott
et al.
, (2016), arXiv:1602.03839.
[32] B. Abbott
et al.
, (2016), arXiv:1602.03840.
[33] J. Aasi
et al.
,
Phys. Rev. D
88
, 062001 (2013),
arXiv:1304.1775.
[34] J. Veitch
et al.
,
Phys. Rev. D
91
, 042003 (2015),
arXiv:1409.7215.
[35] B. Baret
et al.
,
Astropart. Phys.
35
, 1 (2011),
arXiv:1101.4669.
[36] S. Razzaque, P. M ́esz ́aros, and E. Waxman, Phys. Rev.
D
68
, 083001 (2003), astro-ph/0303505.
[37] I. Bartos, B. Dasgupta, and S. M ́arka, Phys. Rev. D
86
,
083007 (2012), 1206.0764.
[38] I. Bartos and S. M ́arka, Phys. Rev. D
90
, 101301 (2014),
1409.1217.
[39] M. G. Aartsen
et al.
, Astrophys. J.
796
, 109 (2014).
[40] M. G. Aartsen
et al.
, J. Instrum.
9
, P03009 (2014),
arXiv:1311.4767.
[41] IceCube Collaboration
et al.
, (2015), arXiv:1506.07981.
[42] R. Abbasi
et al.
, Astron. Astrophys.
535
, A109 (2011).
[43] M. G. Aartsen
et al.
, Phys. Rev. D
89
, 102004 (2014).
[44] S. Adrian-Martinez
et al.
, (2015), arXiv:1508.01180.
[45] J. A. Aguilar
et al.
, Astropart. Phys.
34
, 652 (2011),
arXiv:1105.4116.
[46] S. Adri ́an-Mart ́ınez
et al.
, Eur. Phys. J. C
73
, 2606
(2013).
[47] B. Baret
et al.
,
Phys. Rev. D
85
, 103004 (2012),
arXiv:1112.1140.
[48] U. Jacob and T. Piran, Nature Physics
3
, 87 (2007),
hep-ph/0607145.
[49] B. Abbott
et al.
, (2016), arXiv:1602.03841.
[50] A. Kappes, J. Hinton, C. Stegmann, and F. A. Aha-
ronian, Journal of Physics Conference Series
60
, 243
(2007).
[51] S. Adri ́an-Mart ́ınez
et al.
, (2015), arXiv:1511.02149.
[52] P. M ́esz ́aros, Rep. Prog. Phys.
69
, 2259 (2006), astro-
ph/0605208.
[53] P. M ́esz ́aros, (2015), arXiv:1511.01396.
[54] J. N. Bahcall and P. M ́esz ́aros, Physical Review Letters
85
, 1362 (2000), hep-ph/0004019.
7
[55] I. Bartos, A. M. Beloborodov, K. Hurley, and S. M ́arka,
Phys. Rev. Lett.
110
, 241101 (2013), arXiv:1301.4232.
[56] K. Murase, K. Kashiyama, and P. M ́esz ́aros, Physical
Review Letters
111
, 131102 (2013), 1301.4236.
[57] K. Murase, B. Dasgupta, and T. A. Thompson, Phys.
Rev. D
89
, 043012 (2014), 1303.2612.
[58] P. M ́esz ́aros and E. Waxman, Physical Review Letters
87
, 171102 (2001), astro-ph/0103275.
[59] K. Murase and K. Ioka, Physical Review Letters
111
,
121102 (2013), 1306.2274.
[60] V. Connaughton
et al.
,
ArXiv e-prints (2016),
1602.03920.
[61] B. Abbott
et al.
, (2016), arXiv:1602.03842.
[62] S. Adri ́an-Mart ́ınez
et al.
, Astrophys. J. Lett.
786
, L5
(2014).
[63] S. Nissanke, M. Kasliwal, and A. Georgieva, Astrophys.
J.
767
, 124 (2013), arXiv:1210.6362.
[64] M. G. Aartsen
et al.
, (2015), arXiv:1510.05222.
Authors
S. Adri ́an-Mart ́ınez,
1
A. Albert,
2
M. Andr ́e,
3
G. Anton,
4
M. Ardid,
1
J.-J. Aubert,
5
T. Avgitas,
6
B. Baret,
6
J. Barrios-Mart ́ı,
7
S. Basa,
8
V. Bertin,
5
S. Biagi,
9
R. Bormuth,
10, 11
M.C. Bouwhuis,
10
R. Bruijn,
10, 12
J. Brunner,
5
J. Busto,
5
A. Capone,
13, 14
L. Caramete,
15
J. Carr,
5
S. Celli,
13, 14
T. Chiarusi,
16
M. Circella,
17
A. Coleiro,
6
R. Coniglione,
9
H. Costantini,
5
P. Coyle,
5
A. Creusot,
6
A. Deschamps,
18
G. De Bonis,
13, 14
C. Distefano,
9
C. Donzaud,
6, 19
D. Dornic,
5
D. Drouhin,
2
T. Eberl,
4
I. El Bojaddaini,
20
D. Els ̈asser,
21
A. Enzenh ̈ofer,
4
K. Fehn,
4
I. Felis,
22
L.A. Fusco,
23, 16
S. Galat`a,
6
P. Gay,
24, 25
S. Geißels ̈oder,
4
K. Geyer,
4
V. Giordano,
26
A. Gleixner,
4
H. Glotin,
27, 28
R. Gracia-Ruiz,
6
K. Graf,
4
S. Hallmann,
4
H. van Haren,
29
A.J. Heijboer,
10
Y. Hello,
18
J.J.
Hern ́andez-Rey,
7
J. H ̈oßl,
4
J. Hofest ̈adt,
4
C. Hugon,
30, 31
G. Illuminati,
13, 14
C.W James,
4
M. de Jong,
10, 11
M.
Jongen,
10
M. Kadler,
21
O. Kalekin,
4
U. Katz,
4
D. Kießling,
4
A. Kouchner,
6, 28
M. Kreter,
21
I. Kreykenbohm,
32
V. Kulikovskiy,
9, 33
C. Lachaud,
6
R. Lahmann,
4
D. Lef`evre,
34
E. Leonora,
26, 35
S. Loucatos,
36, 6
M. Marcelin,
8
A. Margiotta,
23, 16
A. Marinelli,
37, 38
J.A. Mart ́ınez-Mora,
1
A. Mathieu,
5
K. Melis,
12
T. Michael,
10
P. Migliozzi,
39
A. Moussa,
20
C. Mueller,
21
E. Nezri,
8
G.E. P ̆av ̆ala ̧s,
15
C. Pellegrino,
23, 16
C. Perrina,
13, 14
P. Piattelli,
9
V. Popa,
15
T. Pradier,
40
C. Racca,
2
G. Riccobene,
9
K. Roensch,
4
M. Salda ̃na,
1
D. F. E. Samtleben,
10, 11
M. Sanguineti,
30, 31
P. Sapienza,
9
J. Schnabel,
4
F. Sch ̈ussler,
36
T. Seitz,
4
C. Sieger,
4
M. Spurio,
23, 16
Th. Stolarczyk,
36
A. S ́anchez-Losa,
7, 41
M. Taiuti,
30, 31
A. Trovato,
9
M. Tselengidou,
4
D. Turpin,
5
C. T ̈onnis,
7
B. Vallage,
36, 25
C. Vall ́ee,
5
V. Van Elewyck,
6
D. Vivolo,
39, 42
S. Wagner,
4
J. Wilms,
32
J.D. Zornoza,
7
and J. Z ́u ̃niga
7
(The
Antares
Collaboration)
M. G. Aartsen,
44
K. Abraham,
74
M. Ackermann,
91
J. Adams,
58
J. A. Aguilar,
54
M. Ahlers,
71
M. Ahrens,
81
D. Altmann,
4
T. Anderson,
87
I. Ansseau,
54
G. Anton,
4
M. Archinger,
72
C. Arguelles,
56
T. C. Arlen,
87
J. Auffenberg,
43
X. Bai,
79
S. W. Barwick,
68
V. Baum,
72
R. Bay,
49
J. J. Beatty,
60, 61
J. Becker Tjus,
52
K.-H. Becker,
90
E. Beiser,
71
S. BenZvi,
88
P. Berghaus,
91
D. Berley,
59
E. Bernardini,
91
A. Bernhard,
74
D. Z. Besson,
69
G. Binder,
50, 49
D. Bindig,
90
M. Bissok,
43
E. Blaufuss,
59
J. Blumenthal,
43
D. J. Boersma,
89
C. Bohm,
81
M. B ̈orner,
63
F. Bos,
52
D. Bose,
83
S. B ̈oser,
72
O. Botner,
89
J. Braun,
71
L. Brayeur,
55
H.-P. Bretz,
91
N. Buzinsky,
65
J. Casey,
47
M. Casier,
55
E. Cheung,
59
D. Chirkin,
71
A. Christov,
66
K. Clark,
84
L. Classen,
4
S. Coenders,
74
G. H. Collin,
56
J. M. Conrad,
56
D. F. Cowen,
87, 86
A. H. Cruz Silva,
91
J. Daughhetee,
47
J. C. Davis,
60
M. Day,
71
J. P. A. M. de Andr ́e,
64
C. De Clercq,
55
E. del Pino Rosendo,
72
H. Dembinski,
75
S. De Ridder,
67
P. Desiati,
71
K. D. de Vries,
55
G. de Wasseige,
55
M. de With,
51
T. DeYoung,
64
J. C. D ́ıaz-V ́elez,
71
V. di Lorenzo,
72
H. Dujmovic,
83
J. P. Dumm,
81
M. Dunkman,
87
B. Eberhardt,
72
T. Ehrhardt,
72
B. Eichmann,
52
S. Euler,
89
P. A. Evenson,
75
S. Fahey,
71
A. R. Fazely,
48
J. Feintzeig,
71
J. Felde,
59
K. Filimonov,
49
C. Finley,
81
S. Flis,
81
C.-C. F ̈osig,
72
T. Fuchs,
63
T. K. Gaisser,
75
R. Gaior,
57
J. Gallagher,
70
L. Gerhardt,
50, 49
K. Ghorbani,
71
D. Gier,
43
L. Gladstone,
71
M. Glagla,
43
T. Gl ̈usenkamp,
91
A. Goldschmidt,
50
G. Golup,
55
J. G. Gonzalez,
75
D. G ́ora,
91
D. Grant,
65
Z. Griffith,
71
C. Ha,
50, 49
C. Haack,
43
A. Haj Ismail,
67
A. Hallgren,
89
F. Halzen,
71
E. Hansen,
62
B. Hansmann,
43
T. Hansmann,
43
K. Hanson,
71
D. Hebecker,
51
D. Heereman,
54
K. Helbing,
90
R. Hellauer,
59
S. Hickford,
90
J. Hignight,
64
G. C. Hill,
44
K. D. Hoffman,
59
R. Hoffmann,
90
K. Holzapfel,
74
A. Homeier,
53
K. Hoshina,
71
F. Huang,
87
M. Huber,
74
W. Huelsnitz,
59
P. O. Hulth,
81
K. Hultqvist,
81
S. In,
83
A. Ishihara,
57
E. Jacobi,
91
G. S. Japaridze,
46
M. Jeong,
83
K. Jero,
71
B. J. P. Jones,
56
M. Jurkovic,
74
A. Kappes,
4
T. Karg,
91
A. Karle,
71
U. Katz,
4
M. Kauer,
71, 76
A. Keivani,
87
J. L. Kelley,
71
J. Kemp,
43
A. Kheirandish,
71
M. Kim,
83
T. Kintscher,
91
J. Kiryluk,
82
S. R. Klein,
50, 49
G. Kohnen,
73
R. Koirala,
75
H. Kolanoski,
51
R. Konietz,
43
L. K ̈opke,
72
C. Kopper,
65
S. Kopper,
90
D. J. Koskinen,
62
M. Kowalski,
51, 91
K. Krings,
74
G. Kroll,
72
M. Kroll,
52
G. Kr ̈uckl,
72
J. Kunnen,
55
S. Kunwar,
91
N. Kurahashi,
78
T. Kuwabara,
57
M. Labare,
67
J. L. Lanfranchi,
87
M. J. Larson,
62
D. Lennarz,
64
M. Lesiak-Bzdak,
82
M. Leuermann,
43
J. Leuner,
43
L. Lu,
57
J. L ̈unemann,
55
J. Madsen,
80
G. Maggi,
55
K. B. M. Mahn,
64
M. Mandelartz,
52
R. Maruyama,
76
K. Mase,
57
H. S. Matis,
50
R. Maunu,
59
F. McNally,
71
K. Meagher,
54
M. Medici,
62
M. Meier,
63
A. Meli,
67
T. Menne,
63
G. Merino,
71
T. Meures,
54
S. Miarecki,
50, 49
E. Middell,
91
L. Mohrmann,
91
T. Montaruli,
66
R. Morse,
71
R. Nahnhauer,
91
U. Naumann,
90
G. Neer,
64
H. Niederhausen,
82
S. C. Nowicki,
65
D. R. Nygren,
50
A. Obertacke Pollmann,
90
A. Olivas,
59
A. Omairat,
90
A. O’Murchadha,
54
T. Palczewski,
85
H. Pandya,
75
D. V. Pankova,
87
L. Paul,
43
J. A. Pepper,
85
C. P ́erez de los Heros,
89
C. Pfendner,
60
D. Pieloth,
63
E. Pinat,
54
J. Posselt,
90
P. B. Price,
49
G. T. Przybylski,
50
M. Quinnan,
87
C. Raab,
54
L. R ̈adel,
43
M. Rameez,
66
K. Rawlins,
45
R. Reimann,
43
M. Relich,
57
E. Resconi,
74
W. Rhode,
63
M. Richman,
78
S. Richter,
71
B. Riedel,
65
S. Robertson,
44
M. Rongen,
43
C. Rott,
83
T. Ruhe,
63
D. Ryckbosch,
67
L. Sabbatini,
71
H.-G. Sander,
72
A. Sandrock,
63
J. Sandroos,
72
S. Sarkar,
62, 77
K. Schatto,
72
M. Schimp,
43
P. Schlunder,
63
T. Schmidt,
59
S. Schoenen,
43
S. Sch ̈oneberg,
52
A. Sch ̈onwald,
91
L. Schumacher,
43
9
D. Seckel,
75
S. Seunarine,
80
D. Soldin,
90
M. Song,
59
G. M. Spiczak,
80
C. Spiering,
91
M. Stahlberg,
43
M. Stamatikos,
60
T. Stanev,
75
A. Stasik,
91
A. Steuer,
72
T. Stezelberger,
50
R. G. Stokstad,
50
A. St ̈oßl,
91
R. Str ̈om,
89
N. L. Strotjohann,
91
G. W. Sullivan,
59
M. Sutherland,
60
H. Taavola,
89
I. Taboada,
47
J. Tatar,
50, 49
S. Ter-Antonyan,
48
A. Terliuk,
91
G. Teˇsi ́c,
87
S. Tilav,
75
P. A. Toale,
85
M. N. Tobin,
71
S. Toscano,
55
D. Tosi,
71
M. Tselengidou,
4
A. Turcati,
74
E. Unger,
89
M. Usner,
91
S. Vallecorsa,
66
J. Vandenbroucke,
71
N. van Eijndhoven,
55
S. Vanheule,
67
J. van Santen,
91
J. Veenkamp,
74
M. Vehring,
43
M. Voge,
53
M. Vraeghe,
67
C. Walck,
81
A. Wallace,
44
M. Wallraff,
43
N. Wandkowsky,
71
Ch. Weaver,
65
C. Wendt,
71
S. Westerhoff,
71
B. J. Whelan,
44
K. Wiebe,
72
C. H. Wiebusch,
43
L. Wille,
71
D. R. Williams,
85
L. Wills,
78
H. Wissing,
59
M. Wolf,
81
T. R. Wood,
65
K. Woschnagg,
49
D. L. Xu,
71
X. W. Xu,
48
Y. Xu,
82
J. P. Yanez,
91
G. Yodh,
68
S. Yoshida,
57
and M. Zoll
81
(The IceCube Collaboration)
B. P. Abbott,
92
R. Abbott,
92
T. D. Abbott,
93
M. R. Abernathy,
92
F. Acernese,
94, 95
K. Ackley,
96
C. Adams,
97
T. Adams,
98
P. Addesso,
94
R. X. Adhikari,
92
V. B. Adya,
99
C. Affeldt,
99
M. Agathos,
100
K. Agatsuma,
100
N. Aggarwal,
101
O. D. Aguiar,
102
L. Aiello,
103, 104
A. Ain,
105
P. Ajith,
106
B. Allen,
99, 107, 108
A. Allocca,
109, 110
P. A. Altin,
111
S. B. Anderson,
92
W. G. Anderson,
107
K. Arai,
92
M. C. Araya,
92
C. C. Arceneaux,
112
J. S. Areeda,
113
N. Arnaud,
114
K. G. Arun,
115
S. Ascenzi,
116, 104
G. Ashton,
117
M. Ast,
118
S. M. Aston,
97
P. Astone,
119
P. Aufmuth,
99
C. Aulbert,
99
S. Babak,
120
P. Bacon,
121
M. K. M. Bader,
100
P. T. Baker,
122
F. Baldaccini,
123, 124
G. Ballardin,
125
S. W. Ballmer,
126
J. C. Barayoga,
92
S. E. Barclay,
127
B. C. Barish,
92
D. Barker,
128
F. Barone,
94, 95
B. Barr,
127
L. Barsotti,
101
M. Barsuglia,
121
D. Barta,
129
J. Bartlett,
128
I. Bartos,
130
R. Bassiri,
131
A. Basti,
109, 110
J. C. Batch,
128
C. Baune,
99
V. Bavigadda,
125
M. Bazzan,
132, 133
B. Behnke,
120
M. Bejger,
134
A. S. Bell,
127
C. J. Bell,
127
B. K. Berger,
92
J. Bergman,
128
G. Bergmann,
99
C. P. L. Berry,
135
D. Bersanetti,
136, 137
A. Bertolini,
100
J. Betzwieser,
97
S. Bhagwat,
126
R. Bhandare,
138
I. A. Bilenko,
139
G. Billingsley,
92
J. Birch,
97
R. Birney,
140
S. Biscans,
101
A. Bisht,
99, 108
M. Bitossi,
125
C. Biwer,
126
M. A. Bizouard,
114
J. K. Blackburn,
92
C. D. Blair,
141
D. G. Blair,
141
R. M. Blair,
128
S. Bloemen,
142
O. Bock,
99
T. P. Bodiya,
101
M. Boer,
143
G. Bogaert,
143
C. Bogan,
99
A. Bohe,
120
P. Bojtos,
144
C. Bond,
135
F. Bondu,
145
R. Bonnand,
98
B. A. Boom,
100
R. Bork,
92
V. Boschi,
109, 110
S. Bose,
146, 105
Y. Bouffanais,
121
A. Bozzi,
125
C. Bradaschia,
110
P. R. Brady,
107
V. B. Braginsky,
139
M. Branchesi,
147, 148
J. E. Brau,
149
T. Briant,
150
A. Brillet,
143
M. Brinkmann,
99
V. Brisson,
114
P. Brockill,
107
A. F. Brooks,
92
D. D. Brown,
135
N. M. Brown,
101
C. C. Buchanan,
93
A. Buikema,
101
T. Bulik,
151
H. J. Bulten,
152, 100
A. Buonanno,
120, 153
D. Buskulic,
98
C. Buy,
121
R. L. Byer,
131
L. Cadonati,
154
G. Cagnoli,
155, 156
C. Cahillane,
92
T. Callister,
92
E. Calloni,
157, 95
J. B. Camp,
158
K. C. Cannon,
159
J. Cao,
160
C. D. Capano,
99
E. Capocasa,
121
F. Carbognani,
125
S. Caride,
161
J. Casanueva Diaz,
114
C. Casentini,
116, 104
S. Caudill,
107
F. Cavalier,
114
R. Cavalieri,
125
G. Cella,
110
C. B. Cepeda,
92
L. Cerboni Baiardi,
147, 148
G. Cerretani,
109, 110
E. Cesarini,
116, 104
R. Chakraborty,
92
T. Chalermsongsak,
92
S. J. Chamberlin,
162
M. Chan,
127
S. Chao,
163
P. Charlton,
164
E. Chassande-Mottin,
121
H. Y. Chen,
165
Y. Chen,
166
C. Cheng,
163
A. Chincarini,
137
A. Chiummo,
125
H. S. Cho,
167
M. Cho,
153
J. H. Chow,
111
N. Christensen,
168
Q. Chu,
141
S. Chua,
150
S. Chung,
141
G. Ciani,
96
F. Clara,
128
J. A. Clark,
154
F. Cleva,
143
E. Coccia,
116, 103, 104
P.-F. Cohadon,
150
A. Colla,
169, 119
C. G. Collette,
170
L. Cominsky,
171
M. Constancio Jr.,
102
A. Conte,
169, 119
L. Conti,
133
D. Cook,
128
T. R. Corbitt,
93
N. Cornish,
122
A. Corsi,
161
S. Cortese,
125
C. A. Costa,
102
M. W. Coughlin,
168
S. B. Coughlin,
172
J.-P. Coulon,
143
S. T. Countryman,
130
P. Couvares,
92
E. E. Cowan,
154
D. M. Coward,
141
M. J. Cowart,
97
D. C. Coyne,
92
R. Coyne,
161
K. Craig,
127
J. D. E. Creighton,
107
J. Cripe,
93
S. G. Crowder,
173
A. Cumming,
127
L. Cunningham,
127
E. Cuoco,
125
T. Dal Canton,
99
S. L. Danilishin,
127
S. D’Antonio,
104
K. Danzmann,
108, 99
N. S. Darman,
174
V. Dattilo,
125
I. Dave,
138
H. P. Daveloza,
175
M. Davier,
114
G. S. Davies,
127
E. J. Daw,
176
R. Day,
125
D. DeBra,
131
G. Debreczeni,
129
J. Degallaix,
156
M. De Laurentis,
157, 95
W. Del Pozzo,
135
T. Denker,
99, 108
H. Dereli,
143
V. Dergachev,
92
R. T. DeRosa,
97
R. De Rosa,
157, 95
R. DeSalvo,
177
S. Dhurandhar,
105
L. Di Fiore,
95
M. Di Giovanni,
169, 119
A. Di Lieto,
109, 110
S. Di Pace,
169, 119
I. Di Palma,
120, 99
A. Di Virgilio,
110
G. Dojcinoski,
178
V. Dolique,
156
F. Donovan,
101
K. L. Dooley,
112
S. Doravari,
97, 99
R. Douglas,
127
T. P. Downes,
107
M. Drago,
99, 179, 180
R. W. P. Drever,
92
J. C. Driggers,
128
Z. Du,
160
M. Ducrot,
98
S. E. Dwyer,
128
T. B. Edo,
176
M. C. Edwards,
168
A. Effler,
97
H.-B. Eggenstein,
99
P. Ehrens,
92
J. Eichholz,
96
S. S. Eikenberry,
96
W. Engels,
166
R. C. Essick,
101
T. Etzel,
92
M. Evans,
101
T. M. Evans,
97
R. Everett,
162
M. Factourovich,
130
V. Fafone,
116, 104, 103
H. Fair,
126
S. Fairhurst,
181
X. Fan,
160
Q. Fang,
141
S. Farinon,
137
B. Farr,
165
W. M. Farr,
135
M. Favata,
178
M. Fays,
181
H. Fehrmann,
99
M. M. Fejer,
131
I. Ferrante,
109, 110
E. C. Ferreira,
102
F. Ferrini,
125
F. Fidecaro,
109, 110
I. Fiori,
125
D. Fiorucci,
121
R. P. Fisher,
126
R. Flaminio,
156, 182
M. Fletcher,
127
J.-D. Fournier,
143
S. Franco,
114
S. Frasca,
169, 119
F. Frasconi,
110
Z. Frei,
144
A. Freise,
135
R. Frey,
149
V. Frey,
114
T. T. Fricke,
99
10
P. Fritschel,
101
V. V. Frolov,
97
P. Fulda,
96
M. Fyffe,
97
H. A. G. Gabbard,
112
J. R. Gair,
183
L. Gammaitoni,
123, 124
S. G. Gaonkar,
105
F. Garufi,
157, 95
A. Gatto,
121
G. Gaur,
184, 185
N. Gehrels,
158
G. Gemme,
137
B. Gendre,
143
E. Genin,
125
A. Gennai,
110
J. George,
138
L. Gergely,
186
V. Germain,
98
Archisman Ghosh,
106
S. Ghosh,
142, 100
J. A. Giaime,
93, 97
K. D. Giardina,
97
A. Giazotto,
110
K. Gill,
187
A. Glaefke,
127
E. Goetz,
188
R. Goetz,
96
L. Gondan,
144
J. M. Gonzalez Castro,
109, 110
A. Gopakumar,
189
N. A. Gordon,
127
M. L. Gorodetsky,
139
S. E. Gossan,
92
M. Gosselin,
125
R. Gouaty,
98
C. Graef,
127
P. B. Graff,
153
M. Granata,
156
A. Grant,
127
S. Gras,
101
C. Gray,
128
G. Greco,
147, 148
A. C. Green,
135
P. Groot,
142
H. Grote,
99
S. Grunewald,
120
G. M. Guidi,
147, 148
X. Guo,
160
A. Gupta,
105
M. K. Gupta,
185
K. E. Gushwa,
92
E. K. Gustafson,
92
R. Gustafson,
188
J. J. Hacker,
113
B. R. Hall,
146
E. D. Hall,
92
G. Hammond,
127
M. Haney,
189
M. M. Hanke,
99
J. Hanks,
128
C. Hanna,
162
M. D. Hannam,
181
J. Hanson,
97
T. Hardwick,
93
J. Harms,
147, 148
G. M. Harry,
190
I. W. Harry,
120
M. J. Hart,
127
M. T. Hartman,
96
C.-J. Haster,
135
K. Haughian,
127
A. Heidmann,
150
M. C. Heintze,
96, 97
H. Heitmann,
143
P. Hello,
114
G. Hemming,
125
M. Hendry,
127
I. S. Heng,
127
J. Hennig,
127
A. W. Heptonstall,
92
M. Heurs,
99, 108
S. Hild,
127
D. Hoak,
191
K. A. Hodge,
92
D. Hofman,
156
S. E. Hollitt,
44
K. Holt,
97
D. E. Holz,
165
P. Hopkins,
181
D. J. Hosken,
44
J. Hough,
127
E. A. Houston,
127
E. J. Howell,
141
Y. M. Hu,
127
S. Huang,
163
E. A. Huerta,
192, 172
D. Huet,
114
B. Hughey,
187
S. Husa,
193
S. H. Huttner,
127
T. Huynh-Dinh,
97
A. Idrisy,
162
N. Indik,
99
D. R. Ingram,
128
R. Inta,
161
H. N. Isa,
127
J.-M. Isac,
150
M. Isi,
92
G. Islas,
113
T. Isogai,
101
B. R. Iyer,
106
K. Izumi,
128
T. Jacqmin,
150
H. Jang,
167
K. Jani,
154
P. Jaranowski,
194
S. Jawahar,
195
W. W. Johnson,
93
D. I. Jones,
117
R. Jones,
127
R. J. G. Jonker,
100
L. Ju,
141
Haris K,
196
C. V. Kalaghatgi,
115, 181
V. Kalogera,
172
S. Kandhasamy,
112
G. Kang,
167
J. B. Kanner,
92
S. Karki,
149
M. Kasprzack,
93, 114, 125
E. Katsavounidis,
101
W. Katzman,
97
S. Kaufer,
108
T. Kaur,
141
K. Kawabe,
128
F. Kawazoe,
99, 108
M. S. Kehl,
159
D. Keitel,
99, 193
D. B. Kelley,
126
W. Kells,
92
R. Kennedy,
176
J. S. Key,
175
A. Khalaidovski,
99
F. Y. Khalili,
139
I. Khan,
103
S. Khan,
181
Z. Khan,
185
E. A. Khazanov,
197
N. Kijbunchoo,
128
C. Kim,
167
J. Kim,
198
K. Kim,
199
Nam-Gyu Kim,
167
Namjun Kim,
131
Y.-M. Kim,
198
E. J. King,
44
P. J. King,
128
D. L. Kinzel,
97
J. S. Kissel,
128
L. Kleybolte,
118
S. Klimenko,
96
S. M. Koehlenbeck,
99
K. Kokeyama,
93
S. Koley,
100
V. Kondrashov,
92
A. Kontos,
101
M. Korobko,
118
W. Z. Korth,
92
I. Kowalska,
151
D. B. Kozak,
92
V. Kringel,
99
B. Krishnan,
99
C. Krueger,
108
G. Kuehn,
99
P. Kumar,
159
L. Kuo,
163
A. Kutynia,
200
B. D. Lackey,
126
M. Landry,
128
J. Lange,
201
B. Lantz,
131
P. D. Lasky,
202
A. Lazzarini,
92
C. Lazzaro,
154, 133
P. Leaci,
120, 169, 119
S. Leavey,
127
E. O. Lebigot,
121, 160
C. H. Lee,
198
H. K. Lee,
199
H. M. Lee,
203
K. Lee,
127
A. Lenon,
126
M. Leonardi,
179, 180
J. R. Leong,
99
N. Leroy,
114
N. Letendre,
98
Y. Levin,
202
B. M. Levine,
128
T. G. F. Li,
92
A. Libson,
101
T. B. Littenberg,
204
N. A. Lockerbie,
195
J. Logue,
127
A. L. Lombardi,
191
J. E. Lord,
126
M. Lorenzini,
103, 104
V. Loriette,
205
M. Lormand,
97
G. Losurdo,
148
J. D. Lough,
99, 108
A. P. Lundgren,
99
J. Luo,
168
R. Lynch,
101
Y. Ma,
141
T. MacDonald,
131
B. Machenschalk,
99
M. MacInnis,
101
D. M. Macleod,
93
R. M. Magee,
146
M. Mageswaran,
92
E. Majorana,
119
I. Maksimovic,
205
V. Malvezzi,
116, 104
N. Man,
143
I. Mandel,
135
V. Mandic,
173
V. Mangano,
127
G. L. Mansell,
111
M. Manske,
107
M. Mantovani,
125
F. Marchesoni,
206, 124
F. Marion,
98
A. S. Markosyan,
131
E. Maros,
92
F. Martelli,
147, 148
L. Martellini,
143
I. W. Martin,
127
R. M. Martin,
96
D. V. Martynov,
92
J. N. Marx,
92
K. Mason,
101
A. Masserot,
98
T. J. Massinger,
126
M. Masso-Reid,
127
F. Matichard,
101
L. Matone,
130
N. Mavalvala,
101
N. Mazumder,
146
G. Mazzolo,
99
R. McCarthy,
128
D. E. McClelland,
111
S. McCormick,
97
S. C. McGuire,
207
G. McIntyre,
92
J. McIver,
92
D. J. McManus,
111
S. T. McWilliams,
192
D. Meacher,
162
G. D. Meadors,
120, 99
J. Meidam,
100
A. Melatos,
174
G. Mendell,
128
D. Mendoza-Gandara,
99
R. A. Mercer,
107
E. Merilh,
128
M. Merzougui,
143
S. Meshkov,
92
C. Messenger,
127
C. Messick,
162
P. M. Meyers,
173
F. Mezzani,
119, 169
H. Miao,
135
C. Michel,
156
H. Middleton,
135
E. E. Mikhailov,
208
L. Milano,
157, 95
J. Miller,
101
M. Millhouse,
122
Y. Minenkov,
104
J. Ming,
120, 99
S. Mirshekari,
209
C. Mishra,
106
S. Mitra,
105
V. P. Mitrofanov,
139
G. Mitselmakher,
96
R. Mittleman,
101
A. Moggi,
110
M. Mohan,
125
S. R. P. Mohapatra,
101
M. Montani,
147, 148
B. C. Moore,
178
C. J. Moore,
210
D. Moraru,
128
G. Moreno,
128
S. R. Morriss,
175
K. Mossavi,
99
B. Mours,
98
C. M. Mow-Lowry,
135
C. L. Mueller,
96
G. Mueller,
96
A. W. Muir,
181
Arunava Mukherjee,
106
D. Mukherjee,
107
S. Mukherjee,
175
N. Mukund,
105
A. Mullavey,
97
J. Munch,
44
D. J. Murphy,
130
P. G. Murray,
127
A. Mytidis,
96
I. Nardecchia,
116, 104
L. Naticchioni,
169, 119
R. K. Nayak,
211
V. Necula,
96
K. Nedkova,
191
G. Nelemans,
142, 100
M. Neri,
136, 137
A. Neunzert,
188
G. Newton,
127
T. T. Nguyen,
111
A. B. Nielsen,
99
S. Nissanke,
142, 100
A. Nitz,
99
F. Nocera,
125
D. Nolting,
97
M. E. N. Normandin,
175
L. K. Nuttall,
126
J. Oberling,
128
E. Ochsner,
107
J. O’Dell,
212
E. Oelker,
101
G. H. Ogin,
213
J. J. Oh,
214
S. H. Oh,
214
F. Ohme,
181
M. Oliver,
193
P. Oppermann,
99
Richard J. Oram,
97
B. O’Reilly,
97
R. O’Shaughnessy,
201
D. J. Ottaway,
44
R. S. Ottens,
96
H. Overmier,
97
B. J. Owen,
161
A. Pai,
196
S. A. Pai,
138
J. R. Palamos,
149
O. Palashov,
197
C. Palomba,
119
A. Pal-Singh,
118
H. Pan,
163
C. Pankow,
172
F. Pannarale,
181
B. C. Pant,
138
F. Paoletti,
125, 110
A. Paoli,
125
M. A. Papa,
120, 107, 99
H. R. Paris,
131
W. Parker,
97
11
D. Pascucci,
127
A. Pasqualetti,
125
R. Passaquieti,
109, 110
D. Passuello,
110
B. Patricelli,
109, 110
Z. Patrick,
131
B. L. Pearlstone,
127
M. Pedraza,
92
R. Pedurand,
156
L. Pekowsky,
126
A. Pele,
97
S. Penn,
215
A. Perreca,
92
M. Phelps,
127
O. Piccinni,
169, 119
M. Pichot,
143
F. Piergiovanni,
147, 148
V. Pierro,
177
G. Pillant,
125
L. Pinard,
156
I. M. Pinto,
177
M. Pitkin,
127
R. Poggiani,
109, 110
P. Popolizio,
125
A. Post,
99
J. Powell,
127
J. Prasad,
105
V. Predoi,
181
S. S. Premachandra,
202
T. Prestegard,
173
L. R. Price,
92
M. Prijatelj,
125
M. Principe,
177
S. Privitera,
120
R. Prix,
99
G. A. Prodi,
179, 180
L. Prokhorov,
139
O. Puncken,
99
M. Punturo,
124
P. Puppo,
119
H. Qi,
107
J. Qin,
141
V. Quetschke,
175
E. A. Quintero,
92
R. Quitzow-James,
149
F. J. Raab,
128
D. S. Rabeling,
111
H. Radkins,
128
P. Raffai,
144
S. Raja,
138
M. Rakhmanov,
175
P. Rapagnani,
169, 119
V. Raymond,
120
M. Razzano,
109, 110
V. Re,
116
J. Read,
113
C. M. Reed,
128
T. Regimbau,
143
L. Rei,
137
S. Reid,
140
D. H. Reitze,
92, 96
H. Rew,
208
S. D. Reyes,
126
F. Ricci,
169, 119
K. Riles,
188
N. A. Robertson,
92, 127
R. Robie,
127
F. Robinet,
114
A. Rocchi,
104
L. Rolland,
98
J. G. Rollins,
92
V. J. Roma,
149
J. D. Romano,
175
R. Romano,
94, 95
G. Romanov,
208
J. H. Romie,
97
S. Rowan,
127
P. Ruggi,
125
K. Ryan,
128
S. Sachdev,
92
T. Sadecki,
128
L. Sadeghian,
107
L. Salconi,
125
M. Saleem,
196
F. Salemi,
99
A. Samajdar,
211
L. Sammut,
174, 202
E. J. Sanchez,
92
V. Sandberg,
128
B. Sandeen,
172
J. R. Sanders,
188, 126
B. Sassolas,
156
B. S. Sathyaprakash,
181
P. R. Saulson,
126
O. Sauter,
188
R. L. Savage,
128
A. Sawadsky,
108
P. Schale,
149
R. Schilling
,
99
J. Schmidt,
99
P. Schmidt,
92, 166
R. Schnabel,
118
R. M. S. Schofield,
149
E. Schreiber,
99
D. Schuette,
99, 108
B. F. Schutz,
181, 120
J. Scott,
127
S. M. Scott,
111
D. Sellers,
97
A. S. Sengupta,
184
D. Sentenac,
125
V. Sequino,
116, 104
A. Sergeev,
197
G. Serna,
113
Y. Setyawati,
142, 100
A. Sevigny,
128
D. A. Shaddock,
111
S. Shah,
142, 100
M. S. Shahriar,
172
M. Shaltev,
99
Z. Shao,
92
B. Shapiro,
131
P. Shawhan,
153
A. Sheperd,
107
D. H. Shoemaker,
101
D. M. Shoemaker,
154
K. Siellez,
143, 154
X. Siemens,
107
D. Sigg,
128
A. D. Silva,
102
D. Simakov,
99
A. Singer,
92
L. P. Singer,
158
A. Singh,
120, 99
R. Singh,
93
A. Singhal,
103
A. M. Sintes,
193
B. J. J. Slagmolen,
111
J. R. Smith,
113
N. D. Smith,
92
R. J. E. Smith,
92
E. J. Son,
214
B. Sorazu,
127
F. Sorrentino,
137
T. Souradeep,
105
A. K. Srivastava,
185
A. Staley,
130
M. Steinke,
99
J. Steinlechner,
127
S. Steinlechner,
127
D. Steinmeyer,
99, 108
B. C. Stephens,
107
R. Stone,
175
K. A. Strain,
127
N. Straniero,
156
G. Stratta,
147, 148
N. A. Strauss,
168
S. Strigin,
139
R. Sturani,
209
A. L. Stuver,
97
T. Z. Summerscales,
216
L. Sun,
174
P. J. Sutton,
181
B. L. Swinkels,
125
M. Tacca,
121
D. Talukder,
149
D. B. Tanner,
96
S. P. Tarabrin,
99
A. Taracchini,
120
R. Taylor,
92
T. Theeg,
99
M. P. Thirugnanasambandam,
92
E. G. Thomas,
135
M. Thomas,
97
P. Thomas,
128
K. A. Thorne,
97
K. S. Thorne,
166
E. Thrane,
202
S. Tiwari,
103
V. Tiwari,
181
K. V. Tokmakov,
195
C. Tomlinson,
176
M. Tonelli,
109, 110
C. V. Torres
,
217
C. I. Torrie,
92
F. Travasso,
123, 124
G. Traylor,
97
M. C. Tringali,
179, 180
L. Trozzo,
218, 110
M. Tse,
101
M. Turconi,
143
D. Tuyenbayev,
175
D. Ugolini,
219
C. S. Unnikrishnan,
189
A. L. Urban,
107
S. A. Usman,
126
H. Vahlbruch,
108
G. Vajente,
92
G. Valdes,
175
N. van Bakel,
100
M. van Beuzekom,
100
J. F. J. van den Brand,
152, 100
C. Van Den Broeck,
100
D. C. Vander-Hyde,
126, 113
L. van der Schaaf,
100
J. V. van Heijningen,
100
A. A. van Veggel,
127
M. Vardaro,
132, 133
S. Vass,
92
R. Vaulin,
101
A. Vecchio,
135
G. Vedovato,
133
J. Veitch,
135
P. J. Veitch,
44
K. Venkateswara,
220
D. Verkindt,
98
F. Vetrano,
147, 148
S. Vinciguerra,
135
D. J. Vine,
140
J.-Y. Vinet,
143
S. Vitale,
101
T. Vo,
126
H. Vocca,
123, 124
C. Vorvick,
128
D. Voss,
96
W. D. Vousden,
135
S. P. Vyatchanin,
139
A. R. Wade,
111
L. E. Wade,
221
M. Wade,
221
M. Walker,
93
L. Wallace,
92
S. Walsh,
107, 99, 120
G. Wang,
103
H. Wang,
135
M. Wang,
135
X. Wang,
160
Y. Wang,
141
R. L. Ward,
111
J. Warner,
128
M. Was,
98
B. Weaver,
128
L.-W. Wei,
143
M. Weinert,
99
A. J. Weinstein,
92
R. Weiss,
101
T. Welborn,
97
L. Wen,
141
T. Westphal,
99
K. Wette,
99
J. T. Whelan,
201, 99
D. J. White,
176
B. F. Whiting,
96
R. D. Williams,
92
A. R. Williamson,
181
J. L. Willis,
222
B. Willke,
108, 99
M. H. Wimmer,
99, 108
W. Winkler,
99
C. C. Wipf,
92
H. Wittel,
99, 108
G. Woan,
127
J. Worden,
128
J. L. Wright,
127
G. Wu,
97
J. Yablon,
172
W. Yam,
101
H. Yamamoto,
92
C. C. Yancey,
153
M. J. Yap,
111
H. Yu,
101
M. Yvert,
98
L. Zangrando,
133
M. Zanolin,
187
J.-P. Zendri,
133
M. Zevin,
172
F. Zhang,
101
L. Zhang,
92
M. Zhang,
208
Y. Zhang,
201
C. Zhao,
141
M. Zhou,
172
Z. Zhou,
172
X. J. Zhu,
141
M. E. Zucker,
92, 101
S. E. Zuraw,
191
and J. Zweizig
92
(LIGO Scientific Collaboration and Virgo Collaboration)
Deceased, May 2015.
Deceased, March 2015.
1
Institut d’Investigaci ́o per a la Gesti ́o Integrada de les Zones Costaneres (IGIC)
- Universitat Polit`ecnica de Val`encia. C/ Paranimf 1 , 46730 Gandia, Spain.
2
GRPHE - Universit ́e de Haute Alsace - Institut universitaire de technologie de Colmar,
34 rue du Grillenbreit BP 50568 - 68008 Colmar, France
3
Technical University of Catalonia, Laboratory of Applied Bioacoustics,
Rambla Exposici ́o,08800 Vilanova i la Geltr ́u,Barcelona, Spain
4
Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universit ̈at Erlangen-N ̈urnberg, D-91058 Erlangen, Germany
5
Aix-Marseille Universit ́e, CNRS/IN2P3, CPPM UMR 7346, 13288 Marseille, France
6
APC, Universit ́e Paris Diderot, CNRS/IN2P3, CEA/IRFU,
Observatoire de Paris, Sorbonne Paris Cit ́e, 75205 Paris, France